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1 Getting Started

Product Overview
Statistics Toolbox™ software extends MATLAB® to support a wide range of
common statistical tasks. The toolbox contains two categories of tools:

• Building-block statistical functions for use in MATLAB programming

• Graphical user interfaces (GUIs) for interactive data analysis

Code for the building-block functions is open and extensible. Use the
MATLAB Editor to review, copy, and edit M-file code for any function. Extend
the toolbox by copying code to new M-files or by writing M-files that call
toolbox functions.

Toolbox GUIs allow you to perform statistical visualization and analysis
without writing code. You interact with the GUIs using sliders, input fields,
push buttons, etc. and the GUIs automatically call building-block functions.
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• “Introduction” on page 2-2

• “MATLAB Arrays” on page 2-4

• “Statistical Arrays” on page 2-11

• “Grouped Data” on page 2-33



2 Organizing Data

Introduction
MATLAB data is placed into “data containers” in the form of workspace
variables. All workspace variables organize data into some form of array. For
statistical purposes, arrays are viewed as tables of values.

MATLAB variables use different structures to organize data:

• 2-D numerical arrays (matrices) organize observations and measured
variables by rows and columns, respectively. (See “Other Data Structures”
in the MATLAB documentation.)

• Multidimensional arrays organize multidimensional observations or
experimental designs. (See “Multidimensional Arrays” in the MATLAB
documentation.)

• Cell and structure arrays organize heterogeneous data of different types,
sizes, units, etc. (See “Cell Arrays” and “Structures” in the MATLAB
documentation.)

Data types determine the kind of data variables contain. (See “Classes (Data
Types)” in the MATLAB documentation.)

These basic MATLAB container variables are reviewed, in a statistical
context, in the section on “MATLAB Arrays” on page 2-4.

These variables are not specifically designed for statistical data, however.
Statistical data generally involves observations of multiple variables, with
measurements of heterogeneous type and size. Data may be numerical,
categorical, or in the form of descriptive metadata. Fitting statistical data into
basic MATLAB variables, and accessing it efficiently, can be cumbersome.

Statistics Toolbox software offers two additional types of container variables
specifically designed for statistical data:

• “Categorical Arrays” on page 2-13 accommodate data in the form of discrete
levels, together with its descriptive metadata.

• “Dataset Arrays” on page 2-23 encapsulate heterogeneous data and
metadata, including categorical data, which is accessed and manipulated
using familiar methods analogous to those for numerical matrices.
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These statistical container variables are discussed in the section on
“Statistical Arrays” on page 2-11.
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2 Organizing Data

MATLAB Arrays

In this section...

“Numerical Data” on page 2-4

“Heterogeneous Data” on page 2-7

“Statistical Functions” on page 2-9

Numerical Data
MATLAB two-dimensional numerical arrays (matrices) containing statistical
data use rows to represent observations and columns to represent measured
variables. For example,

load fisheriris % Fisher's iris data (1936)

loads the variables meas and species into the MATLAB workspace. The meas
variable is a 150-by-4 numerical matrix, representing 150 observations of 4
different measured variables (by column: sepal length, sepal width, petal
length, and petal width, respectively).

The observations in meas are of three different species of iris (setosa,
versicolor, and virginica), which can be separated from one another using the
150-by-1 cell array of strings species:
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setosa_indices = strcmp('setosa',species);
setosa = meas(setosa_indices,:);

The resulting setosa variable is 50-by-4, representing 50 observations of the
4 measured variables for iris setosa.

To access and display the first five observations in the setosa data, use row,
column parenthesis indexing:

SetosaObs = setosa(1:5,:)
SetosaObs =

5.1000 3.5000 1.4000 0.2000
4.9000 3.0000 1.4000 0.2000
4.7000 3.2000 1.3000 0.2000
4.6000 3.1000 1.5000 0.2000
5.0000 3.6000 1.4000 0.2000

The data are organized into a table with implicit column headers “Sepal
Length,” “Sepal Width,” “Petal Length,” and “Petal Width.” Implicit row
headers are “Observation 1,” “Observation 2,” “Observation 3,” etc.

Similarly, 50 observations for iris versicolor and iris virginica can be extracted
from the meas container variable:

versicolor_indices = strcmp('versicolor',species);
versicolor = meas(versicolor_indices,:);

virginica_indices = strcmp('virginica',species);
virginica = meas(virginica_indices,:);

Because the data sets for the three species happen to be of the same size, they
can be reorganized into a single 50-by-4-by-3 multidimensional array:

iris = cat(3,setosa,versicolor,virginica);

The iris array is a three-layer table with the same implicit row and column
headers as the setosa, versicolor, and virginica arrays. The implicit layer
names, along the third dimension, are “Setosa,” “Versicolor,” and “Virginica.”
The utility of such a multidimensional organization depends on assigning
meaningful properties of the data to each dimension.
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2 Organizing Data

To access and display data in a multidimensional array, use parenthesis
indexing, as for 2-D arrays. The following gives the first five observations
of sepal lengths in the setosa data:

SetosaSL = iris(1:5,1,1)
SetosaSL =

5.1000
4.9000
4.7000
4.6000
5.0000

Multidimensional arrays provide a natural way to organize numerical data
for which the observations, or experimental designs, have many dimensions.
If, for example, data with the structure of iris are collected by multiple
observers, in multiple locations, over multiple dates, the entirety of the data
can be organized into a single higher dimensional array with dimensions
for “Observer,” “Location,” and “Date.” Likewise, an experimental design
calling for m observations of n p-dimensional variables could be stored in
an m-by-n-by-p array.

Numerical arrays have limitations when organizing more general statistical
data. One limitation is the implicit nature of the metadata. Another is the
requirement that multidimensional data be of commensurate size across all
dimensions. If variables have different lengths, or the number of variables
differs by layer, then multidimensional arrays must be artificially padded
with NaNs to indicate “missing values.” These limitations are addressed by
dataset arrays (see “Dataset Arrays” on page 2-23), which are specifically
designed for statistical data.
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Heterogeneous Data
MATLAB data types include two container variables—cell arrays and
structure arrays—that allow you to combine metadata with variables of
different types and sizes.

The data in the variables setosa, versicolor, and virginica created in
“Numerical Data” on page 2-4 can be organized in a cell array, as follows:

iris1 = cell(51,5,3); % Container variable

obsnames = strcat({'Obs'},num2str((1:50)','%-d'));
iris1(2:end,1,:) = repmat(obsnames,[1 1 3]);

varnames = {'SepalLength','SepalWidth',...
'PetalLength','PetalWidth'};

iris1(1,2:end,:) = repmat(varnames,[1 1 3]);

iris1(2:end,2:end,1) = num2cell(setosa);
iris1(2:end,2:end,2) = num2cell(versicolor);
iris1(2:end,2:end,3) = num2cell(virginica);

iris1{1,1,1} = 'Setosa';
iris1{1,1,2} = 'Versicolor';
iris1{1,1,3} = 'Virginica';

To access and display the cells, use parenthesis indexing. The following
displays the first five observations in the setosa sepal data:

SetosaSLSW = iris1(1:6,1:3,1)
SetosaSLSW =

'Setosa' 'SepalLength' 'SepalWidth'
'Obs1' [ 5.1000] [ 3.5000]
'Obs2' [ 4.9000] [ 3]
'Obs3' [ 4.7000] [ 3.2000]
'Obs4' [ 4.6000] [ 3.1000]
'Obs5' [ 5] [ 3.6000]

Here, the row and column headers have been explicitly labeled with metadata.

To extract the data subset, use row, column curly brace indexing:
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subset = reshape([iris1{2:6,2:3,1}],5,2)
subset =

5.1000 3.5000
4.9000 3.0000
4.7000 3.2000
4.6000 3.1000
5.0000 3.6000

While cell arrays are useful for organizing heterogeneous data, they may
be cumbersome when it comes to manipulating and analyzing the data.
MATLAB and Statistics Toolbox statistical functions do not accept data in the
form of cell arrays. For processing, data must be extracted from the cell array
to a numerical container variable, as in the preceding example. The indexing
can become complicated for large, heterogeneous data sets. This limitation of
cell arrays is addressed by dataset arrays (see “Dataset Arrays” on page 2-23),
which are designed to store general statistical data and provide easy access.

The data in the preceding example can also be organized in a structure array,
as follows:

iris2.data = cat(3,setosa,versicolor,virginica);
iris2.varnames = {'SepalLength','SepalWidth',...

'PetalLength','PetalWidth'};
iris2.obsnames = strcat({'Obs'},num2str((1:50)','%-d'));
iris2.species = {'setosa','versicolor','virginica'};

The data subset is then returned using a combination of dot and parenthesis
indexing:

subset = iris2.data(1:5,1:2,1)
subset =

5.1000 3.5000
4.9000 3.0000
4.7000 3.2000
4.6000 3.1000
5.0000 3.6000

For statistical data, structure arrays have many of the same limitations as
cell arrays. Once again, dataset arrays (see “Dataset Arrays” on page 2-23),
designed specifically for general statistical data, address these limitations.
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Statistical Functions
One of the advantages of working in the MATLAB language is that functions
operate on entire arrays of data, not just on single scalar values. The
functions are said to be vectorized. Vectorization allows for both efficient
problem formulation, using array-based data, and efficient computation,
using vectorized statistical functions.

When MATLAB and Statistics Toolbox statistical functions operate on a
vector of numerical data (either a row vector or a column vector), they return
a single computed statistic:

% Fisher's setosa data:
load fisheriris
setosa_indices = strcmp('setosa',species);
setosa = meas(setosa_indices,:);

% Single variable from the data:
setosa_sepal_length = setosa(:,1);

% Standard deviation of the variable:
std(setosa_sepal_length)
ans =

0.3525

When statistical functions operate on a matrix of numerical data, they treat
the columns independently, as separate measured variables, and return a
vector of statistics—one for each variable:

std(setosa)
ans =

0.3525 0.3791 0.1737 0.1054

The four standard deviations are for measurements of sepal length, sepal
width, petal length, and petal width, respectively.

Compare this to

std(setosa(:))
ans =

1.8483
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which gives the standard deviation across the entire array (all measurements).

Compare the preceding statistical calculations to the more generic
mathematical operation

sin(setosa)

This operation returns a 50-by-4 array the same size as setosa. The sin
function is vectorized in a different way than the std function, computing one
scalar value for each element in the array.

MATLAB and Statistics Toolbox statistical functions, like std, must be
distinguished from general mathematical functions like sin. Both are
vectorized, and both are useful for working with array-based data, but
only statistical functions summarize data across observations (rows) while
preserving variables (columns). This property of statistical functions may be
explicit, as with std, or implicit, as with regress. To see how a particular
function handles array-based data, consult its reference page.

MATLAB statistical functions expect data input arguments to be in the form
of numerical arrays. If data is stored in a cell or structure array, it must
be extracted to a numerical array, via indexing, for processing. Statistics
Toolbox functions are more flexible. Many toolbox functions accept data input
arguments in the form of both numerical arrays and dataset arrays (see
“Dataset Arrays” on page 2-23), which are specifically designed for storing
general statistical data.
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Statistical Arrays

In this section...

“Introduction” on page 2-11

“Categorical Arrays” on page 2-13

“Dataset Arrays” on page 2-23

Introduction
As discussed in “MATLAB Arrays” on page 2-4, MATLAB data types include
arrays for numerical, logical, and character data, as well as cell and structure
arrays for heterogeneous collections of data.

Statistics Toolbox software offers two additional types of arrays specifically
designed for statistical data:

• “Categorical Arrays” on page 2-13

• “Dataset Arrays” on page 2-23

Categorical arrays store data with values in a discrete set of levels. Each level
is meant to capture a single, defining characteristic of an observation. If no
ordering is encoded in the levels, the data and the array are nominal. If an
ordering is encoded, the data and the array are ordinal.

Categorical arrays also store labels for the levels. Nominal labels typically
suggest the type of an observation, while ordinal labels suggest the position
or rank.

Dataset arrays collect heterogeneous statistical data and metadata, including
categorical data, into a single container variable. Like the numerical matrices
discussed in “Numerical Data” on page 2-4, dataset arrays can be viewed as
tables of values, with rows representing different observations and columns
representing different measured variables. Like the cell and structure
arrays discussed in “Heterogeneous Data” on page 2-7, dataset arrays can
accommodate variables of different types, sizes, units, etc.
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Dataset arrays combine the organizational advantages of these basic
MATLAB data types while addressing their shortcomings with respect to
storing complex statistical data.

Both categorical and dataset arrays have associated methods for assembling,
accessing, manipulating, and processing the collected data. Basic array
operations parallel those for numerical, cell, and structure arrays.
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Categorical Arrays

• “Categorical Data” on page 2-13

• “Categorical Arrays” on page 2-14

• “Using Categorical Arrays” on page 2-16

Categorical Data
Categorical data take on values from only a finite, discrete set of categories
or levels. Levels may be determined before the data are collected, based on
the application, or they may be determined by the distinct values in the data
when converting them to categorical form. Predetermined levels, such as a
set of states or numerical intervals, are independent of the data they contain.
Any number of values in the data may attain a given level, or no data at all.
Categorical data show which measured values share common levels, and
which do not.

Levels may have associated labels. Labels typically express a defining
characteristic of an observation, captured by its level.

If no ordering is encoded in the levels, the data are nominal. Nominal
labels typically indicate the type of an observation. Examples of nominal
labels are {false, true}, {male, female}, and {Afghanistan, ..., Zimbabwe}.
For nominal data, the numeric or lexicographic order of the labels is
irrelevant—Afghanistan is not considered to be less than, equal to, or greater
than Zimbabwe.

If an ordering is encoded in the levels—for example, if levels labeled “red”,
“green”, and “blue” represent wavelengths—the data are ordinal. Labels
for ordinal levels typically indicate the position or rank of an observation.
Examples of ordinal labels are {0, 1}, {mm, cm, m, km}, and {poor, satisfactory,
outstanding}. The ordering of the levels may or may not correspond to the
numeric or lexicographic order of the labels.
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Categorical Arrays
Categorical data can be represented using MATLAB integer arrays, but
this method has a number of drawbacks. First, it removes all of the useful
metadata that might be captured in labels for the levels. Labels must be
stored separately, in character arrays or cell arrays of strings. Secondly, this
method suggests that values stored in the integer array have their usual
numeric meaning, which, for categorical data, they may not. Finally, integer
types have a fixed set of levels (for example, -128:127 for all int8 arrays),
which cannot be changed.

Categorical arrays, available in Statistics Toolbox software, are specifically
designed for storing, manipulating, and processing categorical data and
metadata. Unlike integer arrays, each categorical array has its own set of
levels, which can be changed. Categorical arrays also accommodate labels for
levels in a natural way. Like numerical arrays, categorical arrays take on
different shapes and sizes, from scalars to N-D arrays.

Organizing data in a categorical array can be an end in itself. Often, however,
categorical arrays are used for further statistical processing. They can be
used to index into other variables, creating subsets of data based on the
category of observation, or they can be used with statistical functions that
accept categorical inputs. For examples, see “Grouped Data” on page 2-33.

Categorical arrays come in two types, depending on whether the collected
data is understood to be nominal or ordinal. Nominal arrays are constructed
with nominal; ordinal arrays are constructed with ordinal. For example,

load fisheriris
ndata = nominal(species,{'A','B','C'});

creates a nominal array with levels A, B, and C from the species data in
fisheriris.mat, while

odata = ordinal(ndata,{},{'C','A','B'});

encodes an ordering of the levels with C < A < B. See “Using Categorical
Arrays” on page 2-16, and the reference pages for nominal and ordinal, for
further examples.

Categorical arrays are implemented as objects of the categorical class.
The class is abstract, defining properties and methods common to both
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the nominal class and ordinal class. Use the corresponding constructors,
nominal or ordinal, to create categorical arrays. Methods of the classes are
used to display, summarize, convert, concatenate, and access the collected
data. Many of these methods are invoked using operations analogous to those
for numerical arrays, and do not need to be called directly (for example, []
invokes horzcat). Other methods, such as reorderlevels, must be called
directly.
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Using Categorical Arrays
This section provides an extended tutorial example demonstrating the use of
categorical arrays with methods of the nominal class and ordinal class.

• “Constructing Categorical Arrays” on page 2-16

• “Accessing Categorical Arrays” on page 2-18

• “Combining Categorical Arrays” on page 2-19

• “Computing with Categorical Arrays” on page 2-20

Constructing Categorical Arrays. Load the 150-by-4 numerical array meas
and the 150-by-1 cell array of strings species:

load fisheriris % Fisher's iris data (1936)

The data are 150 observations of four measured variables (by column number:
sepal length, sepal width, petal length, and petal width, respectively) over
three species of iris (setosa, versicolor, and virginica).

Use nominal to create a nominal array from species:

n1 = nominal(species);

Open species and n1 side by side in the Variable Editor (see “Viewing and
Editing Workspace Variables with the Variable Editor” in the MATLAB
documentation). Note that the string information in species has been
converted to categorical form, leaving only information on which data share
the same values, indicated by the labels for the levels.

By default, levels are labeled with the distinct values in the data (in this case,
the strings in species). Alternate labels are given with additional input
arguments to the nominal constructor:

n2 = nominal(species,{'species1','species2','species3'});

Open n2 in the Variable Editor, and compare it with species and n1. The
levels have been relabeled.
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Suppose that the data are considered to be ordinal. A characteristic of the
data that is not reflected in the labels is the diploid chromosome count, which
orders the levels corresponding to the three species as follows:

species1 < species3 < species2

Use ordinal to cast n2 as an ordinal array:

o1 = ordinal(n2,{},{'species1','species3','species2'});

The second input argument to ordinal is the same as for nominal—a list of
labels for the levels in the data. If it is unspecified, as above, the labels are
inherited from the data, in this case n2. The third input argument of ordinal
indicates the ordering of the levels, in ascending order.

When displayed side by side in the Variable Editor, o1 does not appear any
different than n2. This is because the data in o1 have not been sorted. It is
important to recognize the difference between the ordering of the levels in an
ordinal array and sorting the actual data according to that ordering. Use sort
to sort ordinal data in ascending order:

o2 = sort(o1);

When displayed in the Variable Editor, o2 shows the data sorted by diploid
chromosome count.

To find which elements moved up in the sort, use the < operator for ordinal
arrays:

moved_up = (o1 < o2);

The operation returns a logical array moved_up, indicating which elements
have moved up (the data for species3).

Use getlabels to display the labels for the levels in ascending order:

labels2 = getlabels(o2)
labels2 =

'species1' 'species3' 'species2'

The sort function reorders the display of the data, but not the order of the
levels. To reorder the levels, use reorderlevels:
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o3 = reorderlevels(o2,labels2([1 3 2]));
labels3 = getlabels(o3)
labels3 =

'species1' 'species2' 'species3'
o4 = sort(o3);

These operations return the levels in the data to their original ordering, by
species number, and then sort the data for display purposes.

Accessing Categorical Arrays. Categorical arrays are accessed using
parenthesis indexing, with syntax that parallels similar operations for
numerical arrays (see “Numerical Data” on page 2-4).

Parenthesis indexing on the right-hand side of an assignment is used to
extract the lowest 50 elements from the ordinal array o4:

low50 = o4(1:50);

Suppose you want to categorize the data in o4 with only two levels: low (the
data in low50) and high (the rest of the data). One way to do this is to use an
assignment with parenthesis indexing on the left-hand side:

o5 = o4; % Copy o4
o5(1:50) = 'low';
Warning: Categorical level 'low' being added.
o5(51:end) = 'high';
Warning: Categorical level 'high' being added.

Note the warnings: the assignments move data to new levels. The old levels,
though empty, remain:

getlabels(o5)
ans =

'species1' 'species2' 'species3' 'low' 'high'

The old levels are removed using droplevels:

o5 = droplevels(o5,{'species1','species2','species3'});

Another approach to creating two categories in o5 from the three categories in
o4 is to merge levels, using mergelevels:
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o5 = mergelevels(o4,{'species1'},'low');
o5 = mergelevels(o5,{'species2','species3'},'high');

getlabels(o5)
ans =

'low' 'high'

The merged levels are removed and replaced with the new levels.

Combining Categorical Arrays. Categorical arrays are concatenated using
square brackets. Again, the syntax parallels similar operations for numerical
arrays (see “Numerical Data” on page 2-4). There are, however, restrictions:

• Only categorical arrays of the same type can be combined. You cannot
concatenate a nominal array with an ordinal array.

• Only ordinal arrays with the same levels, in the same order, can be
combined.

• Nominal arrays with different levels can be combined to produce a nominal
array whose levels are the union of the levels in the component arrays.

First use ordinal to create ordinal arrays from the variables for sepal length
and sepal width in meas. Categorize the data as short or long depending on
whether they are below or above the median of the variable, respectively:

sl = meas(:,1); % Sepal length data
sw = meas(:,2); % Sepal width data
SL1 = ordinal(sl,{'short','long'},[],...

[min(sl),median(sl),max(sl)]);
SW1 = ordinal(sw,{'short','long'},[],...

[min(sw),median(sw),max(sw)]);

Because SL1 and SW1 are ordinal arrays with the same levels, in the same
order, they can be concatenated:

S1 = [SL1,SW1];
S1(1:10,:)
ans =

short long
short long
short long
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short long
short long
short long
short long
short long
short short
short long

The result is an ordinal array S1 with two columns.

If, on the other hand, the measurements are cast as nominal, different levels
can be used for the different variables, and the two nominal arrays can still
be combined:

SL2 = nominal(sl,{'short','long'},[],...
[min(sl),median(sl),max(sl)]);

SW2 = nominal(sw,{'skinny','wide'},[],...
[min(sw),median(sw),max(sw)]);

S2 = [SL2,SW2];
getlabels(S2)
ans =

'short' 'long' 'skinny' 'wide'
S2(1:10,:)
ans =

short wide
short wide
short wide
short wide
short wide
short wide
short wide
short wide
short skinny
short wide

Computing with Categorical Arrays. Categorical arrays are used to
index into other variables, creating subsets of data based on the category
of observation, and they are used with statistical functions that accept
categorical inputs, such as those described in “Grouped Data” on page 2-33.
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Use ismember to create logical variables based on the category of observation.
For example, the following creates a logical index the same size as species
that is true for observations of iris setosa and false elsewhere. Recall that
n1 = nominal(species):

SetosaObs = ismember(n1,'setosa');

Since the code above compares elements of n1 to a single value, the same
operation is carried out by the equality operator:

SetosaObs = (n1 == 'setosa');

The SetosaObs variable is used to index into meas to extract only the setosa
data:

SetosaData = meas(SetosaObs,:);

Categorical arrays are also used as grouping variables. The following plot
summarizes the sepal length data in meas by category:

boxplot(sl,n1)
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Dataset Arrays

• “Statistical Data” on page 2-23

• “Dataset Arrays” on page 2-24

• “Using Dataset Arrays” on page 2-25

Statistical Data
MATLAB data containers (variables) are suitable for completely homogeneous
data (numeric, character, and logical arrays) and for completely heterogeneous
data (cell and structure arrays). Statistical data, however, are often a mixture
of homogeneous variables of heterogeneous types and sizes. Dataset arrays
are suitable containers for this kind of data.

Dataset arrays can be viewed as tables of values, with rows representing
different observations or cases and columns representing different measured
variables. In this sense, dataset arrays are analogous to the numerical
arrays for statistical data discussed in “Numerical Data” on page 2-4. Basic
methods for creating and manipulating dataset arrays parallel the syntax of
corresponding methods for numerical arrays.

While each column of a dataset array must be a variable of a single type,
each row may contain an observation consisting of measurements of different
types. In this sense, dataset arrays lie somewhere between variables that
enforce complete homogeneity on the data and those that enforce nothing.
Because of the potentially heterogeneous nature of the data, dataset arrays
have indexing methods with syntax that parallels corresponding methods for
cell and structure arrays (see “Heterogeneous Data” on page 2-7).
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Dataset Arrays
Dataset arrays are variables created with dataset. For example, the
following creates a dataset array from observations that are a combination of
categorical and numerical measurements:

load fisheriris
NumObs = size(meas,1);
NameObs = strcat({'Obs'},num2str((1:NumObs)','%-d'));
iris = dataset({nominal(species),'species'},...

{meas,'SL','SW','PL','PW'},...
'ObsNames',NameObs);

iris(1:5,:)
ans =

species SL SW PL PW
Obs1 setosa 5.1 3.5 1.4 0.2
Obs2 setosa 4.9 3 1.4 0.2
Obs3 setosa 4.7 3.2 1.3 0.2
Obs4 setosa 4.6 3.1 1.5 0.2
Obs5 setosa 5 3.6 1.4 0.2

When creating a dataset array, variable names and observation names can be
assigned together with the data. Other metadata associated with the array
can be assigned with set and accessed with get:

iris = set(iris,'Description','Fisher''s Iris Data');
get(iris)

Description: 'Fisher's Iris Data'
Units: {}
DimNames: {'Observations' 'Variables'}
UserData: []
ObsNames: {150x1 cell}
VarNames: {'species' 'SL' 'SW' 'PL' 'PW'}

Dataset arrays are implemented as objects of the dataset class. Methods of
the class are used to display, summarize, convert, concatenate, and access
the collected data. Many of these methods are invoked using operations
analogous to those for numerical arrays, and do not need to be called directly
(for example, [] invokes horzcat). Other methods, such as sortrows, must
be called directly.
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Using Dataset Arrays
This section provides an extended tutorial example demonstrating the use of
dataset arrays with methods of the dataset class.

• “Constructing Dataset Arrays” on page 2-25

• “Accessing Dataset Arrays” on page 2-27

• “Combining Dataset Arrays” on page 2-29

• “Computing with Dataset Arrays” on page 2-31

Constructing Dataset Arrays. Load the 150-by-4 numerical array meas and
the 150-by-1 cell array of strings species:

load fisheriris % Fisher's iris data (1936)

The data are 150 observations of four measured variables (by column number:
sepal length, sepal width, petal length, and petal width, respectively) over
three species of iris (setosa, versicolor, and virginica).

Use dataset to create a dataset array iris from the data, assigning variable
names species, SL, SW, PL, and PW and observation names Obs1, Obs2, Obs3,
etc.:

NumObs = size(meas,1);
NameObs = strcat({'Obs'},num2str((1:NumObs)','%-d'));
iris = dataset({nominal(species),'species'},...

{meas,'SL','SW','PL','PW'},...
'ObsNames',NameObs);

iris(1:5,:)
ans =

species SL SW PL PW
Obs1 setosa 5.1 3.5 1.4 0.2
Obs2 setosa 4.9 3 1.4 0.2
Obs3 setosa 4.7 3.2 1.3 0.2
Obs4 setosa 4.6 3.1 1.5 0.2
Obs5 setosa 5 3.6 1.4 0.2
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The cell array of strings species is first converted to a categorical array of
type nominal before inclusion in the dataset array. For further information
on categorical arrays, see “Categorical Arrays” on page 2-13.

Use set to set properties of the array:

desc = 'Fisher''s iris data (1936)';
units = [{''} repmat({'cm'},1,4)];
info = 'http://en.wikipedia.org/wiki/R.A._Fisher';

iris = set(iris,'Description',desc,...
'Units',units,...
'UserData',info);

Use get to view properties of the array:

get(iris)
Description: 'Fisher's iris data (1936)'

Units: {'' 'cm' 'cm' 'cm' 'cm'}
DimNames: {'Observations' 'Variables'}
UserData: 'http://en.wikipedia.org/wiki/R.A._Fisher'
ObsNames: {150x1 cell}
VarNames: {'species' 'SL' 'SW' 'PL' 'PW'}

get(iris(1:5,:),'ObsNames')
ans =

'Obs1'
'Obs2'
'Obs3'
'Obs4'
'Obs5'

For a table of accessible properties of dataset arrays, with descriptions, see
the reference on the dataset class.
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Accessing Dataset Arrays. Dataset arrays support multiple types of
indexing. Like the numerical matrices described in “Numerical Data” on page
2-4, parenthesis () indexing is used to access data subsets. Like the cell
and structure arrays described in “Heterogeneous Data” on page 2-7, dot .
indexing is used to access data variables and curly brace {} indexing is used
to access data elements.

Use parenthesis indexing to assign a subset of the data in iris to a new
dataset array iris1:

iris1 = iris(1:5,2:3)
iris1 =

SL SW
Obs1 5.1 3.5
Obs2 4.9 3
Obs3 4.7 3.2
Obs4 4.6 3.1
Obs5 5 3.6

Similarly, use parenthesis indexing to assign new data to the first variable
in iris1:

iris1(:,1) = dataset([5.2;4.9;4.6;4.6;5])
iris1 =

SL SW
Obs1 5.2 3.5
Obs2 4.9 3
Obs3 4.6 3.2
Obs4 4.6 3.1
Obs5 5 3.6

Variable and observation names can also be used to access data:

SepalObs = iris1({'Obs1','Obs3','Obs5'},'SL')
SepalObs =

SL
Obs1 5.2
Obs3 4.6
Obs5 5
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Dot indexing is used to access variables in a dataset array, and can be
combined with other indexing methods. For example, apply zscore to the
data in SepalObs as follows:

ScaledSepalObs = zscore(iris1.SL([1 3 5]))
ScaledSepalObs =

0.8006
-1.1209
0.3203

The following code extracts the sepal lengths in iris1 corresponding to sepal
widths greater than 3:

BigSWLengths = iris1.SL(iris1.SW > 3)
BigSWLengths =

5.2000
4.6000
4.6000
5.0000

Dot indexing also allows entire variables to be deleted from a dataset array:

iris1.SL = []
iris1 =

SW
Obs 1 3.5
Obs 2 3
Obs 3 3.2
Obs 4 3.1
Obs 5 3.6

Dynamic variable naming works for dataset arrays just as it does for structure
arrays. For example, the units of the SW variable are changed in iris1 as
follows:

varname = 'SW';
iris1.(varname) = iris1.(varname)*10
iris1 =

SW
Obs1 35
Obs2 30
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Obs3 32
Obs4 31
Obs5 36

iris1 = set(iris1,'Units',{'mm'});

Curly brace indexing is used to access individual data elements. The following
are equivalent:

iris1{1,1}
ans =

35

iris1{'Obs1','SW'}
ans =

35

Combining Dataset Arrays. Combine two dataset arrays into a single
dataset array using square brackets:

SepalData = iris(:,{'SL','SW'});
PetalData = iris(:,{'PL','PW'});
newiris = [SepalData,PetalData];
size(newiris)
ans =

150 4

For horizontal concatenation, as in the preceding example, the number of
observations in the two dataset arrays must agree. Observations are matched
up by name (if given), regardless of their order in the two data sets.

The following concatenates variables within a dataset array and then deletes
the component variables:

newiris.SepalData = [newiris.SL,newiris.SW];
newiris.PetalData = [newiris.PL,newiris.PW];
newiris(:,{'SL','SW','PL','PW'}) = [];
size(newiris)
ans =

150 2
size(newiris.SepalData)
ans =
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150 2

newiris is now a 150-by-2 dataset array containing two 150-by-2 numerical
arrays as variables.

Vertical concatenation is also handled in a manner analogous to numerical
arrays:

newobs = dataset({[5.3 4.2; 5.0 4.1],'PetalData'},...
{[5.5 2; 4.8 2.1],'SepalData'});

newiris = [newiris;newobs];
size(newiris)
ans =

152 2

For vertical concatenation, as in the preceding example, the names of the
variables in the two dataset arrays must agree. Variables are matched up by
name, regardless of their order in the two data sets.

Expansion of variables is also accomplished using direct assignment to new
rows:

newiris(153,:) = dataset({[5.1 4.0],'PetalData'},...
{[5.1 4.2],'SepalData'});

A different type of concatenation is performed by join, which takes the data
in one dataset array and assigns it to the rows of another dataset array, based
on matching values in a common key variable. For example, the following
creates a dataset array with diploid chromosome counts for each species of iris:

snames = nominal({'setosa';'versicolor';'virginica'});
CC = dataset({snames,'species'},{[38;108;70],'cc'})
CC =

species cc
setosa 38
versicolor 108
virginica 70

This data is broadcast to the rows of iris using join:

iris2 = join(iris,CC);
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iris2([1 2 51 52 101 102],:)
ans =

species SL SW PL PW cc
Obs1 setosa 5.1 3.5 1.4 0.2 38
Obs2 setosa 4.9 3 1.4 0.2 38
Obs51 versicolor 7 3.2 4.7 1.4 108
Obs52 versicolor 6.4 3.2 4.5 1.5 108
Obs101 virginica 6.3 3.3 6 2.5 70
Obs102 virginica 5.8 2.7 5.1 1.9 70

Computing with Dataset Arrays. Use summary to provide summary
statistics for the component variables of a dataset array:

summary(newiris)
Fisher's iris data (1936)
SepalData: [153x2 double]

min 4.3000 2
1st Q 5.1000 2.8000
median 5.8000 3
3rd Q 6.4000 3.3250
max 7.9000 4.4000

PetalData: [153x2 double]
min 1 0.1000
1st Q 1.6000 0.3000
median 4.4000 1.3000
3rd Q 5.1000 1.8000
max 6.9000 4.2000

To apply other statistical functions, use dot indexing to access relevant
variables:

SepalMeans = mean(newiris.SepalData)
SepalMeans =

5.8294 3.0503

The same result is obtained with datasetfun, which applies functions to
dataset array variables:

means = datasetfun(@mean,newiris,'UniformOutput',false)
means =

[1x2 double] [1x2 double]
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SepalMeans = means{1}
SepalMeans =

5.8294 3.0503

An alternative approach is to cast data in a dataset array as double and
apply statistical functions directly. Compare the following two methods
for computing the covariance of the length and width of the SepalData in
newiris:

covs = datasetfun(@cov,newiris,'UniformOutput',false)
covs =

[2x2 double] [2x2 double]
SepalCovs = covs{1}
SepalCovs =

0.6835 -0.0373
-0.0373 0.2054

SepalCovs = cov(double(newiris(:,1)))
SepalCovs =

0.6835 -0.0373
-0.0373 0.2054
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Grouped Data

In this section...

“Grouping Variables” on page 2-33

“Functions for Grouped Data” on page 2-34

“Using Grouping Variables” on page 2-35

Grouping Variables
Grouping variables are utility variables used to indicate which elements
in a data set are to be considered together when computing statistics and
creating visualizations. They may be numeric vectors, string arrays, cell
arrays of strings, or categorical arrays. Logical vectors can be used to indicate
membership (or not) in a single group.

Grouping variables have the same length as the variables (columns) in a data
set. Observations (rows) i and j are considered to be in the same group if the
values of the corresponding grouping variable are identical at those indices.
Grouping variables with multiple columns are used to specify different groups
within multiple variables.

For example, the following loads the 150-by-4 numerical array meas and the
150-by-1 cell array of strings species into the workspace:

load fisheriris % Fisher's iris data (1936)

The data are 150 observations of four measured variables (by column number:
sepal length, sepal width, petal length, and petal width, respectively)
over three species of iris (setosa, versicolor, and virginica). To group the
observations by species, the following are all acceptable (and equivalent)
grouping variables:

group1 = species; % Cell array of strings
group2 = grp2idx(species); % Numeric vector
group3 = char(species); % Character array
group4 = nominal(species); % Categorical array
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These grouping variables can be supplied as input arguments to any of the
functions described in “Functions for Grouped Data” on page 2-34. Examples
are given in “Using Grouping Variables” on page 2-35.

Functions for Grouped Data
The following table lists Statistics Toolbox functions that accept a grouping
variable group as an input argument. The grouping variable may be in the
form of a vector, string array, cell array of strings, or categorical array, as
described in “Grouping Variables” on page 2-33.

For a full description of the syntax of any particular function, and examples
of its use, consult its reference page, linked from the table. “Using Grouping
Variables” on page 2-35 also includes examples.

Function Basic Syntax for Grouped Data

andrewsplot andrewsplot(X, ... ,'Group',group)

anova1 p = anova1(X,group)

anovan p = anovan(x,group)

aoctool aoctool(x,y,group)

boxplot boxplot(x,group)

classify class = classify(sample,training,group)

controlchart controlchart(x,group)

crosstab crosstab(group1,group2)

cvpartition c = cvpartition(group,'Kfold',k) or c =
cvpartition(group,'Holdout',p)

dummyvar D = dummyvar(group)

gagerr gagerr(x,group)

gplotmatrix gplotmatrix(x,y,group)

grp2idx [G,GN] = grp2idx(group)

grpstats means = grpstats(X,group)

gscatter gscatter(x,y,group)

interactionplot interactionplot(X,group)
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Function Basic Syntax for Grouped Data

kruskalwallis p = kruskalwallis(X,group)

maineffectsplot maineffectsplot(X,group)

manova1 d = manova1(X,group)

multivarichart multivarichart(x,group)

parallelcoords parallelcoords(X, ... ,'Group',group)

silhouette silhouette(X,group)

tabulate tabulate(group)

treefit T = treefit(X,y,'cost',S) or T =
treefit(X,y,'priorprob',S), where S.group
= group

vartestn vartestn(X,group)

Using Grouping Variables
This section provides an example demonstrating the use of grouping variables
and associated functions. Grouping variables are introduced in “Grouping
Variables” on page 2-33. A list of functions accepting grouping variables as
input arguments is given in “Functions for Grouped Data” on page 2-34.

Load the 150-by-4 numerical array meas and the 150-by-1 cell array of strings
species:

load fisheriris % Fisher's iris data (1936)

The data are 150 observations of four measured variables (by column number:
sepal length, sepal width, petal length, and petal width, respectively) over
three species of iris (setosa, versicolor, and virginica).

Create a categorical array (see “Categorical Arrays” on page 2-13) from
species to use as a grouping variable:

group = nominal(species);
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While species, as a cell array of strings, is itself a grouping variable, the
categorical array has the advantage that it can be easily manipulated with
methods of the categorical class.

Compute some basic statistics for the data (median and interquartile range),
by group, using the grpstats function:

[order,number,group_median,group_iqr] = ...
grpstats(meas,group,{'gname','numel',@median,@iqr})
order =

'setosa'
'versicolor'
'virginica'

number =
50 50 50 50
50 50 50 50
50 50 50 50

group_median =
5.0000 3.4000 1.5000 0.2000
5.9000 2.8000 4.3500 1.3000
6.5000 3.0000 5.5500 2.0000

group_iqr =
0.4000 0.5000 0.2000 0.1000
0.7000 0.5000 0.6000 0.3000
0.7000 0.4000 0.8000 0.5000

The statistics appear in 3-by-4 arrays, corresponding to the 3 groups
(categories) and 4 variables in the data. The order of the groups (not encoded
in the nominal array group) is indicated by the group names in order.

To improve the labeling of the data, create a dataset array (see “Dataset
Arrays” on page 2-23) from meas:

NumObs = size(meas,1);
NameObs = strcat({'Obs'},num2str((1:NumObs)','%-d'));
iris = dataset({group,'species'},...

{meas,'SL','SW','PL','PW'},...
'ObsNames',NameObs);

2-36



Grouped Data

When you call grpstats with a dataset array as an argument, you invoke the
grpstats method of the dataset class, rather than the grpstats function.
The method has a slightly different syntax than the function, but it returns
the same results, with better labeling:

stats = grpstats(iris,'species',{@median,@iqr})
stats =

species GroupCount
setosa setosa 50
versicolor versicolor 50
virginica virginica 50

median_SL iqr_SL
setosa 5 0.4
versicolor 5.9 0.7
virginica 6.5 0.7

median_SW iqr_SW
setosa 3.4 0.5
versicolor 2.8 0.5
virginica 3 0.4

median_PL iqr_PL
setosa 1.5 0.2
versicolor 4.35 0.6
virginica 5.55 0.8

median_PW iqr_PW
setosa 0.2 0.1
versicolor 1.3 0.3
virginica 2 0.5

Grouping variables are also used to create visualizations based on categories
of observations. The following scatter plot, created with the gscatter
function, shows the correlation between sepal length and sepal width in two
species of iris. Use ismember to subset the two species from group:

subset = ismember(group,{'setosa','versicolor'});
scattergroup = group(subset);
gscatter(iris.SL(subset),...

iris.SW(subset),...
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scattergroup)
xlabel('Sepal Length')
ylabel('Sepal Width')
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3 Descriptive Statistics

Introduction
You may need to summarize large, complex data sets—both numerically
and visually—to convey their essence to the data analyst and to allow for
further processing. This chapter focuses on numerical summaries; Chapter 4,
“Statistical Visualization” focuses on visual summaries.
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Measures of Central Tendency
Measures of central tendency locate a distribution of data along an
appropriate scale.

The following table lists the functions that calculate the measures of central
tendency.

Function Name Description

geomean Geometric mean

harmmean Harmonic mean

mean Arithmetic average

median 50th percentile

mode Most frequent value

trimmean Trimmed mean

The average is a simple and popular estimate of location. If the data sample
comes from a normal distribution, then the sample mean is also optimal
(MVUE of µ).

Unfortunately, outliers, data entry errors, or glitches exist in almost all
real data. The sample mean is sensitive to these problems. One bad data
value can move the average away from the center of the rest of the data by
an arbitrarily large distance.

The median and trimmed mean are two measures that are resistant (robust)
to outliers. The median is the 50th percentile of the sample, which will only
change slightly if you add a large perturbation to any value. The idea behind
the trimmed mean is to ignore a small percentage of the highest and lowest
values of a sample when determining the center of the sample.

The geometric mean and harmonic mean, like the average, are not robust
to outliers. They are useful when the sample is distributed lognormal or
heavily skewed.
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The following example shows the behavior of the measures of location for a
sample with one outlier.

x = [ones(1,6) 100]

x =
1 1 1 1 1 1 100

locate = [geomean(x) harmmean(x) mean(x) median(x)...
trimmean(x,25)]

locate =
1.9307 1.1647 15.1429 1.0000 1.0000

You can see that the mean is far from any data value because of the influence
of the outlier. The median and trimmed mean ignore the outlying value and
describe the location of the rest of the data values.
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Measures of Dispersion
The purpose of measures of dispersion is to find out how spread out the data
values are on the number line. Another term for these statistics is measures
of spread.

The table gives the function names and descriptions.

Function
Name Description

iqr Interquartile range

mad Mean absolute deviation

moment Central moment of all orders

range Range

std Standard deviation

var Variance

The range (the difference between the maximum and minimum values) is the
simplest measure of spread. But if there is an outlier in the data, it will be the
minimum or maximum value. Thus, the range is not robust to outliers.

The standard deviation and the variance are popular measures of spread that
are optimal for normally distributed samples. The sample variance is the
MVUE of the normal parameter σ2. The standard deviation is the square root
of the variance and has the desirable property of being in the same units as
the data. That is, if the data is in meters, the standard deviation is in meters
as well. The variance is in meters2, which is more difficult to interpret.

Neither the standard deviation nor the variance is robust to outliers. A data
value that is separate from the body of the data can increase the value of the
statistics by an arbitrarily large amount.

The mean absolute deviation (MAD) is also sensitive to outliers. But the
MAD does not move quite as much as the standard deviation or variance in
response to bad data.
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The interquartile range (IQR) is the difference between the 75th and 25th
percentile of the data. Since only the middle 50% of the data affects this
measure, it is robust to outliers.

The following example shows the behavior of the measures of dispersion for a
sample with one outlier.

x = [ones(1,6) 100]

x =
1 1 1 1 1 1 100

stats = [iqr(x) mad(x) range(x) std(x)]

stats =
0 24.2449 99.0000 37.4185
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Measures of Shape
Quantiles and percentiles provide information about the shape of data as
well as its location and spread.

The quantile of order p (0 ≤ p ≤ 1) is the smallest x value where the cumulative
distribution function equals or exceeds p. The function quantile computes
quantiles as follows:

1 n sorted data points are the 0.5/n, 1.5/n, ..., (n–0.5)/n quantiles.

2 Linear interpolation is used to compute intermediate quantiles.

3 The data min or max are assigned to quantiles outside the range.

4 Missing values are treated as NaN, and removed from the data.

Percentiles, computed by the prctile function, are quantiles for a certain
percentage of the data, specified for 0 ≤ p ≤ 100.

The following example shows the result of looking at every quartile (quantiles
with orders that are multiples of 0.25) of a sample containing a mixture of
two distributions.

x = [normrnd(4,1,1,100) normrnd(6,0.5,1,200)];
p = 100*(0:0.25:1);
y = prctile(x,p);
z = [p;y]
z =

0 25.0000 50.0000 75.0000 100.0000
1.8293 4.6728 5.6459 6.0766 7.1546

A box plot helps to visualize the statistics:

boxplot(x)
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The long lower tail and plus signs show the lack of symmetry in the sample
values. For more information on box plots, see “Box Plots” on page 4-6.

The shape of a data distribution is also measured by the Statistics Toolbox
functions skewness, kurtosis, and, more generally, moment.
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Resampling Statistics

In this section...

“The Bootstrap” on page 3-9

“The Jackknife” on page 3-12

“Parallel Computing Support for Resampling Methods” on page 3-13

The Bootstrap
The bootstrap procedure involves choosing random samples with replacement
from a data set and analyzing each sample the same way. Sampling with
replacement means that each observation is selected separately at random
from the original dataset. So a particular data point from the original data
set could appear multiple times in a given bootstrap sample. The number of
elements in each bootstrap sample equals the number of elements in the
original data set. The range of sample estimates you obtain enables you to
establish the uncertainty of the quantity you are estimating.

This example from Efron and Tibshirani [31] compares Law School Admission
Test (LSAT) scores and subsequent law school grade point average (GPA) for
a sample of 15 law schools.

load lawdata
plot(lsat,gpa,'+')
lsline
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The least-squares fit line indicates that higher LSAT scores go with higher
law school GPAs. But how certain is this conclusion? The plot provides some
intuition, but nothing quantitative.

You can calculate the correlation coefficient of the variables using the corr
function.

rhohat = corr(lsat,gpa)
rhohat =

0.7764

Now you have a number describing the positive connection between LSAT
and GPA; though it may seem large, you still do not know if it is statistically
significant.
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Using the bootstrp function you can resample the lsat and gpa vectors as
many times as you like and consider the variation in the resulting correlation
coefficients.

Here is an example.

rhos1000 = bootstrp(1000,'corr',lsat,gpa);

This command resamples the lsat and gpa vectors 1000 times and computes
the corr function on each sample. Here is a histogram of the result.

hist(rhos1000,30)
set(get(gca,'Children'),'FaceColor',[.8 .8 1])

Nearly all the estimates lie on the interval [0.4 1.0].
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It is often desirable to construct a confidence interval for a parameter
estimate in statistical inferences. Using the bootci function, you can use
bootstrapping to obtain a confidence interval. The confidence interval for the
lsat and gpa data is computed as:

ci = bootci(5000,@corr,lsat,gpa)

ci =

0.3313
0.9427

Therefore, a 95% confidence interval for the correlation coefficient between
LSAT and GPA is [0.33 0.94]. This is strong quantitative evidence that LSAT
and subsequent GPA are positively correlated. Moreover, this evidence does
not require any strong assumptions about the probability distribution of the
correlation coefficient.

Although the bootci function computes the Bias Corrected and accelerated
(BCa) interval as the default type, it is also able to compute various other
types of bootstrap confidence intervals, such as the studentized bootstrap
confidence interval.

The Jackknife
Similar to the bootstrap is the jackknife, which uses resampling to estimate
the bias of a sample statistic. Sometimes it is also used to estimate standard
error of the sample statistic. The jackknife is implemented by the Statistics
Toolbox function jackknife.

The jackknife resamples systematically, rather than at random as the
bootstrap does. For a sample with n points, the jackknife computes sample
statistics on n separate samples of size n-1. Each sample is the original data
with a single observation omitted.

In the previous bootstrap example you measured the uncertainty in
estimating the correlation coefficient. You can use the jackknife to estimate
the bias, which is the tendency of the sample correlation to over-estimate or
under-estimate the true, unknown correlation. First compute the sample
correlation on the data:
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load lawdata
rhohat = corr(lsat,gpa)

rhohat =

0.7764

Next compute the correlations for jackknife samples, and compute their mean:

jackrho = jackknife(@corr,lsat,gpa);
meanrho = mean(jackrho)

meanrho =

0.7759

Now compute an estimate of the bias:

n = length(lsat);
biasrho = (n-1) * (meanrho-rhohat)

biasrho =

-0.0065

The sample correlation probably underestimates the true correlation by about
this amount.

Parallel Computing Support for Resampling Methods
Parallel computing is the technique of using multiple processors on a single
problem. The primary reason to use parallel computing is to shorten the
computation time.

Resampling methods all take as input a statistical function and a set of
supplied data, and evaluate the statistical function repeatedly, on multiple
samples drawn from the supplied data. Resampling methods are statistically
informative but they can be very time-consuming. But because the repeat
evaluations are independent of one another, you can reduce computation time
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by performing those repeat evaluations in parallel. The following functions
support parallel computing:

• bootci

• bootstrp

• crossval

• jackknife

• TreeBagger

• TreeBagger.growTrees

These functions use parallel resampling under the following conditions:

• You have a license for Parallel Computing Toolbox™ software and the
software is installed.

• A group of processors has been prepared for parallel computation using the
matlabpool command of the Parallel Computing Toolbox.

• The option UseParallel is set to 'always'. The default value of this option
is 'never'. You specify this option using the 'Options' argument that all
of these resampling functions accept.

When these conditions hold, the functions resample in parallel. For more
information on the Parallel Computing Toolbox, see Parallel Computing
Toolbox User’s Guide.

Nested Parallel Functions
Resampling methods employ the Parallel Computing Toolbox function parfor
to perform parallel evaluations. parfor does not work in parallel when called
from within another parfor loop. Parallelization occurs only at the outermost
level if you combine parallel resampling methods with parallel functionality
in your statistical function or in the code that calls the resampling methods.

Suppose, for example, you want to apply the jackknife to your function
userfcn, which calls parfor, and you wish to call jackknife in a loop.
Suppose also that the conditions for parallel resampling of bootstrp, as given
in the section above, are satisfied. The following figure shows three cases:
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1 The outermost loop is parfor. Only that loop runs in parallel.

2 The outermost parfor loop is in jackknife. Only jackknife runs in
parallel.

3 The outermost parfor loop is in userfcn. userfcn can use parfor in
parallel.

When parfor Runs In Parallel
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Data with Missing Values
Many data sets have one or more missing values. It is convenient to code
missing values as NaN (Not a Number) to preserve the structure of data sets
across multiple variables and observations.

For example:

X = magic(3);
X([1 5]) = [NaN NaN]
X =

NaN 1 6
3 NaN 7
4 9 2

Normal MATLAB arithmetic operations yield NaN values when operands
are NaN:

s1 = sum(X)
s1 =

NaN NaN 15

Removing the NaN values would destroy the matrix structure. Removing
the rows containing the NaN values would discard data. Statistics Toolbox
functions in the following table remove NaN values only for the purposes of
computation.

Function Description

nancov Covariance matrix, ignoring NaN values

nanmax Maximum, ignoring NaN values

nanmean Mean, ignoring NaN values

nanmedian Median, ignoring NaN values

nanmin Minimum, ignoring NaN values

nanstd Standard deviation, ignoring NaN values

nansum Sum, ignoring NaN values

nanvar Variance, ignoring NaN values

3-16



Data with Missing Values

For example:

s2 = nansum(X)
s2 =

7 10 15

Other Statistics Toolbox functions also ignore NaN values. These include iqr,
kurtosis, mad, prctile, range, skewness, and trimmean.
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4 Statistical Visualization

Introduction
Statistics Toolbox data visualization functions add to the extensive graphics
capabilities already in MATLAB.

• Scatter plots are a basic visualization tool for multivariate data. They
are used to identify relationships among variables. Grouped versions of
these plots use different plotting symbols to indicate group membership.
The gname function is used to label points on these plots with a text label
or an observation number.

• Box plots display a five-number summary of a set of data: the median,
the two ends of the interquartile range (the box), and two extreme values
(the whiskers) above and below the box. Because they show less detail
than histograms, box plots are most useful for side-by-side comparisons
of two distributions.

• Distribution plots help you identify an appropriate distribution family
for your data. They include normal and Weibull probability plots,
quantile-quantile plots, and empirical cumulative distribution plots.

Advanced Statistics Toolbox visualization functions are available for
specialized statistical analyses.

Note For information on creating visualizations of data by group, see
“Grouped Data” on page 2-33.
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Scatter Plots
A scatter plot is a simple plot of one variable against another. The MATLAB
functions plot and scatter produce scatter plots. The MATLAB function
plotmatrix can produce a matrix of such plots showing the relationship
between several pairs of variables.

Statistics Toolbox functions gscatter and gplotmatrix produce grouped
versions of these plots. These are useful for determining whether the values
of two variables or the relationship between those variables is the same in
each group.

Suppose you want to examine the weight and mileage of cars from three
different model years.

load carsmall
gscatter(Weight,MPG,Model_Year,'','xos')
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This shows that not only is there a strong relationship between the weight of
a car and its mileage, but also that newer cars tend to be lighter and have
better gas mileage than older cars.

The default arguments for gscatter produce a scatter plot with the different
groups shown with the same symbol but different colors. The last two
arguments above request that all groups be shown in default colors and with
different symbols.

The carsmall data set contains other variables that describe different aspects
of cars. You can examine several of them in a single display by creating a
grouped plot matrix.

xvars = [Weight Displacement Horsepower];
yvars = [MPG Acceleration];
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gplotmatrix(xvars,yvars,Model_Year,'','xos')

The upper right subplot displays MPG against Horsepower, and shows that
over the years the horsepower of the cars has decreased but the gas mileage
has improved.

The gplotmatrix function can also graph all pairs from a single list of
variables, along with histograms for each variable. See “MANOVA” on page
8-39.
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Box Plots
The graph below, created with the boxplot command, compares petal lengths
in samples from two species of iris.

load fisheriris
s1 = meas(51:100,3);
s2 = meas(101:150,3);
boxplot([s1 s2],'notch','on',...

'labels',{'versicolor','virginica'})

This plot has the following features:

• The tops and bottoms of each “box” are the 25th and 75th percentiles of the
samples, respectively. The distances between the tops and bottoms are the
interquartile ranges.
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• The line in the middle of each box is the sample median. If the median is
not centered in the box, it shows sample skewness.

• The whiskers are lines extending above and below each box. Whiskers are
drawn from the ends of the interquartile ranges to the furthest observations
within the whisker length (the adjacent values).

• Observations beyond the whisker length are marked as outliers. By
default, an outlier is a value that is more than 1.5 times the interquartile
range away from the top or bottom of the box, but this value can be adjusted
with additional input arguments. Outliers are displayed with a red + sign.

• Notches display the variability of the median between samples. The width
of a notch is computed so that box plots whose notches do not overlap (as
above) have different medians at the 5% significance level. The significance
level is based on a normal distribution assumption, but comparisons of
medians are reasonably robust for other distributions. Comparing box-plot
medians is like a visual hypothesis test, analogous to the t test used for
means.
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Distribution Plots

In this section...

“Normal Probability Plots” on page 4-8

“Quantile-Quantile Plots” on page 4-10

“Cumulative Distribution Plots” on page 4-13

“Other Probability Plots” on page 4-14

Normal Probability Plots
Normal probability plots are used to assess whether data comes from a
normal distribution. Many statistical procedures make the assumption that
an underlying distribution is normal, so normal probability plots can provide
some assurance that the assumption is justified, or else provide a warning of
problems with the assumption. An analysis of normality typically combines
normal probability plots with hypothesis tests for normality, as described in
Chapter 7, “Hypothesis Tests”.

The following example shows a normal probability plot created with the
normplot function.

x = normrnd(10,1,25,1);
normplot(x)
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The plus signs plot the empirical probability versus the data value for each
point in the data. A solid line connects the 25th and 75th percentiles in the
data, and a dashed line extends it to the ends of the data. The y-axis values
are probabilities from zero to one, but the scale is not linear. The distance
between tick marks on the y-axis matches the distance between the quantiles
of a normal distribution. The quantiles are close together near the median
(probability = 0.5) and stretch out symmetrically as you move away from
the median.

In a normal probability plot, if all the data points fall near the line, an
assumption of normality is reasonable. Otherwise, the points will curve away
from the line, and an assumption of normality is not justified.
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For example:

x = exprnd(10,100,1);
normplot(x)

The plot is strong evidence that the underlying distribution is not normal.

Quantile-Quantile Plots
Quantile-quantile plots are used to determine whether two samples come from
the same distribution family. They are scatter plots of quantiles computed
from each sample, with a line drawn between the first and third quartiles. If
the data falls near the line, it is reasonable to assume that the two samples
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come from the same distribution. The method is robust with respect to
changes in the location and scale of either distribution.

To create a quantile-quantile plot, use the qqplot function.

The following example shows a quantile-quantile plot of two samples from
Poisson distributions.

x = poissrnd(10,50,1);
y = poissrnd(5,100,1);
qqplot(x,y);

Even though the parameters and sample sizes are different, the approximate
linear relationship suggests that the two samples may come from the same
distribution family. As with normal probability plots, hypothesis tests,
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as described in Chapter 7, “Hypothesis Tests”, can provide additional
justification for such an assumption. For statistical procedures that depend
on the two samples coming from the same distribution, however, a linear
quantile-quantile plot is often sufficient.

The following example shows what happens when the underlying distributions
are not the same.

x = normrnd(5,1,100,1);
y = wblrnd(2,0.5,100,1);
qqplot(x,y);

These samples clearly are not from the same distribution family.
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Cumulative Distribution Plots
An empirical cumulative distribution function (cdf) plot shows the proportion
of data less than each x value, as a function of x. The scale on the y-axis is
linear; in particular, it is not scaled to any particular distribution. Empirical
cdf plots are used to compare data cdfs to cdfs for particular distributions.

To create an empirical cdf plot, use the cdfplot function (or ecdf and stairs).

The following example compares the empirical cdf for a sample from an
extreme value distribution with a plot of the cdf for the sampling distribution.
In practice, the sampling distribution would be unknown, and would be
chosen to match the empirical cdf.

y = evrnd(0,3,100,1);
cdfplot(y)
hold on
x = -20:0.1:10;
f = evcdf(x,0,3);
plot(x,f,'m')
legend('Empirical','Theoretical','Location','NW')

4-13



4 Statistical Visualization

Other Probability Plots
A probability plot, like the normal probability plot, is just an empirical cdf plot
scaled to a particular distribution. The y-axis values are probabilities from
zero to one, but the scale is not linear. The distance between tick marks is the
distance between quantiles of the distribution. In the plot, a line is drawn
between the first and third quartiles in the data. If the data falls near the
line, it is reasonable to choose the distribution as a model for the data.

To create probability plots for different distributions, use the probplot
function.
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For example, the following plot assesses two samples, one from a Weibull
distribution and one from a Rayleigh distribution, to see if they may have
come from a Weibull population.

x1 = wblrnd(3,3,100,1);
x2 = raylrnd(3,100,1);
probplot('weibull',[x1 x2])
legend('Weibull Sample','Rayleigh Sample','Location','NW')

The plot gives justification for modeling the first sample with a Weibull
distribution; much less so for the second sample.
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A distribution analysis typically combines probability plots with hypothesis
tests for a particular distribution, as described in Chapter 7, “Hypothesis
Tests”.
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5 Probability Distributions

Using Probability Distributions
Probability distributions are theoretical distributions based on
assumptions about a source population. They assign probability to the event
that a random variable takes on a specific, discrete value, or falls within a
specified range of continuous values. There are two main types of models:

• Parametric Models—Choose a model based on a parametric family of
probability distributions and then adjust the parameters to fit the data.
For information on supported parametric distributions, see “Parametric
Distributions” on page 5-4.

• Nonparametric Models—When data or statistics do not follow
any standard probability distribution, nonparametric models may be
appropriate. For information on supported nonparametric distributions,
see “Nonparametric Distributions” on page 5-8.

The Statistics Toolbox provides several ways of working with both parametric
and nonparametric probability distributions:

• Graphic User Interfaces (GUIs)—Interact with the distributions to
visualize distributions, fit a distribution to your data, or generate random
data using a specific distribution. For more information, see “Working with
Distributions Through GUIs” on page 5-9.

• Command Line Functions—Use command-line functions to further
explore the distributions, fit relevant models to your data, or generate
random data. For more information on using functions, see “Statistics
Toolbox Distribution Functions” on page 5-52.

• Distribution Objects—Use objects to explore and fit your data to a
distribution, save the results to a single entity, and generate random
data from the resulting parameters. For more information, see “Using
Probability Distribution Objects” on page 5-85.
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Supported Distributions

In this section...

“Parametric Distributions” on page 5-4

“Nonparametric Distributions” on page 5-8

Probability distributions supported by the Statistics Toolbox are
cross-referenced with their supporting functions and GUIs in the following
tables. The tables use the following abbreviations for distribution functions:

• pdf — Probability density functions

• cdf — Cumulative distribution functions

• inv — Inverse cumulative distribution functions

• stat — Distribution statistics functions

• fit — Distribution fitting functions

• like — Negative log-likelihood functions

• rnd — Random number generators

For more detailed explanations of each supported distribution, see Appendix
B, “Distribution Reference”.
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Parametric Distributions

Continuous Distributions (Data)

Name pdf cdf inv stat fit like rnd

Beta betapdf,
pdf

betacdf,
cdf

betainv,
icdf

betastat betafit,
mle

betalike betarnd,
random,
randtool

Birnbaum-
Saunders

dfittool

Exponential exppdf,
pdf

expcdf,
cdf

expinv,
icdf

expstat expfit,
mle,
dfittool

explike exprnd,
random,
randtool

Extreme
value

evpdf,
pdf

evcdf,
cdf

evinv,
icdf

evstat evfit, mle,
dfittool

evlike evrnd,
random,
randtool

Gamma gampdf,
pdf

gamcdf,
cdf

gaminv,
icdf

gamstat gamfit,
mle,
dfittool

gamlike gamrnd,
randg,
random,
randtool

Generalized
extreme
value

gevpdf,
pdf

gevcdf,
cdf

gevinv,
icdf

gevstat gevfit,
mle,
dfittool

gevlike gevrnd,
random,
randtool

Generalized
Pareto

gppdf,
pdf

gpcdf,
cdf

gpinv,
icdf

gpstat gpfit, mle,
dfittool

gplike gprnd,
random,
randtool

Inverse
Gaussian

dfittool

Johnson
system

johnsrnd johnsrnd

Logistic dfittool

Loglogistic dfittool
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Name pdf cdf inv stat fit like rnd

Lognormal lognpdf,
pdf

logncdf,
cdf

logninv,
icdf

lognstat lognfit,
mle,
dfittool

lognlike lognrnd,
random,
randtool

Nakagami dfittool

Normal
(Gaussian)

normpdf,
pdf

normcdf,
cdf

norminv,
icdf

normstat normfit,
mle,
dfittool

normlike normrnd,
randn,
random,
randtool

Pearson
system

pearsrnd pearsrnd

Piecewise pdf cdf icdf paretotails random

Rayleigh raylpdf,
pdf

raylcdf,
cdf

raylinv,
icdf

raylstat raylfit,
mle,
dfittool

raylrnd,
random,
randtool

Rician dfittool

Uniform
(continuous)

unifpdf,
pdf

unifcdf,
cdf

unifinv,
icdf

unifstat unifit, mle unifrnd,
rand,
random

Weibull wblpdf,
pdf

wblcdf,
cdf

wblinv,
icdf

wblstat wblfit,
mle,
dfittool

wbllike wblrnd,
random
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Continuous Distributions (Statistics)

Name pdf cdf inv stat fit like rnd

Chi-square chi2pdf,
pdf

chi2cdf,
cdf

chi2inv,
icdf

chi2stat chi2rnd,
random,
randtool

F fpdf, pdf fcdf, cdf finv,
icdf

fstat frnd,
random,
randtool

Noncentral
chi-square

ncx2pdf,
pdf

ncx2cdf,
cdf

ncx2inv,
icdf

ncx2stat ncx2rnd,
random,
randtool

Noncentral
F

ncfpdf,
pdf

ncfcdf,
cdf

ncfinv,
icdf

ncfstat ncfrnd,
random,
randtool

Noncentral
t

nctpdf,
pdf

nctcdf,
cdf

nctinv,
icdf

nctstat nctrnd,
random,
randtool

Student’s t tpdf, pdf tcdf, cdf tinv,
icdf

tstat trnd,
random,
randtool

t location-
scale

dfittool
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Discrete Distributions

Name pdf cdf inv stat fit like rnd

Binomial binopdf,
pdf

binocdf,
cdf

binoinv,
icdf

binostat binofit,
mle,
dfittool

binornd,
random,
randtool

Bernoulli mle

Geometric geopdf,
pdf

geocdf,
cdf

geoinv,
icdf

geostat mle geornd,
random,
randtool

Hypergeometrichygepdf,
pdf

hygecdf,
cdf

hygeinv,
icdf

hygestat hygernd,
random

Multinomial mnpdf mnrnd

Negative
binomial

nbinpdf,
pdf

nbincdf,
cdf

nbininv,
icdf

nbinstat nbinfit,
mle,
dfittool

nbinrnd,
random,
randtool

Poisson poisspdf,
pdf

poisscdf,
cdf

poissinv,
icdf

poisstat poissfit,
mle,
dfittool

poissrnd,
random,
randtool

Uniform
(discrete)

unidpdf,
pdf

unidcdf,
cdf

unidinv,
icdf

unidstat mle unidrnd,
random,
randtool
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Multivariate Distributions

Name pdf cdf inv stat fit like rnd

Gaussian
copula

copulapdf copulacdf copulastat copulafit copularnd

Gaussian
mixture

pdf cdf fit random

t copula copulapdf copulacdf copulastat copulafit copularnd

Clayton
copula

copulapdf copulacdf copulastat copulafit copularnd

Frank
copula

copulapdf copulacdf copulastat copulafit copularnd

Gumbel
copula

copulapdf copulacdf copulastat copulafit copularnd

Inverse
Wishart

iwishrnd

Multivariate
normal

mvnpdf mvncdf mvnrnd

Multivariate
t

mvtpdf mvtcdf mvtrnd

Wishart wishrnd

Nonparametric Distributions
Name pdf cdf inv stat fit like rnd

Nonparametricksdensityksdensityksdensity
ksdensity,
dfittool
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Working with Distributions Through GUIs

In this section...

“Exploring Distributions” on page 5-9

“Modeling Your Data Using the Distribution Fitting GUI” on page 5-11

“Visually Exploring Random Number Generation” on page 5-49

This section describes Statistics Toolbox GUIs that provide convenient,
interactive access to the distribution functions described in “Statistics Toolbox
Distribution Functions” on page 5-52.

Exploring Distributions
To interactively see the influence of parameter changes on the shapes of the
pdfs and cdfs of supported Statistics Toolbox distributions, use the Probability
Distribution Function Tool.

Run the tool by typing disttool at the command line.
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Start by selecting a distribution. Then choose the function type: probability
density function (pdf) or cumulative distribution function (cdf).
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Working with Distributions Through GUIs

Once the plot displays, you can

• Calculate a new function value by

- Typing a new x value in the text box on the x-axis

- Dragging the vertical reference line.

- Clicking in the figure where you want the line to be.
The new function value displays in the text box to the left of the plot.

• For cdf plots, find critical values corresponding to a specific probability by
typing the desired probability in the text box on the y-axis or by dragging
the horizontal reference line.

• Use the controls at the bottom of the window to set parameter values for
the distribution and to change their upper and lower bounds.

Modeling Your Data Using the Distribution Fitting GUI
The Distribution Fitting Tool is a GUI for fitting univariate distributions to
data. This section describes how to use the Distribution Fitting Tool and
covers the following topics:

• “Starting the Distribution Fitting Tool (Subsections to be rearranged)”
on page 5-12

• “Example: Fitting a Distribution (to be rearranged)” on page 5-15

• “Creating and Managing Data Sets” on page 5-22

• “Creating a New Fit” on page 5-26

• “Displaying Results” on page 5-32

• “Managing Fits” on page 5-33

• “Evaluating Fits” on page 5-35

• “Excluding Data” on page 5-39

• “Saving and Loading Sessions” on page 5-45

• “Generating an M-File to Fit and Plot Distributions” on page 5-46

• “Using Custom Distributions” on page 5-48
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• “Additional Distributions Available in the Distribution Fitting Tool” on
page 5-49

Starting the Distribution Fitting Tool (Subsections to be
rearranged)
To open the Distribution Fitting Tool, enter the command

dfittool

The following figure shows the main window of the Distribution Fitting Tool.
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Adjusting the Plot. Buttons at the top of the tool allow you to adjust the
plot displayed in the main window:

• — Toggle the legend on (default) or off.

• — Toggle grid lines on or off (default).

• — Restore default axes limits.
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5 Probability Distributions

Displaying the Data. The Display Type field specifies the type of plot
displayed in the main window. Each type corresponds to a probability
function, for example, a probability density function. The following display
types are available:

• Density (PDF) — Displays a probability density function (PDF) plot for
the fitted distribution.

• Cumulative probability (CDF) — Displays a cumulative probability
plot of the data.

• Quantile (inverse CDF)— Displays a quantile (inverse CDF) plot.

• Probability plot — Displays a probability plot.

• Survivor function— Displays a survivor function plot of the data.

• Cumulative hazard— Displays a cumulative hazard plot of the data.

Inputting and Fitting Data. The task buttons enable you to perform the
tasks necessary to fit distributions to data. Each button opens a new window
in which you perform the task. The buttons include

• Data— Import and manage data sets. See “Creating and Managing Data
Sets” on page 5-22.

• New Fit— Create new fits. See “Creating a New Fit” on page 5-26.

• Manage Fits— Manage existing fits. See “Managing Fits” on page 5-33.

• Evaluate— Evaluate fits at any points you choose. See “Evaluating Fits”
on page 5-35.

• Exclude— Create rules specifying which values to exclude when fitting a
distribution. See “Excluding Data” on page 5-39.

(This section will be integrated elsewhere). The display pane displays
plots of the data sets and fits you create. Whenever you make changes in one
of the task windows, the results are updated in the display pane.

Saving and Customizing Distributions. The Distribution Fitting Tool
menus contain items that enable you to do the following:

• Save and load sessions. See “Saving and Loading Sessions” on page 5-45.
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• Generate an M-file with which you can fit distributions to data and plot the
results independently of the Distribution Fitting Tool. See “Generating an
M-File to Fit and Plot Distributions” on page 5-46.

• Define and import custom distributions. See “Using Custom Distributions”
on page 5-48.

Example: Fitting a Distribution (to be rearranged)
This section presents an example that illustrates how to use the Distribution
Fitting Tool. The example involves the following steps:

• “Step 1: Generate Random Data” on page 5-15

• “Step 2: Import Data” on page 5-15

• “Step 3: Create a New Fit” on page 5-18

Step 1: Generate Random Data. To try the example, first generate some
random data to which you will fit a distribution. The following command
generates a vector data, of length 100, whose entries are random numbers
from a normal distribution with mean.36 and standard deviation 1.4.

data = normrnd(.36, 1.4, 100, 1);

Step 2: Import Data. To import the vector data into the Distribution
Fitting Tool, click the Data button in main window. This opens the window
shown in the following figure.
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The Data field displays all numeric arrays in the MATLAB workspace. Select
data from the drop-down list, as shown in the following figure.
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This displays a histogram of the data in the Data preview pane.

In the Data set name field, type a name for the data set, such as My data,
and click Create Data Set to create the data set. The main window of the
Distribution Fitting Tool now displays a larger version of the histogram in the
Data preview pane, as shown in the following figure.
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5 Probability Distributions

Note Because the example uses random data, you might see a slightly
different histogram if you try this example for yourself.

Step 3: Create a New Fit. To fit a distribution to the data, click New Fit
in the main window of the Distribution Fitting Tool. This opens the window
shown in the following figure.
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To fit a normal distribution, the default entry of the Distribution field, to
My data:

1 Enter a name for the fit, such as My fit, in the Fit name field.

2 Select My data from the drop-down list in the Data field.
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5 Probability Distributions

3 Click Apply.

The Results pane displays the mean and standard deviation of the normal
distribution that best fits My data, as shown in the following figure.

The main window of the Distribution Fitting Tool displays a plot of the
normal distribution with this mean and standard deviation, as shown in the
following figure.
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Creating and Managing Data Sets
This section describes how create and manage data sets.

To begin, click the Data button in the main window of the Distribution Fitting
Tool to open the Data window shown in the following figure.

Importing Data. The Import workspace vectors pane enables you to
create a data set by importing a vector from the MATLAB workspace. The
following sections describe the fields of the Import workspace vectors
pane and give appropriate values for vectors imported from the MATLAB
workspace:
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• Data—The drop-down list in the Data field contains the names of all
matrices and vectors, other than 1-by-1 matrices (scalars) in the MATLAB
workspace. Select the array containing the data you want to fit. The actual
data you import must be a vector. If you select a matrix in the Data field,
the first column of the matrix is imported by default. To select a different
column or row of the matrix, click Select Column or Row. This displays
the matrix in the Variable Editor, where you can select a row or column
by highlighting it with the mouse.

Alternatively, you can enter any valid MATLAB expression in the Data
field.

When you select a vector in the Data field, a histogram of the data is
displayed in the Data preview pane.

• Censoring—If some of the points in the data set are censored, enter
a Boolean vector, of the same size as the data vector, specifying the
censored entries of the data. A 1 in the censoring vector specifies that the
corresponding entry of the data vector is censored, while a 0 specifies that
the entry is not censored. If you enter a matrix, you can select a column or
row by clicking Select Column or Row. If you do not want to censor any
data, leave the Censoring field blank.

• Frequency—Enter a vector of positive integers of the same size as the
data vector to specify the frequency of the corresponding entries of the data
vector. For example, a value of 7 in the 15th entry of frequency vector
specifies that there are 7 data points corresponding to the value in the 15th
entry of the data vector. If all entries of the data vector have frequency 1,
leave the Frequency field blank.

• Data set name—Enter a name for the data set you import from the
workspace, such as My data.

After you have entered the information in the preceding fields, click Create
Data Set to create the data set My data.

Managing Data Sets. The Manage data sets pane enables you to view
and manage the data sets you create. When you create a data set, its name
appears in the Data sets list. The following figure shows theManage data
sets pane after creating the data set My data.
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For each data set in the Data sets list, you can

• Select the Plot check box to display a plot of the data in the main
Distribution Fitting Tool window. When you create a new data set, Plot is
selected by default. Clearing the Plot check box removes the data from the
plot in the main window. You can specify the type of plot displayed in the
Display Type field in the main window.

• If Plot is selected, you can also select Bounds to display confidence
interval bounds for the plot in the main window. These bounds are
pointwise confidence bounds around the empirical estimates of these
functions. The bounds are only displayed when you set Display Type in
the main window to one of the following:

- Cumulative probability (CDF)

- Survivor function

- Cumulative hazard

The Distribution Fitting Tool cannot display confidence bounds on density
(PDF), quantile (inverse CDF), or probability plots. Clearing the Bounds
check box removes the confidence bounds from the plot in the main window.

When you select a data set from the list, the following buttons are enabled:

• View — Displays the data in a table in a new window.

• Set Bin Rules— Defines the histogram bins used in a density (PDF) plot.

• Rename — Renames the data set.
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• Delete — Deletes the data set.

Setting Bin Rules. To set bin rules for the histogram of a data set, click Set
Bin Rules. This opens the dialog box shown in the following figure.

You can select from the following rules:

• Freedman-Diaconis rule — Algorithm that chooses bin widths and
locations automatically, based on the sample size and the spread of the
data. This rule, which is the default, is suitable for many kinds of data.

• Scott rule— Algorithm intended for data that are approximately normal.
The algorithm chooses bin widths and locations automatically.

• Number of bins— Enter the number of bins. All bins have equal widths.

• Bins centered on integers— Specifies bins centered on integers.
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• Bin width— Enter the width of each bin. If you select this option, you can
make the following choices:

- Automatic bin placement — Places the edges of the bins at integer
multiples of the Bin width.

- Bin boundary at — Enter a scalar to specify the boundaries of the
bins. The boundary of each bin is equal to this scalar plus an integer
multiple of the Bin width.

The Set Bin Width Rules dialog box also provides the following options:

• Apply to all existing data sets— When selected, the rule is applied to
all data sets. Otherwise, the rule is only applied to the data set currently
selected in the Data window.

• Save as default — When selected, the current rule is applied to any
new data sets that you create. You can also set default bin width rules
by selecting Set Default Bin Rules from the Tools menu in the main
window.

Creating a New Fit
This section describes how to create a new fit. To begin, click the New Fit
button at the top of the main window to open a New Fit window. If you
created the data set My data, it appears in the Data field:
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Field
Name

Description

Fit Name Enter a name for the fit in the Fit Name field.

Data The Data field contains a drop-down list of the data sets you
have created. Select the data set to which you want to fit a
distribution.

Distribution Select the type of distribution you want to fit from the
Distribution drop-down list. See “Available Distributions”
on page 5-29 for a list of distributions supported by the
Distribution Fitting Tool.

Only the distributions that apply to the values of the selected
data set are displayed in the Distribution field. For example,
positive distributions are not displayed when the data include
values that are zero or negative.

You can specify either a parametric or a nonparametric
distribution. When you select a parametric distribution from
the drop-down list, a description of its parameters is displayed
in the pane below the Exclusion rule field. The Distribution
Fitting Tool estimates these parameters to fit the distribution
to the data set. When you select Nonparametric fit, options
for the fit appear in the pane, as described in “Further Options
for Nonparametric Fits” on page 5-30.

Exclusion
Rule

You can specify a rule to exclude some the data in the
Exclusion rule field. You can create an exclusion rule by
clicking Exclude in the main window of the Distribution
Fitting Tool. For more information, see “Excluding Data” on
page 5-39.

Apply the New Fit. Click Apply to fit the distribution. For a parametric
fit, the Results pane displays the values of the estimated parameters. For a
nonparametric fit, the Results pane displays information about the fit.

When you click Apply, the main window of Distribution Fitting Tool displays
a plot of the distribution, along with the corresponding data.
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Note When you click Apply, the title of the window changes to Edit Fit. You
can now make changes to the fit you just created and click Apply again to
save them. After closing the Edit Fit window, you can reopen it from the Fit
Manager window at any time to edit the fit.

Available Distributions. This section lists the distributions available in
the Distribution Fitting Tool.

Most, but not all, of the distributions available in the Distribution Fitting
Tool are supported elsewhere in Statistics Toolbox software (see “Supported
Distributions” on page 5-3), and have dedicated distribution fitting functions.
These functions are used to compute the majority of the fits in the Distribution
Fitting Tool, and are referenced in the list below.

Other fits are computed using functions internal to the Distribution Fitting
Tool. Distributions that do not have corresponding Statistics Toolbox
fitting functions are described in “Additional Distributions Available in the
Distribution Fitting Tool” on page 5-49.

Not all of the distributions listed below are available for all data sets. The
Distribution Fitting Tool determines the extent of the data (nonnegative, unit
interval, etc.) and displays appropriate distributions in the Distribution
drop-down list. Distribution data ranges are given parenthetically in the
list below.

• Beta (unit interval values) distribution, fit using the function betafit.

• Binomial (nonnegative values) distribution, fit using the function binopdf.

• Birnbaum-Saunders (positive values) distribution.

• Exponential (nonnegative values) distribution, fit using the function
expfit.

• Extreme value (all values) distribution, fit using the function evfit.

• Gamma (positive values) distribution, fit using the function gamfit.

• Generalized extreme value (all values) distribution, fit using the function
gevfit.
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• Generalized Pareto (all values) distribution, fit using the function gpfit.

• Inverse Gaussian (positive values) distribution.

• Logistic (all values) distribution.

• Loglogistic (positive values) distribution.

• Lognormal (positive values) distribution, fit using the function lognfit.

• Nakagami (positive values) distribution.

• Negative binomial (nonnegative values) distribution, fit using the function
nbinpdf.

• Nonparametric (all values) distribution, fit using the function ksdensity.
See “Further Options for Nonparametric Fits” on page 5-30 for a description
of available options.

• Normal (all values) distribution, fit using the function normfit.

• Poisson (nonnegative integer values) distribution, fit using the function
poisspdf.

• Rayleigh (positive values) distribution using the function raylfit.

• Rician (positive values) distribution.

• t location-scale (all values) distribution.

• Weibull (positive values) distribution using the function wblfit.

Further Options for Nonparametric Fits. When you select
Non-parametric in the Distribution field, a set of options appears in the
pane below Exclusion rule, as shown in the following figure.

5-30



Working with Distributions Through GUIs

The options for nonparametric distributions are

• Kernel — Type of kernel function to use. The options are

- Normal

- Box

- Triangle

- Epanechnikov

• Bandwidth — The bandwidth of the kernel smoothing window. Select
auto for a default value that is optimal for estimating normal densities.
This value is displayed in the Fit results pane after you click Apply.
Select specify and enter a smaller value to reveal features such as multiple
modes or a larger value to make the fit smoother.

• Domain— The allowed x-values for the density. The options are

- unbounded— The density extends over the whole real line.

- positive— The density is restricted to positive values.

- specify— Enter lower and upper bounds for the domain of the density.

When you select positive or specify, the nonparametric fit has zero
probability outside the specified domain.
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Displaying Results
This section explains the different ways to display results in the main window
of the Distribution Fitting Tool. The main window displays plots of

• The data sets for which you select Plot in the Data window.

• The fits for which you select Plot in the Fit Manager window.

• Confidence bounds for

- Data sets for which you select Bounds in the Data window.

- Fits for which you select Bounds in the Fit Manager.

The following fields are available.

Display Type. The Display Type field in the main window specifies the type
of plot displayed. Each type corresponds to a probability function, for example,
a probability density function. The following display types are available:

• Density (PDF) — Displays a probability density function (PDF) plot
for the fitted distribution. The main window displays data sets using a
probability histogram, in which the height of each rectangle is the fraction
of data points that lie in the bin divided by the width of the bin. This makes
the sum of the areas of the rectangles equal to 1.

• Cumulative probability (CDF) — Displays a cumulative probability
plot of the data. The main window displays data sets using a cumulative
probability step function. The height of each step is the cumulative sum of
the heights of the rectangles in the probability histogram.

• Quantile (inverse CDF)— Displays a quantile (inverse CDF) plot.

• Probability plot — Displays a probability plot of the data. You can
specify the type of distribution used to construct the probability plot in the
Distribution field, which is only available when you select Probability
plot. The choices for the distribution are

- Exponential

- Extreme value

- Logistic

- Log-Logistic
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- Lognormal

- Normal

- Rayleigh

- Weibull

In addition to these choices, you can create a probability plot against a
parametric fit that you create in the New Fit panel. These fits are added
at the bottom of the Distribution drop-down list when you create them.

• Survivor function— Displays a survivor function plot of the data.

• Cumulative hazard— Displays a cumulative hazard plot of the data.

Note Some of these distributions are not available if the plotted data
includes 0 or negative values.

Confidence Bounds. You can display confidence bounds for data sets and
fits, provided that you set Display Type to Cumulative probability (CDF),
Survivor function, Cumulative hazard, or Quantile for fits only.

• To display bounds for a data set, select Bounds next to the data set in the
Data sets pane of the Data window.

• To display bounds for a fit, select Bounds next to the fit in the Fit
Manager window. Confidence bounds are not available for all fit types.

To set the confidence level for the bounds, select Confidence Level from the
View menu in the main window and choose from the options.

Managing Fits
This section describes how to manage fits that you have created. To begin,
click theManage Fits button in the main window of the Distribution Fitting
Tool. This opens the Fit Manager window as shown in the following figure.

5-33



5 Probability Distributions

The Table of fits displays a list of the fits you create, with the following
options:

• Plot—Select Plot to display a plot of the fit in the main window of the
Distribution Fitting Tool. When you create a new fit, Plot is selected by
default. Clearing the Plot check box removes the fit from the plot in the
main window.

• Bounds—If Plot is selected, you can also select Bounds to display
confidence bounds in the plot. The bounds are displayed when you set
Display Type in the main window to one of the following:

- Cumulative probability (CDF)

- Quantile (inverse CDF)

- Survivor function

- Cumulative hazard
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The Distribution Fitting Tool cannot display confidence bounds on density
(PDF) or probability plots. In addition, bounds are not supported for
nonparametric fits and some parametric fits.

Clearing the Bounds check box removes the confidence intervals from
the plot in the main window.

When you select a fit in the Table of fits, the following buttons are enabled
below the table:

- New Fit — Opens a New Fit window.

- Copy — Creates a copy of the selected fit.

- Edit— Opens an Edit Fit window, where you can edit the fit.

Note You can only edit the currently selected fit in the Edit Fit window.
To edit a different fit, select it in the Table of fits and click Edit to open
another Edit Fit window.

- Delete — Deletes the selected fit.

Evaluating Fits
The Evaluate window enables you to evaluate any fit at whatever points you
choose. To open the window, click the Evaluate button in the main window
of the Distribution Fitting Tool. The following figure shows the Evaluate
window.
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The Evaluate window contains the following items:

• Fit pane — Displays the names of existing fits. Select one or more fits
that you want to evaluate. Using your platform specific functionality, you
can select multiple fits.

• Function — Select the type of probability function you want to evaluate
for the fit. The available functions are

- Density (PDF)— Computes a probability density function.
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- Cumulative probability (CDF)— Computes a cumulative probability
function.

- Quantile (inverse CDF) — Computes a quantile (inverse CDF)
function.

- Survivor function— Computes a survivor function.

- Cumulative hazard— Computes a cumulative hazard function.

- Hazard rate — Computes the hazard rate.

• At x = — Enter a vector of points at which you want to evaluate the
distribution function. If you change Function to Quantile (inverse
CDF), the field name changes to At p = and you enter a vector of probability
values.

• Compute confidence bounds — Select this box to compute confidence
bounds for the selected fits. The check box is only enabled if you set
Function to one of the following:

- Cumulative probability (CDF)

- Quantile (inverse CDF)

- Survivor function

- Cumulative hazard

The Distribution Fitting Tool cannot compute confidence bounds for
nonparametric fits and for some parametric fits. In these cases, the tool
returns NaN for the bounds.

• Level — Set the level for the confidence bounds.

• Plot function — Select this box to display a plot of the distribution
function, evaluated at the points you enter in the At x = field, in a new
window.

Note The settings for Compute confidence bounds, Level, and Plot
function do not affect the plots that are displayed in the main window of
the Distribution Fitting Tool. The settings only apply to plots you create by
clicking Plot function in the Evaluate window.
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Click Apply to apply these settings to the selected fit. The following figure
shows the results of evaluating the cumulative density function for the fit My
fit, created in “Example: Fitting a Distribution (to be rearranged)” on page
5-15, at the points in the vector -3:0.5:3.

The window displays the following values in the columns of the table to the
right of the Fit pane:

• X — The entries of the vector you enter in At x = field

• Y — The corresponding values of the CDF at the entries of X
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• LB — The lower bounds for the confidence interval, if you select Compute
confidence bounds

• UB — The upper bounds for the confidence interval, if you select Compute
confidence bounds

To save the data displayed in the Evaluate window, click Export to
Workspace. This saves the values in the table to a matrix in the MATLAB
workspace.

Excluding Data
To exclude values from fit, click the Exclude button in the main window of
the Distribution Fitting Tool. This opens the Exclude window, in which you
can create rules for excluding specified values. You can use these rules to
exclude data when you create a new fit in the New Fit window. The following
figure shows the Exclude window.

To create an exclusion rule:
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1 Exclusion Rule Name—Enter a name for the exclusion rule in the
Exclusion rule name field.

2 Exclude Sections—In the Exclude sections pane, you can specify
bounds for the excluded data:

• In the Lower limit: exclude Y drop-down list, select <= or < from the
drop-down list and enter a scalar in the field to the right. This excludes
values that are either less than or equal to or less than that scalar,
respectively.

• In the Upper limit: exclude Y drop-down list, select >= or > from the
drop-down list and enter a scalar in the field to the right to exclude
values that are either greater than or equal to or greater than the scalar,
respectively.

OR

Exclude Graphically—The Exclude Graphically button enables you
to define the exclusion rule by displaying a plot of the values in a data
set and selecting the bounds for the excluded data with the mouse. For
example, if you created the data set My data, described in “Creating
and Managing Data Sets” on page 5-22, select it from the drop-down list
next to Exclude graphically and then click the Exclude graphically
button. This displays the values in My data in a new window as shown in
the following figure.
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To set a lower limit for the boundary of the excluded region, click Add
Lower Limit. This displays a vertical line on the left side of the plot
window. Move the line with the mouse to the point you where you want
the lower limit, as shown in the following figure.
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Moving the vertical line changes the value displayed in the Lower limit:
exclude data field in the Exclude window, as shown in the following figure.
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The value displayed corresponds to the x-coordinate of the vertical line.

Similarly, you can set the upper limit for the boundary of the excluded
region by clicking Add Upper Limit and moving the vertical line that
appears at the right side of the plot window. After setting the lower and
upper limits, click Close and return to the Exclude window.

3 Create Exclusion Rule—Once you have set the lower and upper limits
for the boundary of the excluded data, click Create Exclusion Rule
to create the new rule. The name of the new rule now appears in the
Existing exclusion rules pane.

When you select an exclusion rule in the Existing exclusion rules pane,
the following buttons are enabled:

• Copy— Creates a copy of the rule, which you can then modify. To save
the modified rule under a different name, click Create Exclusion Rule.

• View — Opens a new window in which you can see which data points
are excluded by the rule. The following figure shows a typical example.
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The shaded areas in the plot graphically display which data points are
excluded. The table to the right lists all data points. The shaded rows
indicate excluded points:

• Rename — Renames the rule

• Delete — Deletes the rule

Once you define an exclusion rule, you can use it when you fit a distribution
to your data. The rule does not exclude points from the display of the data
set.
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Saving and Loading Sessions
This section explains how to save your work in the current Distribution
Fitting Tool session and then load it in a subsequent session, so that you can
continue working where you left off.

Saving a Session. To save the current session, select Save Session from
the File menu in the main window. This opens a dialog box that prompts you
to enter a filename, such as my_session.dfit, for the session. Clicking Save
saves the following items created in the current session:

• Data sets

• Fits

• Exclusion rules

• Plot settings

• Bin width rules

Loading a Session. To load a previously saved session, select Load Session
from the File menu in the main window and enter the name of a previously
saved session. Clicking Open restores the information from the saved session
to the current session of the Distribution Fitting Tool.
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Generating an M-File to Fit and Plot Distributions
The Generate M-file option in the File menu enables you to create an M-file
that

• Fits the distributions used in the current session to any data vector in the
MATLAB workspace.

• Plots the data and the fits.

After you end the current session, you can use the M-file to create plots in a
standard MATLAB figure window, without having to reopen the Distribution
Fitting Tool.

As an example, assuming you created the fit described in “Creating a New
Fit” on page 5-26, do the following steps:

1 Select Generate M-file from the File menu.

2 Save the M-file as normal_fit.m in a folder on the MATLAB path.

You can then apply the function normal_fit to any vector of data in the
MATLAB workspace. For example, the following commands

new_data = normrnd(4.1, 12.5, 100, 1);
normal_fit(new_data)
legend('New Data', 'My fit')

fit a normal distribution to a data set and generate a plot of the data and
the fit.
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Note By default, the M-file labels the data in the legend using the same name
as the data set in the Distribution Fitting Tool. You can change the label
using the legend command, as illustrated by the preceding example.
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Using Custom Distributions
This section explains how to use custom distributions with the Distribution
Fitting Tool.

Defining Custom Distributions. To define a custom distribution, select
Define Custom Distribution from the File menu. This opens an M-file
template in the MATLAB editor. You then edit this M-file so that it computes
the distribution you want.

The template includes example code that computes the Laplace distribution,
beginning at the lines

% -
% Remove the following return statement to define the
% Laplace distributon
% -
return

To use this example, simply delete the command return and save the
M-file. If you save the template in a folder on the MATLAB path, under its
default name dfittooldists.m, the Distribution Fitting Tool reads it in
automatically when you start the tool. You can also save the template under a
different name, such as laplace.m, and then import the custom distribution
as described in the following section.

Importing Custom Distributions. To import a custom distribution, select
Import Custom Distributions from the File menu. This opens a dialog box
in which you can select the M-file that defines the distribution. For example,
if you created the file laplace.m, as described in the preceding section, you
can enter laplace.m and select Open in the dialog box. The Distribution
field of the New Fit window now contains the option Laplace.
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Additional Distributions Available in the Distribution Fitting Tool
The following distributions are available in the Distribution Fitting Tool,
but do not have dedicated distribution functions as described in “Statistics
Toolbox Distribution Functions” on page 5-52. The distributions can be used
with the functions pdf, cdf, icdf, and mle in a limited capacity. See the
reference pages for these functions for details on the limitations.

• “Birnbaum-Saunders Distribution” on page B-10

• “Inverse Gaussian Distribution” on page B-45

• “Loglogistic Distribution” on page B-50

• “Logistic Distribution” on page B-49

• “Nakagami Distribution” on page B-70

• “Rician Distribution” on page B-92

• “t Location-Scale Distribution” on page B-96

For a complete list of the distributions available for use with the Distribution
Fitting Tool, see “Supported Distributions” on page 5-3. Distributions listing
dfittool in the fit column of the tables in that section can be used with
the Distribution Fitting Tool.

Visually Exploring Random Number Generation
The Random Number Generation Tool is a graphical user interface that
generates random samples from specified probability distributions and
displays the samples as histograms. Use the tool to explore the effects of
changing parameters and sample size on the distributions.

Run the tool by typing randtool at the command line.
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Start by selecting a distribution, then enter the desired sample size.
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You can also

• Use the controls at the bottom of the window to set parameter values for
the distribution and to change their upper and lower bounds.

• Draw another sample from the same distribution, with the same size and
parameters.

• Export the current sample to your workspace. A dialog box enables you
to provide a name for the sample.
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Statistics Toolbox Distribution Functions

In this section...

“Probability Density Functions” on page 5-52

“Cumulative Distribution Functions” on page 5-62

“Inverse Cumulative Distribution Functions” on page 5-66

“Distribution Statistics Functions” on page 5-68

“Distribution Fitting Functions” on page 5-70

“Negative Log-Likelihood Functions” on page 5-77

“Random Number Generators” on page 5-81

For each distribution supported by Statistics Toolbox software, a selection of
the distribution functions described in this section is available for statistical
programming. This section gives a general overview of the use of each type
of function, independent of the particular distribution. For specific functions
available for specific distributions, see “Supported Distributions” on page 5-3.

Probability Density Functions

• “Estimating PDFs with Parameters” on page 5-52

• “Estimating PDFs without Parameters” on page 5-55

Estimating PDFs with Parameters
Probability density functions (pdfs) for supported Statistics Toolbox
distributions all end with pdf, as in binopdf or exppdf. For more information
on specific function names for specific distributions see “Supported
Distributions” on page 5-3.

Each function represents a parametric family of distributions. Input
arguments are arrays of outcomes followed by a list of parameter values
specifying a particular member of the distribution family.

For discrete distributions, the pdf assigns a probability to each outcome. In
this context, the pdf is often called a probability mass function (pmf).
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For example, the discrete binomial pdf

f k
n
k

p pk n k( ) ( )=
⎛

⎝
⎜

⎞

⎠
⎟ − −1

assigns probability to the event of k successes in n trials of a Bernoulli process
(such as coin flipping) with probability p of success at each trial. Each of the
integers k = 0, 1, 2, ..., n is assigned a positive probability, with the sum of the
probabilities equal to 1. Compute the probabilities with the binopdf function:

p = 0.2; % Probability of success for each trial
n = 10; % Number of trials
k = 0:n; % Outcomes
m = binopdf(k,n,p); % Probability mass vector
bar(k,m) % Visualize the probability distribution
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
grid on
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For continuous distributions, the pdf assigns a probability density to each
outcome. The probability of any single outcome is zero. The pdf must be
integrated over a set of outcomes to compute the probability that an outcome
falls within that set. The integral over the entire set of outcomes is 1.

For example, the continuous exponential pdf

f t e t( ) = −λ λ

is used to model the probability that a process with constant failure rate λ will
have a failure within time t . Each time t > 0 is assigned a positive probability
density. Densities are computed with the exppdf function:

lambda = 2; % Failure rate
t = 0:0.01:3; % Outcomes
f = exppdf(t,1/lambda); % Probability density vector
plot(t,f) % Visualize the probability distribution
grid on

5-54



Statistics Toolbox™ Distribution Functions

Probabilities for continuous pdfs can be computed with the quad function. In
the example above, the probability of failure in the time interval [0, 1] is
computed as follows:

f_lambda = @(t)exppdf(t,1/lambda); % Pdf with fixed lambda
P = quad(f_lambda,0,1) % Integrate from 0 to 1
P =

0.8647

Alternatively, the cumulative distribution function (cdf) for the exponential
function, expcdf, can be used:

P = expcdf(1,1/lambda) % Cumulative probability from 0 to 1
P =

0.8647

Estimating PDFs without Parameters
A distribution of data can be described graphically with a histogram:

cars = load('carsmall','MPG','Origin');
MPG = cars.MPG;
hist(MPG)
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
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You can also describe a data distribution by estimating its density.
The ksdensity function does this using a kernel smoothing method. A
nonparametric density estimate of the previous data, using the default kernel
and bandwidth, is given by:

[f,x] = ksdensity(MPG);
plot(x,f);
title('Density estimate for MPG')
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Controlling Probability Density Curve Smoothness. The choice of
kernel bandwidth controls the smoothness of the probability density curve.
The following graph shows the density estimate for the same mileage data
using different bandwidths. The default bandwidth is in blue and looks
like the preceding graph. Estimates for smaller and larger bandwidths are
in red and green.

The first call to ksdensity returns the default bandwidth, u, of the kernel
smoothing function. Subsequent calls modify this bandwidth.

[f,x,u] = ksdensity(MPG);
plot(x,f)
title('Density estimate for MPG')
hold on

[f,x] = ksdensity(MPG,'width',u/3);
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plot(x,f,'r');

[f,x] = ksdensity(MPG,'width',u*3);
plot(x,f,'g');

legend('default width','1/3 default','3*default')
hold off

The default bandwidth seems to be doing a good job—reasonably smooth,
but not so smooth as to obscure features of the data. This bandwidth is
the one that is theoretically optimal for estimating densities for the normal
distribution.

The green curve shows a density with the kernel bandwidth set too high.
This curve smooths out the data so much that the end result looks just like
the kernel function. The red curve has a smaller bandwidth and is rougher
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looking than the blue curve. It may be too rough, but it does provide an
indication that there might be two major peaks rather than the single peak
of the blue curve. A reasonable choice of width might lead to a curve that is
intermediate between the red and blue curves.

Specifying Kernel Smoothing Functions. You can also specify a kernel
function by supplying either the function name or a function handle. The four
preselected functions, 'normal', 'epanechnikov', 'box', and 'triangle',
are all scaled to have standard deviation equal to 1, so they perform a
comparable degree of smoothing.

Using default bandwidths, you can now plot the same mileage data, using
each of the available kernel functions.

hname = {'normal' 'epanechnikov' 'box' 'triangle'};
hold on;
colors = {'r' 'b' 'g' 'm'};
for j=1:4

[f,x] = ksdensity(MPG,'kernel',hname{j});
plot(x,f,colors{j});

end
legend(hname{:});
hold off
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The density estimates are roughly comparable, but the box kernel produces a
density that is rougher than the others.

Comparing Density Estimates. While it is difficult to overlay two
histograms to compare them, you can easily overlay smooth density estimates.
For example, the following graph shows the MPG distributions for cars from
different countries of origin:

Origin = cellstr(cars.Origin);

I = strcmp('USA',Origin);
J = strcmp('Japan',Origin);
K = ~(I|J);
MPG_USA = MPG(I);
MPG_Japan = MPG(J);
MPG_Europe = MPG(K);
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[fI,xI] = ksdensity(MPG_USA);
plot(xI,fI,'b')
hold on

[fJ,xJ] = ksdensity(MPG_Japan);
plot(xJ,fJ,'r')

[fK,xK] = ksdensity(MPG_Europe);
plot(xK,fK,'g')

legend('USA','Japan','Europe')
hold off

For piecewise probability density estimation, using kernel smoothing in the
center of the distribution and Pareto distributions in the tails, see “Fitting
Piecewise Distributions” on page 5-72.
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Cumulative Distribution Functions

• “Estimating Parametric CDFs” on page 5-62

• “Estimating Empirical CDFs” on page 5-63

Estimating Parametric CDFs
Cumulative distribution functions (cdfs) for supported Statistics Toolbox
distributions all end with cdf, as in binocdf or expcdf. Specific function
names for specific distributions can be found in “Supported Distributions”
on page 5-3.

Each function represents a parametric family of distributions. Input
arguments are arrays of outcomes followed by a list of parameter values
specifying a particular member of the distribution family.

For discrete distributions, the cdf F is related to the pdf f by

F x f y
y x

( ) ( )=
≤
∑

For continuous distributions, the cdf F is related to the pdf f by

F x f y dy
x

( ) ( )=
−∞
∫

Cdfs are used to compute probabilities of events. In particular, if F is a cdf
and x and y are outcomes, then

• P(y ≤ x) = F(x)

• P(y ≥ x) = 1 – F(x)

• P(x1 ≤ y ≤ x2) = F(x2) – F(x1)

For example, the t-statistic
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t
x
s n

= − 
/

follows a Student’s t distribution with n – 1 degrees of freedom when computed
from repeated random samples from a normal population with mean μ. Here
is the sample mean, s is the sample standard deviation, and n is the sample

size. The probability of observing a t-statistic greater than or equal to the
value computed from a sample can be found with the tcdf function:

mu = 1; % Population mean
sigma = 2; % Population standard deviation
n = 100; % Sample size
x = normrnd(mu,sigma,n,1); % Random sample from population
xbar = mean(x); % Sample mean
s = std(x); % Sample standard deviation
t = (xbar-mu)/(s/sqrt(n)) % t-statistic
t =

0.2489
p = 1-tcdf(t,n-1) % Probability of larger t-statistic
p =

0.4020

This probability is the same as the p-value returned by a t-test of the null
hypothesis that the sample comes from a normal population with mean μ:

[h,ptest] = ttest(x,mu,0.05,'right')
h =

0
ptest =

0.4020

Estimating Empirical CDFs
The ksdensity function produces an empirical version of a probability
density function (pdf). That is, instead of selecting a density with a particular
parametric form and estimating the parameters, it produces a nonparametric
density estimate that adapts itself to the data.

Similarly, it is possible to produce an empirical version of the cumulative
distribution function (cdf). The ecdf function computes this empirical cdf. It
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returns the values of a function such that represents the proportion of
observations in a sample less than or equal to .

The idea behind the empirical cdf is simple. It is a function that assigns
probability to each of observations in a sample. Its graph has a
stair-step appearance. If a sample comes from a distribution in a parametric
family (such as a normal distribution), its empirical cdf is likely to resemble
the parametric distribution. If not, its empirical distribution still gives an
estimate of the cdf for the distribution that generated the data.

The following example generates 20 observations from a normal distribution
with mean 10 and standard deviation 2. You can use ecdf to calculate the
empirical cdf and stairs to plot it. Then you overlay the normal distribution
curve on the empirical function.

x = normrnd(10,2,20,1);
[f,xf] = ecdf(x);

stairs(xf,f)
hold on
xx=linspace(5,15,100);
yy = normcdf(xx,10,2);
plot(xx,yy,'r:')
hold off
legend('Empirical cdf','Normal cdf',2)
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The empirical cdf is especially useful in survival analysis applications. In
such applications the data may be censored, that is, not observed exactly.
Some individuals may fail during a study, and you can observe their failure
time exactly. Other individuals may drop out of the study, or may not fail
until after the study is complete. The ecdf function has arguments for dealing
with censored data. In addition, you can use the coxphfit function with
individuals that have predictors that are not the same.

For piecewise probability density estimation, using the empirical cdf in the
center of the distribution and Pareto distributions in the tails, see “Fitting
Piecewise Distributions” on page 5-72.
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Inverse Cumulative Distribution Functions
Inverse cumulative distribution functions for supported Statistics Toolbox
distributions all end with inv, as in binoinv or expinv. Specific function
names for specific distributions can be found in “Supported Distributions”
on page 5-3.

Each function represents a parametric family of distributions. Input
arguments are arrays of cumulative probabilities between 0 and 1 followed by
a list of parameter values specifying a particular member of the distribution
family.

For continuous distributions, the inverse cdf returns the unique outcome
whose cdf value is the input cumulative probability.

For example, the expinv function can be used to compute inverses of
exponential cumulative probabilities:

x = 0.5:0.2:1.5 % Outcomes
x =

0.5000 0.7000 0.9000 1.1000 1.3000 1.5000
p = expcdf(x,1) % Cumulative probabilities
p =

0.3935 0.5034 0.5934 0.6671 0.7275 0.7769
expinv(p,1) % Return original outcomes
ans =

0.5000 0.7000 0.9000 1.1000 1.3000 1.5000

For discrete distributions, there may be no outcome whose cdf value is the
input cumulative probability. In these cases, the inverse cdf returns the first
outcome whose cdf value equals or exceeds the input cumulative probability.

For example, the binoinv function can be used to compute inverses of
binomial cumulative probabilities:

x = 0.5:0.2:1.5 % Outcomes
x =

0.5000 0.7000 0.9000 1.1000 1.3000 1.5000
p = binocdf(x,10,0.2) % Cumulative probabilities
p =

0.1074 0.1074 0.1074 0.3758 0.3758 0.3758
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>> binoinv(p,10,0.2) % Return binomial outcomes
ans =

0 0 0 1 1 1

The inverse cdf is useful in hypothesis testing, where critical outcomes of a
test statistic are computed from cumulative significance probabilities. For
example, norminv can be used to compute a 95% confidence interval under
the assumption of normal variability:

p = [0.025 0.975]; % Interval containing 95% of [0,1]
x = norminv(p,0,1) % Assume standard normal variability
x =

-1.9600 1.9600 % 95% confidence interval

n = 20; % Sample size
y = normrnd(8,1,n,1); % Random sample (assume mean is unknown)
ybar = mean(y);
ci = ybar + (1/sqrt(n))*x % Confidence interval for mean
ci =

7.6779 8.5544
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Distribution Statistics Functions
Distribution statistics functions for supported Statistics Toolbox distributions
all end with stat, as in binostat or expstat. Specific function names for
specific distributions can be found in “Supported Distributions” on page 5-3.

Each function represents a parametric family of distributions. Input
arguments are lists of parameter values specifying a particular member
of the distribution family. Functions return the mean and variance of the
distribution, as a function of the parameters.

For example, the wblstat function can be used to visualize the mean of the
Weibull distribution as a function of its two distribution parameters:

a = 0.5:0.1:3;
b = 0.5:0.1:3;
[A,B] = meshgrid(a,b);
M = wblstat(A,B);
surfc(A,B,M)
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Distribution Fitting Functions

• “Fitting Regular Distributions” on page 5-70

• “Fitting Piecewise Distributions” on page 5-72

Fitting Regular Distributions
Distribution fitting functions for supported Statistics Toolbox distributions all
end with fit, as in binofit or expfit. Specific function names for specific
distributions can be found in “Supported Distributions” on page 5-3.

Each function represents a parametric family of distributions. Input
arguments are arrays of data, presumed to be samples from some member
of the selected distribution family. Functions return maximum likelihood
estimates (MLEs) of distribution parameters, that is, parameters for the
distribution family member with the maximum likelihood of producing the
data as a random sample.

The Statistics Toolbox function mle is a convenient front end to the individual
distribution fitting functions, and more. The function computes MLEs for
distributions beyond those for which Statistics Toolbox software provides
specific pdf functions.

For some pdfs, MLEs can be given in closed form and computed directly.
For other pdfs, a search for the maximum likelihood must be employed. The
search can be controlled with an options input argument, created using
the statset function. For efficient searches, it is important to choose a
reasonable distribution model and set appropriate convergence tolerances.

MLEs can be heavily biased, especially for small samples. As sample size
increases, however, MLEs become unbiased minimum variance estimators
with approximate normal distributions. This is used to compute confidence
bounds for the estimates.

For example, consider the following distribution of means from repeated
random samples of an exponential distribution:

mu = 1; % Population parameter
n = 1e3; % Sample size
ns = 1e4; % Number of samples
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samples = exprnd(mu,n,ns); % Population samples
means = mean(samples); % Sample means

The Central Limit Theorem says that the means will be approximately
normally distributed, regardless of the distribution of the data in the samples.
The normfit function can be used to find the normal distribution that best
fits the means:

[muhat,sigmahat,muci,sigmaci] = normfit(means)
muhat =

1.0003
sigmahat =

0.0319
muci =

0.9997
1.0010

sigmaci =
0.0314
0.0323

The function returns MLEs for the mean and standard deviation and their
95% confidence intervals.

To visualize the distribution of sample means together with the fitted normal
distribution, you must scale the fitted pdf, with area = 1, to the area of the
histogram being used to display the means:

numbins = 50;
hist(means,numbins)
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
hold on
[bincounts,binpositions] = hist(means,numbins);
binwidth = binpositions(2) - binpositions(1);
histarea = binwidth*sum(bincounts);
x = binpositions(1):0.001:binpositions(end);
y = normpdf(x,muhat,sigmahat);
plot(x,histarea*y,'r','LineWidth',2)
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Fitting Piecewise Distributions
The parametric methods discussed in “Fitting Regular Distributions” on
page 5-70 fit data samples with smooth distributions that have a relatively
low-dimensional set of parameters controlling their shape. These methods
work well in many cases, but there is no guarantee that a given sample will be
described accurately by any of the supported Statistics Toolbox distributions.

The empirical distributions computed by ecdf and discussed in “Estimating
Empirical CDFs” on page 5-63 assign equal probability to each observation in
a sample, providing an exact match of the sample distribution. However, the
distributions are not smooth, especially in the tails where data may be sparse.

The paretotails function fits a distribution by piecing together the empirical
distribution in the center of the sample with smooth generalized Pareto
distributions (GPDs) in the tails. The output is an object of the paretotails
class, with associated methods to evaluate the cdf, inverse cdf, and other
functions of the fitted distribution.
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As an example, consider the following data, with about 20% outliers:

left_tail = -exprnd(1,10,1);
right_tail = exprnd(5,10,1);
center = randn(80,1);
data = [left_tail;center;right_tail];

Neither a normal distribution nor a t distribution fits the tails very well:

probplot(data);
p = fitdist(data,'tlocationscale');
h = probplot(gca,p);
set(h,'color','r','linestyle','-')
title('{\bf Probability Plot}')
legend('Normal','Data','t','Location','NW')

5-73



5 Probability Distributions

On the other hand, the empirical distribution provides a perfect fit, but the
outliers make the tails very discrete:

ecdf(data)
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Random samples generated from this distribution by inversion might include,
for example, values around 4.33 and 9.25, but nothing in-between.

The paretotails function provides a single, well-fit model for the entire
sample. The following uses generalized Pareto distributions (GPDs) for the
lower and upper 10% of the data:

pfit = paretotails(data,0.1,0.9)
pfit =
Piecewise distribution with 3 segments
-Inf < x < -1.30726 (0 < p < 0.1)

lower tail, GPD(-1.10167,1.12395)

-1.30726 < x < 1.27213 (0.1 < p < 0.9)
interpolated empirical cdf

1.27213 < x < Inf (0.9 < p < 1)
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upper tail, GPD(1.03844,0.726038)

x = -4:0.01:10;
plot(x,cdf(pfit,x))

Access information about the fit using the methods of the paretotails class.
Options allow for nonparametric estimation of the center of the cdf.
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Negative Log-Likelihood Functions
Negative log-likelihood functions for supported Statistics Toolbox
distributions all end with like, as in explike. Specific function names for
specific distributions can be found in “Supported Distributions” on page 5-3.

Each function represents a parametric family of distributions. Input
arguments are lists of parameter values specifying a particular member of
the distribution family followed by an array of data. Functions return the
negative log-likelihood of the parameters, given the data.

Negative log-likelihood functions are used as objective functions in
search algorithms such as the one implemented by the MATLAB function
fminsearch. Additional search algorithms are implemented by Optimization
Toolbox™ functions and Genetic Algorithm and Direct Search Toolbox™
functions.

When used to compute maximum likelihood estimates (MLEs), negative
log-likelihood functions allow you to choose a search algorithm and exercise
low-level control over algorithm execution. By contrast, the functions
discussed in “Distribution Fitting Functions” on page 5-70 use preset
algorithms with options limited to those set by the statset function.

Likelihoods are conditional probability densities. A parametric family of
distributions is specified by its pdf f (x,a), where x and a represent the
variables and parameters, respectively. When a is fixed, the pdf is used
to compute the density at x, f (x|a). When x is fixed, the pdf is used to
compute the likelihood of the parameters a, f (a|x). The joint likelihood of the
parameters over an independent random sample X is

L a f a x
x X

( ) ( | )=
∈
∏

Given X, MLEs maximize L(a) over all possible a.

In numerical algorithms, the log-likelihood function, log(L(a)), is
(equivalently) optimized. The logarithm transforms the product of potentially
small likelihoods into a sum of logs, which is easier to distinguish from 0
in computation. For convenience, Statistics Toolbox negative log-likelihood

5-77



5 Probability Distributions

functions return the negative of this sum, since the optimization algorithms to
which the values are passed typically search for minima rather than maxima.

For example, use gamrnd to generate a random sample from a specific gamma
distribution:

a = [1,2];
X = gamrnd(a(1),a(2),1e3,1);

Given X, the gamlike function can be used to visualize the likelihood surface
in the neighborhood of a:

mesh = 50;
delta = 0.5;
a1 = linspace(a(1)-delta,a(1)+delta,mesh);
a2 = linspace(a(2)-delta,a(2)+delta,mesh);
logL = zeros(mesh); % Preallocate memory
for i = 1:mesh

for j = 1:mesh
logL(i,j) = gamlike([a1(i),a2(j)],X);

end
end

[A1,A2] = meshgrid(a1,a2);
surfc(A1,A2,logL)
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The MATLAB function fminsearch is used to search for the minimum of
the likelihood surface:

LL = @(u)gamlike([u(1),u(2)],X); % Likelihood given X
MLES = fminsearch(LL,[1,2])
MLES =

1.0231 1.9729

These can be compared to the MLEs returned by the gamfit function, which
uses a combination search and solve algorithm:

ahat = gamfit(X)
ahat =

1.0231 1.9728

The MLEs can be added to the surface plot (rotated to show the minimum):

hold on
plot3(MLES(1),MLES(2),LL(MLES),...

'ro','MarkerSize',5,...
'MarkerFaceColor','r')
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Random Number Generators
The Statistics Toolbox supports the generation of random numbers from
various distributions. Each RNG represents a parametric family of
distributions. RNGs return random numbers from the specified distribution
in an array of the specified dimensions. Specific RNG names for specific
distributions are in “Supported Distributions” on page 5-3.

Other random number generation functions which do not support specific
distributions include:

• cvpartition

• hmmgenerate

• lhsdesign

• lhsnorm

• mhsample

• random

• randsample

• slicesample

RNGs in Statistics Toolbox software depend on MATLAB’s default random
number stream via the rand and randn functions, each RNG uses one of
the techniques discussed in “Common Generation Methods” on page 6-5 to
generate random numbers from a given distribution.

By controlling the default random number stream and its state, you can
control how the RNGs in Statistics Toolbox software generate random values.
For example, to reproduce the same sequence of values from an RNG, you
can save and restore the default stream’s state, or reset the default stream.
For details on managing the default random number stream, see “Managing
the Default Stream”.

MATLAB initializes the default random number stream to the same state
each time it starts up. Thus, RNGs in Statistics Toolbox software will
generate the same sequence of values for each MATLAB session unless you
modify that state at startup. One simple way to do that is to add commands
to startup.m such as
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stream = RandStream('mt19937ar','seed',sum(100*clock));
RandStream.setDefaultStream(stream);

that initialize MATLAB’s default random number stream to a different state
for each session.
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Dependencies of the Random Number Generators
The following table lists the dependencies of Statistics Toolbox RNGs on the
MATLAB base RNGs rand and/or randn.

RNG MATLAB Base RNG

betarnd rand, randn

binornd rand

chi2rnd rand, randn

evrnd rand

exprnd rand

frnd rand, randn

gamrnd rand, randn

geornd rand

gevrnd rand

gprnd rand

hygernd rand

iwishrnd rand, randn

johnsrnd randn

lhsdesign rand

lhsnorm rand

lognrnd randn

mhsample rand or randn, depending on
the RNG given for the proposal
distribution

mvnrnd randn

mvtrnd rand, randn

nbinrnd rand, randn
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RNG MATLAB Base RNG

ncfrnd rand, randn

nctrnd rand, randn

ncx2rnd randn

normrnd randn

pearsrnd rand or randn, depending on the
distribution type

poissrnd rand, randn

random rand or randn, depending on the
specified distribution

randsample rand

raylrnd randn

slicesample rand

trnd rand, randn

unidrnd rand

unifrnd rand

wblrnd rand

wishrnd rand, randn
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Using Probability Distribution Objects

In this section...

“Using Distribution Objects” on page 5-85

“What are Objects?” on page 5-86

“Creating Distribution Objects” on page 5-89

“Object-Supported Distributions” on page 5-90

“Performing Calculations Using Distribution Objects” on page 5-92

“Capturing Results Using Distribution Objects” on page 5-98

Using Distribution Objects
For many distributions supported by Statistics Toolbox software, objects are
available for statistical analysis. This section gives a general overview of the
uses of distribution objects, including sample work flows. For information
on objects available for specific distributions, see “Object-Supported
Distributions” on page 5-90.

Probability distribution objects allow you to easily fit, access, and store
distribution information for a given data set. The following operations are
easier to perform using distribution objects:

• Grouping a single dataset in a number of different ways using group
names, and then fit a distribution to each group. For an example of how
to fit distributions to grouped data, see “Example: Fitting Distributions to
Grouped Data Within a Single Dataset” on page 5-92.

• Fitting different distributions to the same set of data. For an example of
how objects make fitting multiple distribution types easier, see “Example:
Fitting Multiple Distribution Types to a Single Dataset” on page 5-96.

• Sharing fitted distributions across workspaces. For an example of sharing
information using probability distribution objects, see “Example: Saving
and Sharing Distribution Fit Data” on page 5-98.
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Deciding to Use Distribution Objects
If you know the type of distribution you would like to use, objects provide a
less complex interface than functions and a more efficient functionality than
the dfittool GUI.

If you are a novice statistician who would like to explore how various
distributions look without having to manipulate data, see “Working with
Distributions Through GUIs” on page 5-9.

If you have no data to fit, but want to calculate a pdf, cdf, etc for various
parameters, see “Statistics Toolbox Distribution Functions” on page 5-52.

What are Objects?
Objects are, in short, a convenient way of storing data. They allow you to set
rules for the types of data to store, while maintaining some flexibility for the
actual values of the data. For example, in statistics groups of distributions
have some general things in common:

• All distributions have a name (ex, Normal).

• Parametric distributions have parameters.

• Nonparametric distributions have kernel-smoothing functions.

Objects store all this information within properties. Classes of related
objects (for example, all univariate parametric distributions) have the same
properties with values and types relevant to a specified distribution. In
addition to storing information within objects, you can perform certain actions
(called methods) on objects.

Subclasses (for example, ProbDistParametric is a subclass of ProbDist)
contain the same properties and methods as the original class, in addition to
other properties relevant to that subclass. This concept is called inheritance.
Inheritance means that subclasses of a class have all of its properties and
methods. For example, parametric distributions, which are a subset (subclass)
of probability distributions, have input data and a distribution name. The
following diagram illustrates this point:
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The left side of this diagram shows the inheritance line from all probability
distributions down to univariate parametric probability distributions. The
right side shows the lineage down to univariate kernel distributions. Here is
how to interpret univariate parametric distribution lineage:

• ProbDist is a class of objects that includes all probability distributions. All
probability distribution objects have at least these properties:
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- DistName — the name of the distribution (for example Normal or
Weibull)

- InputData — the data fit to the distribution
In addition, you can perform the following actions on these objects, using
the following methods:

- cdf — Return the cumulative distribution function for a specified
distribution.

- pdf—Return the probability density function for a specified distribution.

- random— Generate random numbers based on a specified distribution.

• ProbDistParametric is a class of objects that includes all parametric
probability distributions. All parametric probability distribution objects
have the properties and methods of a ProbDist object, in addition to at
least the following properties:

- NLogL — Negative log likelihood for input data

- NumParams— Number of parameters for that distribution

- ParamCov— Covariance matrix of parameter estimates

- ParamDescription — Descriptions of parameters

- ParamNames — Names of parameters

- Params — Values of parameters
No additional unique methods apply to ProbDistParametric objects.

• ProbDistUnivParam is a class of objects that includes only univariate
parametric probability distributions. In addition to the properties and
methods of ProbDist and ProbDistParametric objects, these objects also
have at least the following methods:

- icdf — Return the inverse cumulative distribution function for a
specified distribution based on a given set of data.

- iqr— Return the interquartile range for a specified distribution based
on a given set of data.

- mean — Return the mean for a specified distribution based on a given
set of data.

- median — Return the median for a specified distribution based on a
given set of data.
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- paramci — Return the parameter confidence intervals for a specified
distribution based on a given set of data.

- std— Return the standard deviation for a specified distribution based
on a given set of data.

- var— Return the variance for a specified distribution based on a given
set of data.

No additional unique properties apply to ProbDistUnivParam objects.

The univariate nonparametric lineage reads in a similar manner, with
different properties and methods. For more information on nonparametric
objects and their methods and properties, see ProbDistKernel and
ProbDistUnivKernel.

For more detailed information on object-oriented programming in MATLAB,
see Object-Oriented Programming.

Creating Distribution Objects
There are two ways to create distribution objects:

• Use the fitdist function. See “Creating Distribution Objects Using
fitdist” on page 5-89.

• Use the object constructor. See “Creating Distribution Objects Using
Constructors” on page 5-89.

Creating Distribution Objects Using fitdist
Using the fitdist function is the simplest way of creating distribution
objects. Like the *fit functions, fitdist fits your data to a specified
distribution and returns relevant distribution information. fitdist creates
an object relevant to the type of distribution you specify: if you specify a
parametric distribution, it returns a ProbDistUnivParam object. For examples
of how to use fitdist to fit your data, see “Performing Calculations Using
Distribution Objects” on page 5-92.

Creating Distribution Objects Using Constructors
If you know the distribution you would like to use and would like to create a
univariate parametric distribution with known parameters, you can use the
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ProbDistUnivParam constructor. For example, create a normal distribution
with mean 100 and standard deviation 10:

pd = ProbDistUnivParam('normal',[100 10])

For nonparametric distributions, you must have a dataset. Using
fitdist is a simpler way to fit nonparametric data, but you can use
the ProbDistUnivKernel constructor as well. For example, create a
nonparametric distribution of the MPG data from carsmall.mat:

load carsmall
pd = ProbDistUnivKernel(MPG)

Object-Supported Distributions
Object-oriented programming in the Statistics Toolbox supports the following
distributions.

Parametric Distributions
Use the following distribution to create ProbDistUnivParam objects using
fitdist. For more information on the cumulative distribution function (cdf)
and probability density function (pdf) methods, as well as other available
methods, see the ProbDistUnivParam class reference page.

Supported Distribution Input to fitdist

“Beta Distribution” on page B-4 'beta'

“Binomial Distribution” on page B-7 'binomial'

“Birnbaum-Saunders Distribution”
on page B-10

'birnbaumsaunders'

“Exponential Distribution” on page
B-16

'exponential'

“Extreme Value Distribution” on
page B-19

'extreme value' or 'ev'

“Gamma Distribution” on page B-27 'gamma'

“Generalized Extreme Value
Distribution” on page B-32

'generalized extreme value' or
'gev'

5-90



Using Probability Distribution Objects

Supported Distribution Input to fitdist

“Generalized Pareto Distribution” on
page B-37

'generalized pareto' or 'gp'

“Inverse Gaussian Distribution” on
page B-45

'inversegaussian'

“Logistic Distribution” on page B-49 'logistic'

“Loglogistic Distribution” on page
B-50

'loglogistic'

“Lognormal Distribution” on page
B-51

'lognormal'

“Nakagami Distribution” on page
B-70

'nakagami'

“Negative Binomial Distribution” on
page B-71

'negative binomial' or 'nbin'

“Normal Distribution” on page B-82 'normal'

“Poisson Distribution” on page B-88 'poisson'

“Rayleigh Distribution” on page B-90 'rayleigh'

“Rician Distribution” on page B-92 'rician'

“t Location-Scale Distribution” on
page B-96

'tlocationscale'

“Weibull Distribution” on page B-102 'weibull' or 'wbl'

Nonparametric Distributions
Use the following distributions to create ProbDistUnivKernel objects.
For more information on the cumulative distribution function (cdf) and
probability density function (pdf) methods, as well as other available
methods, see the ProbDistUnivKernel class reference page.

Supported Distribution Input to fitdist

“Nonparametric Distributions” on
page B-81

'kernel'
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Performing Calculations Using Distribution Objects
Distribution objects make it easier for you to perform calculations on complex
datasets. The following sample workflows show some of the functionality
of these objects.

• “Example: Fitting a Single Distribution to a Single Dataset” on page 5-92

• “Example: Fitting Distributions to Grouped Data Within a Single Dataset”
on page 5-92

• “Example: Fitting Multiple Distribution Types to a Single Dataset” on
page 5-96

Example: Fitting a Single Distribution to a Single Dataset
Fit a single Normal distribution to a dataset using fitdist:

load carsmall
NormDist = fitdist(MPG,'normal')

NormDist =

normal distribution

mu = 23.7181
sigma = 8.03573

The output MATLAB returns is a ProbDistUnivParam object with a DistName
property of 'normal distribution'. The ParamNames property contains the
strings mu and sigma, while the Params property contains the parameter
values.

Example: Fitting Distributions to Grouped Data Within a Single
Dataset
Often, datasets are collections of data you can group in different ways. Using
fitdist and the data from carsmall.mat, group the MPG data by country of
origin, then fit a Weibull distribution each group:

load carsmall
[WeiByOrig, Country] = fitdist(MPG,'weibull','by',Origin)
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Warning: Error while fitting group 'Italy':
Not enough data in X to fit this distribution.
> In fitdist at 171

WeiByOrig =

Columns 1 through 4

[1x1 ProbDistUnivParam] [1x1 ProbDistUnivParam] ...
[1x1 ProbDistUnivParam] [1x1 ProbDistUnivParam]

Columns 5 through 6

[1x1 ProbDistUnivParam] []

Country =

'USA'
'France'
'Japan'
'Germany'
'Sweden'
'Italy'

A warning appears informing you that, since the data only represents one
Italian car, fitdist cannot fit a Weibull distribution to that group. Each
one of the five other groups now has a distribution object associated with it,
represented in the cell array wd. Each object contains properties that hold
information about the data, the distribution, and the parameters. For more
information on what properties exist and what information they contain, see
ProbDistUnivParam or ProbDistUnivKernel.

Now access two of the objects and their properties:

% Get USA fit
distusa = WeiByOrig{1};
% Use the InputData property of ProbDistUnivParam objects to see
% the actual data used to fit the distribution:
dusa = distusa.InputData.data;
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% Get Japan fit and data
distjapan = WeiByOrig{3};
djapan = distjapan.InputData.data;

Now you can easily compare PDFs using the pdf method of the
ProbDistUnivParam class:

time = linspace(0,45);
pdfjapan = pdf(distjapan,time);
pdfusa = pdf(distusa,time);
hold on
plot(time,[pdfjapan;pdfusa])
l = legend('Japan','USA')
set(l,'Location','Best')
xlabel('MPG')
ylabel('Probability Density')
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You could then further group the data and compare, for example, MPG by
year for American cars:

load carsmall
[WeiByYearOrig, Names] = fitdist(MPG,'weibull','by',...

{Origin Model_Year});
USA70 = WeiByYearOrig{1};
USA76 = WeiByYearOrig{2};
USA82 = WeiByYearOrig{3};
time = linspace(0,45);
pdf70 = pdf(USA70,time);
pdf76 = pdf(USA76,time);
pdf82 = pdf(USA82,time);
line(t,[pdf70;pdf76;pdf82])
l = legend('1970','1976','1982')
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set(l,'Location','Best')
title('USA Car MPG by Year')
xlabel('MPG')
ylabel('Probability Density')

Example: Fitting Multiple Distribution Types to a Single Dataset
Distribution objects make it easy to fit multiple distributions to the same
dataset, while minimizing workspace clutter. For example, use fitdist to
group the MPG data by country of origin, then fit Weibull, Normal, Logistic,
and nonparametric distributions for each group:

load carsmall;
[WeiByOrig, Country] = fitdist(MPG,'weibull','by',Origin);
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[NormByOrig, Country] = fitdist(MPG,'normal','by',Origin);
[LogByOrig, Country] = fitdist(MPG,'logistic','by',Origin);
[KerByOrig, Country] = fitdist(MPG,'kernel','by',Origin);

Extract the fits for American cars and compare the fits visually against a
histogram of the original data:

WeiUSA = WeiByOrig{1};
NormUSA = NormByOrig{1};
LogUSA = LogByOrig{1};
KerUSA = KerByOrig{1};

% Since all three distributions use the same set of data,
% you can extract the data from any of them:
data = WeiUSA.InputData.data;

% Create a histogram of the data:
[n,y] = hist(data,10);
b = bar(y,n,'hist');
set(b,'FaceColor',[1,0.8,0])

% Scale the density by the histogram area, for easier display:
area = sum(n) * (y(2)-y(1));
time = linspace(0,45);
pdfWei = pdf(WeiUSA,time);
pdfNorm = pdf(NormUSA,time);
pdfLog = pdf(LogUSA,time);
pdfKer = pdf(KerUSA,time);
allpdf = [pdfWei;pdfNorm;pdfLog;pdfKer];
line(t,area * allpdf)
l = legend('Data','Weibull','Normal','Logistic','Kernel')
set(l,'Location','Best')
title('USA Car')
xlabel('MPG')
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You can see that only the nonparametric kernel distribution, KerUSA, comes
close to revealing the two modes in the data.

Capturing Results Using Distribution Objects
Distribution objects allow you to share both your dataset and your analysis
results simply by saving the information to a .mat file.

Example: Saving and Sharing Distribution Fit Data
Using the premise from the previous set of examples, group the MPG data
in carsmall.mat by country of origin and fit four different distributions to
each of the six sets of data:
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load carsmall;
[WeiByOrig, Country] = fitdist(MPG,'weibull','by',Origin);
[NormByOrig, Country] = fitdist(MPG,'normal','by',Origin);
[LogByOrig, Country] = fitdist(MPG,'logistic','by',Origin);
[KerByOrig, Country] = fitdist(MPG,'kernel','by',Origin);

Combine all four fits and the country labels into a single cell array, including
“headers” to indicate which distributions correspond to which objects. Then,
save the array to a .mat file:

AllFits = cell(['Country' Country'; 'Weibull' WeiByOrig;...
'Normal' NormByOrig; 'Logistic' LogByOrig; 'Kernel',...
KerByOrig]);

save('CarSmallFits.mat','AllFits');

To show that the data is both safely saved and easily restored, clear your
workspace of relevant variables. This command clears only those variables
associated with this example:

clear('Weight','Acceleration','AllFits','Country',...
'Cylinders','Displacement','Horsepower','KerByOrig',...
'LogByOrig','MPG','Model','Model_Year','NormByOrig',...
'Origin','WeiByOrig')

Now, load the data:

load CarSmallFits
AllFits

You can now access the distributions objects as in the previous examples.
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Probability Distributions Used for Multivariate Modeling

In this section...

“Gaussian Mixture Models” on page 5-100

“Copulas” on page 5-108

Gaussian Mixture Models

• “Creating Gaussian Mixture Models” on page 5-100

• “Simulating Gaussian Mixtures” on page 5-106

Gaussian mixture models are formed by combining multivariate normal
density components. For information on individual multivariate normal
densities, see “Multivariate Normal Distribution” on page B-58 and related
distribution functions listed under “Multivariate Distributions” on page 5-8.

In Statistics Toolbox software, mixture models of the gmdistribution class
are fit to data using an expectation maximization (EM) algorithm, which
assigns posterior probabilities to each component density with respect to each
observation. The fitting method uses an iterative algorithm that converges to
a local optimum.

For more information on clustering with Gaussian mixture models, see
“Gaussian Mixture Models” on page 11-28. This section describes their
creation.

Creating Gaussian Mixture Models

• “Specifying a Model” on page 5-100

• “Fitting a Model to Data” on page 5-103

Specifying a Model. Use the gmdistribution constructor to create
Gaussian mixture models with specified means, covariances, and mixture
proportions. The following creates an object of the gmdistribution class
defining a two-component mixture of bivariate Gaussian distributions:
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MU = [1 2;-3 -5]; % Means
SIGMA = cat(3,[2 0;0 .5],[1 0;0 1]); % Covariances
p = ones(1,2)/2; % Mixing proportions

obj = gmdistribution(MU,SIGMA,p);

Display properties of the object with the MATLAB function fieldnames:

properties = fieldnames(obj)
properties =

'NDimensions'
'DistName'
'NComponents'
'PComponents'
'mu'
'Sigma'
'NlogL'
'AIC'
'BIC'
'Converged'
'Iters'
'SharedCov'
'CovType'
'RegV'

The gmdistribution reference page describes these properties. To access the
value of a property, use dot indexing:

dimension = obj.NDimensions
dimension =

2

name = obj.DistName
name =
gaussian mixture distribution

Use the methods pdf and cdf to compute values and visualize the object:

ezsurf(@(x,y)pdf(obj,[x y]),[-10 10],[-10 10])
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ezsurf(@(x,y)cdf(obj,[x y]),[-10 10],[-10 10])
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Fitting a Model to Data. You can also create Gaussian mixture models
by fitting a parametric model with a specified number of components to
data. The fit method of the gmdistribution class uses the syntax obj =
gmdistribution.fit(X,k), where X is a data matrix and k is the specified
number of components. Choosing a suitable number of components k is
essential for creating a useful model of the data—too few components fails to
model the data accurately; too many components leads to an over-fit model
with singular covariance matrices.

The following example illustrates this approach.

First, create some data from a mixture of two bivariate Gaussian distributions
using the mvnrnd function:

MU1 = [1 2];
SIGMA1 = [2 0; 0 .5];
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MU2 = [-3 -5];
SIGMA2 = [1 0; 0 1];
X = [mvnrnd(MU1,SIGMA1,1000);mvnrnd(MU2,SIGMA2,1000)];

scatter(X(:,1),X(:,2),10,'.')
hold on

Next, fit a two-component Gaussian mixture model:

options = statset('Display','final');
obj = gmdistribution.fit(X,2,'Options',options);
10 iterations, log-likelihood = -7046.78

h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);
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Among the properties of the fit are the parameter estimates:

ComponentMeans = obj.mu
ComponentMeans =

0.9391 2.0322
-2.9823 -4.9737

ComponentCovariances = obj.Sigma
ComponentCovariances(:,:,1) =

1.7786 -0.0528
-0.0528 0.5312

ComponentCovariances(:,:,2) =
1.0491 -0.0150

-0.0150 0.9816

MixtureProportions = obj.PComponents
MixtureProportions =
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0.5000 0.5000

The two-component model minimizes the Akaike information:

AIC = zeros(1,4);
obj = cell(1,4);
for k = 1:4

obj{k} = gmdistribution.fit(X,k);
AIC(k)= obj{k}.AIC;

end

[minAIC,numComponents] = min(AIC);
numComponents
numComponents =

2

model = obj{2}
model =
Gaussian mixture distribution
with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean: 0.9391 2.0322
Component 2:
Mixing proportion: 0.500000
Mean: -2.9823 -4.9737

Both the Akaike and Bayes information are negative log-likelihoods for the
data with penalty terms for the number of estimated parameters. You can use
them to determine an appropriate number of components for a model when
the number of components is unspecified.

Simulating Gaussian Mixtures
Use the method random of the gmdistribution class to generate random data
from a Gaussian mixture model created with gmdistribution or fit.

For example, the following specifies a gmdistribution object consisting of a
two-component mixture of bivariate Gaussian distributions:

MU = [1 2;-3 -5];

5-106



Probability Distributions Used for Multivariate Modeling

SIGMA = cat(3,[2 0;0 .5],[1 0;0 1]);
p = ones(1,2)/2;
obj = gmdistribution(MU,SIGMA,p);

ezcontour(@(x,y)pdf(obj,[x y]),[-10 10],[-10 10])
hold on

Use random (gmdistribution) to generate 1000 random values:

Y = random(obj,1000);

scatter(Y(:,1),Y(:,2),10,'.')
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Copulas

• “Determining Dependence Between Simulation Inputs” on page 5-109

• “Constructing Dependent Bivariate Distributions” on page 5-113

• “Using Rank Correlation Coefficients” on page 5-117

• “Using Bivariate Copulas” on page 5-120

• “Higher Dimension Copulas” on page 5-127

• “Archimedean Copulas” on page 5-129

• “Simulating Dependent Multivariate Data Using Copulas” on page 5-131

• “Example: Fitting Copulas to Data” on page 5-136
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Copulas are functions that describe dependencies among variables, and
provide a way to create distributions that model correlated multivariate data.
Using a copula, you can construct a multivariate distribution by specifying
marginal univariate distributions, and then choose a copula to provide a
correlation structure between variables. Bivariate distributions, as well as
distributions in higher dimensions, are possible.

Determining Dependence Between Simulation Inputs
One of the design decisions for a Monte Carlo simulation is a choice of
probability distributions for the random inputs. Selecting a distribution
for each individual variable is often straightforward, but deciding what
dependencies should exist between the inputs may not be. Ideally, input
data to a simulation should reflect what you know about dependence among
the real quantities you are modeling. However, there may be little or no
information on which to base any dependence in the simulation. In such cases,
it is useful to experiment with different possibilities in order to determine
the model’s sensitivity.

It can be difficult to generate random inputs with dependence when they have
distributions that are not from a standard multivariate distribution. Further,
some of the standard multivariate distributions can model only limited types
of dependence. It is always possible to make the inputs independent, and
while that is a simple choice, it is not always sensible and can lead to the
wrong conclusions.

For example, a Monte-Carlo simulation of financial risk could have two
random inputs that represent different sources of insurance losses. You could
model these inputs as lognormal random variables. A reasonable question
to ask is how dependence between these two inputs affects the results of the
simulation. Indeed, you might know from real data that the same random
conditions affect both sources; ignoring that in the simulation could lead to
the wrong conclusions.

Example: Generate and Exponentiate Normal Random Variables.
The lognrnd function simulates independent lognormal random variables. In
the following example, the mvnrnd function generates n pairs of independent
normal random variables, and then exponentiates them. Notice that the
covariance matrix used here is diagonal:
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n = 1000;

sigma = .5;
SigmaInd = sigma.^2 .* [1 0; 0 1]
SigmaInd =

0.25 0
0 0.25

ZInd = mvnrnd([0 0],SigmaInd,n);
XInd = exp(ZInd);

plot(XInd(:,1),XInd(:,2),'.')
axis([0 5 0 5])
axis equal
xlabel('X1')
ylabel('X2')
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Dependent bivariate lognormal random variables are also easy to generate
using a covariance matrix with nonzero off-diagonal terms:

rho = .7;

SigmaDep = sigma.^2 .* [1 rho; rho 1]
SigmaDep =

0.25 0.175
0.175 0.25

ZDep = mvnrnd([0 0],SigmaDep,n);
XDep = exp(ZDep);

A second scatter plot demonstrates the difference between these two bivariate
distributions:

plot(XDep(:,1),XDep(:,2),'.')
axis([0 5 0 5])
axis equal
xlabel('X1')
ylabel('X2')
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It is clear that there is a tendency in the second data set for large values of
X1 to be associated with large values of X2, and similarly for small values.
The correlation parameter, ρ, of the underlying bivariate normal determines
this dependence. The conclusions drawn from the simulation could well
depend on whether you generate X1 and X2 with dependence. The bivariate
lognormal distribution is a simple solution in this case; it easily generalizes
to higher dimensions in cases where the marginal distributions are different
lognormals.

Other multivariate distributions also exist. For example, the multivariate
t and the Dirichlet distributions simulate dependent t and beta random
variables, respectively. But the list of simple multivariate distributions is not
long, and they only apply in cases where the marginals are all in the same
family (or even the exact same distributions). This can be a serious limitation
in many situations.
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Constructing Dependent Bivariate Distributions
Although the construction discussed in the previous section creates a
bivariate lognormal that is simple, it serves to illustrate a method that is
more generally applicable.

1 Generate pairs of values from a bivariate normal distribution. There is
statistical dependence between these two variables, and each has a normal
marginal distribution.

2 Apply a transformation (the exponential function) separately to each
variable, changing the marginal distributions into lognormals. The
transformed variables still have a statistical dependence.

If a suitable transformation can be found, this method can be generalized to
create dependent bivariate random vectors with other marginal distributions.
In fact, a general method of constructing such a transformation does exist,
although it is not as simple as exponentiation alone.

By definition, applying the normal cumulative distribution function (cdf),
denoted here by Φ, to a standard normal random variable results in a random
variable that is uniform on the interval [0, 1]. To see this, if Z has a standard
normal distribution, then the cdf of U = Φ(Z) is

Pr{ } Pr{ ( ) } Pr( ( )}U u Z u Z u u≤ = ≤ = ≤ =−Φ Φ 1

and that is the cdf of a Unif(0,1) random variable. Histograms of some
simulated normal and transformed values demonstrate that fact:

n = 1000;
z = normrnd(0,1,n,1);

hist(z,-3.75:.5:3.75)
xlim([-4 4])
title('1000 Simulated N(0,1) Random Values')
xlabel('Z')
ylabel('Frequency')
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
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u = normcdf(z);

hist(u,.05:.1:.95)
title('1000 Simulated N(0,1) Values Transformed to Unif(0,1)')
xlabel('U')
ylabel('Frequency')
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
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Borrowing from the theory of univariate random number generation, applying
the inverse cdf of any distribution, F, to a Unif(0,1) random variable results in
a random variable whose distribution is exactly F (see “Inversion Methods”
on page 6-7). The proof is essentially the opposite of the preceding proof for
the forward case. Another histogram illustrates the transformation to a
gamma distribution:

x = gaminv(u,2,1);

hist(x,.25:.5:9.75)
title('1000 Simulated N(0,1) Values Transformed to Gamma(2,1)')
xlabel('X')
ylabel('Frequency')
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
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You can apply this two-step transformation to each variable of a standard
bivariate normal, creating dependent random variables with arbitrary
marginal distributions. Because the transformation works on each component
separately, the two resulting random variables need not even have the same
marginal distributions. The transformation is defined as:

Z Z Z N

U Z Z
X G U G U

= ⎡

⎣
⎢

⎤

⎦
⎥

=
=

[ , ] ([ , ], )

[ ( ), ( )]
[ ( ), (

1 2

1 2

1 1 2

0 0
1

1
∼




Φ Φ

22)]

5-116



Probability Distributions Used for Multivariate Modeling

where G1 and G2 are inverse cdfs of two possibly different distributions. For
example, the following generates random vectors from a bivariate distribution
with t5 and Gamma(2,1) marginals:

n = 1000; rho = .7;
Z = mvnrnd([0 0],[1 rho; rho 1],n);
U = normcdf(Z);
X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)];

scatterhist(X(:,1),X(:,2))

This plot has histograms alongside a scatter plot to show both the marginal
distributions, and the dependence.

Using Rank Correlation Coefficients
The correlation parameter, ρ, of the underlying bivariate normal determines
the dependence between X1 and X2 in this construction. However, the linear
correlation of X1 and X2 is not ρ. For example, in the original lognormal case,
a closed form for that correlation is:
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which is strictly less than ρ, unless ρ is exactly 1. In more general cases such
as the Gamma/t construction, the linear correlation between X1 and X2 is
difficult or impossible to express in terms of ρ, but simulations show that the
same effect happens.

That is because the linear correlation coefficient expresses the linear
dependence between random variables, and when nonlinear transformations
are applied to those random variables, linear correlation is not preserved.
Instead, a rank correlation coefficient, such as Kendall’s τ or Spearman’s ρ,
is more appropriate.

Roughly speaking, these rank correlations measure the degree to which
large or small values of one random variable associate with large or small
values of another. However, unlike the linear correlation coefficient, they
measure the association only in terms of ranks. As a consequence, the rank
correlation is preserved under any monotonic transformation. In particular,
the transformation method just described preserves the rank correlation.
Therefore, knowing the rank correlation of the bivariate normal Z exactly
determines the rank correlation of the final transformed random variables,
X. While the linear correlation coefficient, ρ, is still needed to parameterize
the underlying bivariate normal, Kendall’s τ or Spearman’s ρ are more useful
in describing the dependence between random variables, because they are
invariant to the choice of marginal distribution.

For the bivariate normal, there is a simple one-to-one mapping between
Kendall’s τ or Spearman’s ρ, and the linear correlation coefficient ρ:
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The following plot shows the relationship:

rho = -1:.01:1;
tau = 2.*asin(rho)./pi;

5-118



Probability Distributions Used for Multivariate Modeling

rho_s = 6.*asin(rho./2)./pi;

plot(rho,tau,'b-','LineWidth',2)
hold on
plot(rho,rho_s,'g-','LineWidth',2)
plot([-1 1],[-1 1],'k:','LineWidth',2)
axis([-1 1 -1 1])
xlabel('rho')
ylabel('Rank correlation coefficient')
legend('Kendall''s {\it\tau}', ...

'Spearman''s {\it\rho_s}', ...
'location','NW')
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Thus, it is easy to create the desired rank correlation between X1 and X2,
regardless of their marginal distributions, by choosing the correct ρ parameter
value for the linear correlation between Z1 and Z2.

For the multivariate normal distribution, Spearman’s rank correlation is
almost identical to the linear correlation. However, this is not true once you
transform to the final random variables.

Using Bivariate Copulas
The first step of the construction described in the previous section defines
what is known as a bivariate Gaussian copula. A copula is a multivariate
probability distribution, where each random variable has a uniform marginal
distribution on the unit interval [0,1]. These variables may be completely
independent, deterministically related (e.g., U2 = U1), or anything in between.
Because of the possibility for dependence among variables, you can use a
copula to construct a new multivariate distribution for dependent variables.
By transforming each of the variables in the copula separately using the
inversion method, possibly using different cdfs, the resulting distribution can
have arbitrary marginal distributions. Such multivariate distributions are
often useful in simulations, when you know that the different random inputs
are not independent of each other.

Statistics Toolbox functions compute:

• Probability density functions (copulapdf) and the cumulative distribution
functions (copulacdf) for Gaussian copulas

• Rank correlations from linear correlations (copulastat) and vice versa
(copulaparam)

• Random vectors (copularnd)

• Parameters for copulas fit to data (copulafit)

For example, use the copularnd function to create scatter plots of random
values from a bivariate Gaussian copula for various levels of ρ, to illustrate the
range of different dependence structures. The family of bivariate Gaussian
copulas is parameterized by the linear correlation matrix:
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U1 and U2 approach linear dependence as ρ approaches ±1, and approach
complete independence as ρ approaches zero:

n = 500;

U = copularnd('Gaussian',[1 .8; .8 1],n);
subplot(2,2,1)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = 0.8')
xlabel('U1')
ylabel('U2')

U = copularnd('Gaussian',[1 .1; .1 1],n);
subplot(2,2,2)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = 0.1')
xlabel('U1')
ylabel('U2')

U = copularnd('Gaussian',[1 -.1; -.1 1],n);
subplot(2,2,3)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = -0.1')
xlabel('U1')
ylabel('U2')

U = copularnd('Gaussian',[1 -.8; -.8 1],n);
subplot(2,2,4)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = -0.8')
xlabel('U1')
ylabel('U2')
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The dependence between U1 and U2 is completely separate from the marginal
distributions of X1 = G(U1) and X2 = G(U2). X1 and X2 can be given any
marginal distributions, and still have the same rank correlation. This is
one of the main appeals of copulas—they allow this separate specification
of dependence and marginal distribution. You can also compute the pdf
(copulapdf) and the cdf (copulacdf) for a copula. For example, these plots
show the pdf and cdf for ρ = .8:

u1 = linspace(1e-3,1-1e-3,50);
u2 = linspace(1e-3,1-1e-3,50);
[U1,U2] = meshgrid(u1,u2);
Rho = [1 .8; .8 1];
f = copulapdf('t',[U1(:) U2(:)],Rho,5);
f = reshape(f,size(U1));

surf(u1,u2,log(f),'FaceColor','interp','EdgeColor','none')
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view([-15,20])
xlabel('U1')
ylabel('U2')
zlabel('Probability Density')

u1 = linspace(1e-3,1-1e-3,50);
u2 = linspace(1e-3,1-1e-3,50);
[U1,U2] = meshgrid(u1,u2);
F = copulacdf('t',[U1(:) U2(:)],Rho,5);
F = reshape(F,size(U1));

surf(u1,u2,F,'FaceColor','interp','EdgeColor','none')
view([-15,20])
xlabel('U1')
ylabel('U2')
zlabel('Cumulative Probability')
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A different family of copulas can be constructed by starting from a bivariate t
distribution and transforming using the corresponding t cdf. The bivariate t
distribution is parameterized with P, the linear correlation matrix, and ν, the
degrees of freedom. Thus, for example, you can speak of a t1 or a t5 copula,
based on the multivariate t with one and five degrees of freedom, respectively.

Just as for Gaussian copulas, Statistics Toolbox functions for t copulas
compute:

• Probability density functions (copulapdf) and the cumulative distribution
functions (copulacdf) for Gaussian copulas

• Rank correlations from linear correlations (copulastat) and vice versa
(copulaparam)

• Random vectors (copularnd)

• Parameters for copulas fit to data (copulafit)
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For example, use the copularnd function to create scatter plots of random
values from a bivariate t1 copula for various levels of ρ, to illustrate the range
of different dependence structures:

n = 500;
nu = 1;

U = copularnd('t',[1 .8; .8 1],nu,n);
subplot(2,2,1)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = 0.8')
xlabel('U1')
ylabel('U2')

U = copularnd('t',[1 .1; .1 1],nu,n);
subplot(2,2,2)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = 0.1')
xlabel('U1')
ylabel('U2')

U = copularnd('t',[1 -.1; -.1 1],nu,n);
subplot(2,2,3)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = -0.1')
xlabel('U1')
ylabel('U2')

U = copularnd('t',[1 -.8; -.8 1],nu, n);
subplot(2,2,4)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = -0.8')
xlabel('U1')
ylabel('U2')
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A t copula has uniform marginal distributions for U1 and U2, just as a
Gaussian copula does. The rank correlation τ or ρs between components in a t
copula is also the same function of ρ as for a Gaussian. However, as these plots
demonstrate, a t1 copula differs quite a bit from a Gaussian copula, even when
their components have the same rank correlation. The difference is in their
dependence structure. Not surprisingly, as the degrees of freedom parameter
ν is made larger, a tν copula approaches the corresponding Gaussian copula.

As with a Gaussian copula, any marginal distributions can be imposed over
a t copula. For example, using a t copula with 1 degree of freedom, you can
again generate random vectors from a bivariate distribution with Gamma(2,1)
and t5 marginals using copularnd:

n = 1000;
rho = .7;
nu = 1;
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U = copularnd('t',[1 rho; rho 1],nu,n);
X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)];

scatterhist(X(:,1),X(:,2))

Compared to the bivariate Gamma/t distribution constructed earlier, which
was based on a Gaussian copula, the distribution constructed here, based on a
t1 copula, has the same marginal distributions and the same rank correlation
between variables but a very different dependence structure. This illustrates
the fact that multivariate distributions are not uniquely defined by their
marginal distributions, or by their correlations. The choice of a particular
copula in an application may be based on actual observed data, or different
copulas may be used as a way of determining the sensitivity of simulation
results to the input distribution.

Higher Dimension Copulas
The Gaussian and t copulas are known as elliptical copulas. It is easy to
generalize elliptical copulas to a higher number of dimensions. For example,
simulate data from a trivariate distribution with Gamma(2,1), Beta(2,2), and
t5 marginals using a Gaussian copula and copularnd, as follows:
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n = 1000;
Rho = [1 .4 .2; .4 1 -.8; .2 -.8 1];
U = copularnd('Gaussian',Rho,n);
X = [gaminv(U(:,1),2,1) betainv(U(:,2),2,2) tinv(U(:,3),5)];

subplot(1,1,1)
plot3(X(:,1),X(:,2),X(:,3),'.')
grid on
view([-55, 15])
xlabel('X1')
ylabel('X2')
zlabel('X3')

Notice that the relationship between the linear correlation parameter ρ and,
for example, Kendall’s τ, holds for each entry in the correlation matrix P
used here. You can verify that the sample rank correlations of the data are
approximately equal to the theoretical values:

tauTheoretical = 2.*asin(Rho)./pi
tauTheoretical =
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1 0.26198 0.12819
0.26198 1 -0.59033
0.12819 -0.59033 1

tauSample = corr(X,'type','Kendall')
tauSample =

1 0.27254 0.12701
0.27254 1 -0.58182
0.12701 -0.58182 1

Archimedean Copulas
Statistics Toolbox functions are available for three bivariate Archimedean
copula families:

• Clayton copulas

• Frank copulas

• Gumbel copulas

These are one-parameter families that are defined directly in terms of their
cdfs, rather than being defined constructively using a standard multivariate
distribution.

To compare these three Archimedean copulas to the Gaussian and t bivariate
copulas, first use the copulastat function to find the rank correlation for
a Gaussian or t copula with linear correlation parameter of 0.8, and then
use the copulaparam function to find the Clayton copula parameter that
corresponds to that rank correlation:

tau = copulastat('Gaussian',.8 ,'type','kendall')
tau =

0.59033

alpha = copulaparam('Clayton',tau,'type','kendall')
alpha =

2.882

Finally, plot a random sample from the Clayton copula with copularnd.
Repeat the same procedure for the Frank and Gumbel copulas:
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n = 500;

U = copularnd('Clayton',alpha,n);
subplot(3,1,1)
plot(U(:,1),U(:,2),'.');
title(['Clayton Copula, {\it\alpha} = ',sprintf('%0.2f',alpha)])
xlabel('U1')
ylabel('U2')

alpha = copulaparam('Frank',tau,'type','kendall');
U = copularnd('Frank',alpha,n);
subplot(3,1,2)
plot(U(:,1),U(:,2),'.')
title(['Frank Copula, {\it\alpha} = ',sprintf('%0.2f',alpha)])
xlabel('U1')
ylabel('U2')

alpha = copulaparam('Gumbel',tau,'type','kendall');
U = copularnd('Gumbel',alpha,n);
subplot(3,1,3)
plot(U(:,1),U(:,2),'.')
title(['Gumbel Copula, {\it\alpha} = ',sprintf('%0.2f',alpha)])
xlabel('U1')
ylabel('U2')
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Simulating Dependent Multivariate Data Using Copulas
To simulate dependent multivariate data using a copula, you must specify
each of the following:
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• The copula family (and any shape parameters)

• The rank correlations among variables

• Marginal distributions for each variable

Suppose you have return data for two stocks and want to run a Monte Carlo
simulation with inputs that follow the same distributions as the data:

load stockreturns
nobs = size(stocks,1);

subplot(2,1,1)
hist(stocks(:,1),10)
xlim([-3.5 3.5])
xlabel('X1')
ylabel('Frequency')
set(get(gca,'Children'),'FaceColor',[.8 .8 1])

subplot(2,1,2)
hist(stocks(:,2),10)
xlim([-3.5 3.5])
xlabel('X2')
ylabel('Frequency')
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
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You could fit a parametric model separately to each dataset, and use those
estimates as the marginal distributions. However, a parametric model may
not be sufficiently flexible. Instead, you can use a nonparametric model
to transform to the marginal distributions. All that is needed is a way to
compute the inverse cdf for the nonparametric model.

The simplest nonparametric model is the empirical cdf, as computed by the
ecdf function. For a discrete marginal distribution, this is appropriate.
However, for a continuous distribution, use a model that is smoother than
the step function computed by ecdf. One way to do that is to estimate
the empirical cdf and interpolate between the midpoints of the steps with
a piecewise linear function. Another way is to use kernel smoothing with
ksdensity. For example, compare the empirical cdf to a kernel smoothed cdf
estimate for the first variable:
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[Fi,xi] = ecdf(stocks(:,1));

stairs(xi,Fi,'b','LineWidth',2)
hold on

Fi_sm = ksdensity(stocks(:,1),xi,'function','cdf','width',.15);

plot(xi,Fi_sm,'r-','LineWidth',1.5)
xlabel('X1')
ylabel('Cumulative Probability')
legend('Empirical','Smoothed','Location','NW')
grid on

For the simulation, experiment with different copulas and correlations.
Here, you will use a bivariate t copula with a fairly small degrees of freedom
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parameter. For the correlation parameter, you can compute the rank
correlation of the data, and then find the corresponding linear correlation
parameter for the t copula using copulaparam:

nu = 5;

tau = corr(stocks(:,1),stocks(:,2),'type','kendall')
tau =

0.51798

rho = copulaparam('t', tau, nu, 'type','kendall')
rho =

0.72679

Next, use copularnd to generate random values from the t copula and
transform using the nonparametric inverse cdfs. The ksdensity function
allows you to make a kernel estimate of distribution and evaluate the inverse
cdf at the copula points all in one step:

n = 1000;

U = copularnd('t',[1 rho; rho 1],nu,n);
X1 = ksdensity(stocks(:,1),U(:,1),...

'function','icdf','width',.15);
X2 = ksdensity(stocks(:,2),U(:,2),...

'function','icdf','width',.15);

Alternatively, when you have a large amount of data or need to simulate more
than one set of values, it may be more efficient to compute the inverse cdf
over a grid of values in the interval (0,1) and use interpolation to evaluate it
at the copula points:

p = linspace(0.00001,0.99999,1000);
G1 = ksdensity(stocks(:,1),p,'function','icdf','width',0.15);
X1 = interp1(p,G1,U(:,1),'spline');
G2 = ksdensity(stocks(:,2),p,'function','icdf','width',0.15);
X2 = interp1(p,G2,U(:,2),'spline');

scatterhist(X1,X2)
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The marginal histograms of the simulated data are a smoothed version of the
histograms for the original data. The amount of smoothing is controlled by
the bandwidth input to ksdensity.

Example: Fitting Copulas to Data
The copulafit function is used to calibrate copulas with data. To generate
data Xsim with a distribution “just like” (in terms of marginal distributions
and correlations) the distribution of data in the matrix X:

1 Fit marginal distributions to the columns of X.

2 Use appropriate cdf functions to transform X to U, so that U has values
between 0 and 1.

3 Use copulafit to fit a copula to U.

4 Generate new data Usim from the copula.
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5 Use appropriate inverse cdf functions to transform Usim to Xsim.

The following example illustrates the procedure.

Load and plot simulated stock return data:

load stockreturns
x = stocks(:,1);
y = stocks(:,2);

scatterhist(x,y)

Transform the data to the copula scale (unit square) using a kernel estimator
of the cumulative distribution function:
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u = ksdensity(x,x,'function','cdf');
v = ksdensity(y,y,'function','cdf');

scatterhist(u,v)
xlabel('u')
ylabel('v')

Fit a t copula:

[Rho,nu] = copulafit('t',[u v],'Method','ApproximateML')
Rho =

1.0000 0.7220
0.7220 1.0000

nu =
2.8934e+006

5-138



Probability Distributions Used for Multivariate Modeling

Generate a random sample from the t copula:

r = copularnd('t',Rho,nu,1000);
u1 = r(:,1);
v1 = r(:,2);

scatterhist(u1,v1)
xlabel('u')
ylabel('v')
set(get(gca,'children'),'marker','.')

Transform the random sample back to the original scale of the data:

x1 = ksdensity(u,u1,'function','icdf');
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y1 = ksdensity(v,v1,'function','icdf');

scatterhist(x1,y1)
set(get(gca,'children'),'marker','.')

As the example illustrates, copulas integrate naturally with other distribution
fitting functions.
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6 Random Number Generation

Generating Random Data
Pseudorandom numbers are generated by deterministic algorithms. They are
"random" in the sense that, on average, they pass statistical tests regarding
their distribution and correlation. They differ from true random numbers in
that they are generated by an algorithm, rather than a truly random process.

Random number generators (RNGs) like those in MATLAB are algorithms for
generating pseudorandom numbers with a specified distribution.

For more information on random number generators for supported
distributions, see “Random Number Generators” on page 5-81.

For more information on the GUI for generating random numbers from
supported distributions, see “Visually Exploring Random Number Generation”
on page 5-49.
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Random Number Generation Functions
The following table lists the supported distributions and their respective
random number generation functions. For more information on other
functions for each distribution, see “Supported Distributions” on page 5-3.
For more information on random number generators, see “Random Number
Generators” on page 5-81.

Distribution Random Number Generation Function

Beta betarnd, random, randtool

Binomial binornd, random, randtool

Chi-square chi2rnd, random, randtool

Clayton copula copularnd

Exponential exprnd, random, randtool

Extreme value evrnd, random, randtool

F frnd, random, randtool

Frank copula copularnd

Gamma gamrnd, randg, random, randtool

Gaussian copula copularnd

Gaussian mixture random

Generalized extreme
value

gevrnd, random, randtool

Generalized Pareto gprnd, random, randtool

Geometric geornd, random, randtool

Gumbel copula copularnd

Hypergeometric hygernd, random

Inverse Wishart iwishrnd

Johnson system johnsrnd

Lognormal lognrnd, random, randtool

Multinomial mnrnd
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Distribution Random Number Generation Function

Multivariate normal mvnrnd

Multivariate t mvtrnd

Negative binomial nbinrnd, random, randtool

Noncentral chi-square ncx2rnd, random, randtool

Noncentral F ncfrnd, random, randtool

Noncentral t nctrnd, random, randtool

Normal (Gaussian) normrnd, randn, random, randtool

Pearson system pearsrnd

Piecewise random

Poisson poissrnd, random, randtool

Rayleigh raylrnd, random, randtool

Student’s t trnd, random, randtool

t copula copularnd

Uniform (continuous) unifrnd, rand, random

Uniform (discrete) unidrnd, random, randtool

Weibull wblrnd, random

Wishart wishrnd

6-4



Common Generation Methods

Common Generation Methods

In this section...

“Direct Methods” on page 6-5

“Inversion Methods” on page 6-7

“Acceptance-Rejection Methods” on page 6-9

Methods for generating pseudorandom numbers usually start with uniform
random numbers, like the MATLAB rand function produces. The methods
described in this section detail how to produce random numbers from other
distributions.

Direct Methods
Direct methods directly use the definition of the distribution.

For example, consider binomial random numbers. A binomial random number
is the number of heads in N tosses of a coin with probability p of a heads on
any single toss. If you generate N uniform random numbers on the interval
(0,1) and count the number less than p, then the count is a binomial random
number with parameters N and p.

This function is a simple implementation of a binomial RNG using the direct
approach:

function X = directbinornd(N,p,m,n)

X = zeros(m,n); % Preallocate memory
for i = 1:m*n

u = rand(N,1);
X(i) = sum(u < p);

end

For example:

X = directbinornd(100,0.3,1e4,1);
hist(X,101)
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
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The Statistics Toolbox function binornd uses a modified direct method, based
on the definition of a binomial random variable as the sum of Bernoulli
random variables.

You can easily convert the previous method to a random number generator
for the Poisson distribution with parameter λ. The Poisson distribution is
the limiting case of the binomial distribution as N approaches infinity, p
approaches zero, and Np is held fixed at λ. To generate Poisson random
numbers, create a version of the previous generator that inputs λ rather than
N and p, and internally sets N to some large number and p to λ / N.

The Statistics Toolbox function poissrnd actually uses two direct methods:

• A waiting time method for small values of λ

• Amethod due to Ahrens and Dieter for larger values of λ
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Inversion Methods
Inversion methods are based on the observation that continuous cumulative
distribution functions (cdfs) range uniformly over the interval (0,1). If u is a
uniform random number on (0,1), then using X = F -1(U) generates a random
number X from a continuous distribution with specified cdf F.

For example, the following code generates random numbers from a specific
exponential distribution using the inverse cdf and the MATLAB uniform
random number generator rand:

mu = 1;
X = expinv(rand(1e4,1),mu);

Compare the distribution of the generated random numbers to the pdf of the
specified exponential by scaling the pdf to the area of the histogram used
to display the distribution:

numbins = 50;
hist(X,numbins)
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
hold on

[bincounts,binpositions] = hist(X,numbins);
binwidth = binpositions(2) - binpositions(1);
histarea = binwidth*sum(bincounts);

x = binpositions(1):0.001:binpositions(end);
y = exppdf(x,mu);
plot(x,histarea*y,'r','LineWidth',2)
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Inversion methods also work for discrete distributions. To generate a random
number X from a discrete distribution with probability mass vector P(X = xi) =
pi where x0 < x1 < x2 < ... , generate a uniform random number u on (0,1) and
then set X = xi if F(xi–1) < u < F(xi).

For example, the following function implements an inversion method for a
discrete distribution with probability mass vector p:

function X = discreteinvrnd(p,m,n)

X = zeros(m,n); % Preallocate memory
for i = 1:m*n

u = rand;
I = find(u < cumsum(p));
X(i) = min(I);

end

Use the function to generate random numbers from any discrete distribution:

6-8



Common Generation Methods

p = [0.1 0.2 0.3 0.2 0.1 0.1]; % Probability mass vector
X = discreteinvrnd(p,1e4,1);
[n,x] = hist(X,length(p));
bar(1:length(p),n)
set(get(gca,'Children'),'FaceColor',[.8 .8 1])

Acceptance-Rejection Methods
The functional form of some distributions makes it difficult or time-consuming
to generate random numbers using direct or inversion methods.
Acceptance-rejection methods provide an alternative in these cases.

Acceptance-rejection methods begin with uniform random numbers, but
require an additional random number generator. If your goal is to generate a
random number from a continuous distribution with pdf f, acceptance-rejection
methods first generate a random number from a continuous distribution with
pdf g satisfying f (x) ≤ cg (x) for some c and all x.
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A continuous acceptance-rejection RNG proceeds as follows:

1 Chooses a density g.

2 Finds a constant c such that f (x) / g (x) ≤ c for all x.

3 Generates a uniform random number u.

4 Generates a random number v from g.

5 If c*u ≤ f (v) / g (v), accepts and returns v.

6 Otherwise, rejects v and goes to step 3.

For efficiency, a “cheap” method is necessary for generating random numbers
from g, and the scalar c should be small. The expected number of iterations to
produce a single random number is c.

The following function implements an acceptance-rejection method for
generating random numbers from pdf f, given f, g, the RNG grnd for g, and
the constant c:
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function X = accrejrnd(f,g,grnd,c,m,n)

X = zeros(m,n); % Preallocate memory
for i = 1:m*n

accept = false;
while accept == false

u = rand();
v = grnd();
if c*u <= f(v)/g(v)

X(i) = v;
accept = true;

end
end

end

For example, the function f (x) = xe–x2/2 satisfies the conditions for a pdf on
[0,∞) (nonnegative and integrates to 1). The exponential pdf with mean 1, f (x)
= e–x, dominates g for c greater than about 2.2. Thus, you can use rand and
exprnd to generate random numbers from f:

f = @(x)x.*exp(-(x.^2)/2);
g = @(x)exp(-x);
grnd = @()exprnd(1);
X = accrejrnd(f,g,grnd,2.2,1e4,1);

The pdf f is actually a Rayleigh distribution with shape parameter 1. This
example compares the distribution of random numbers generated by the
acceptance-rejection method with those generated by raylrnd:

Y = raylrnd(1,1e4,1);
hist([X Y])
h = get(gca,'Children');
set(h(1),'FaceColor',[.8 .8 1])
legend('A-R RNG','Rayleigh RNG')
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The Statistics Toolbox function raylrnd uses a transformation method,
expressing a Rayleigh random variable in terms of a chi-square random
variable, which you compute using randn.

Acceptance-rejection methods also work for discrete distributions. In this case,
the goal is to generate random numbers from a distribution with probability
mass Pp(X = i) = pi, assuming that you have a method for generating random
numbers from a distribution with probability mass Pq(X = i) = qi. The RNG
proceeds as follows:

1 Chooses a density Pq.

2 Finds a constant c such that pi / qi ≤ c for all i .

3 Generates a uniform random number u.

4 Generates a random number v from Pq.

5 If c*u ≤ pv / qv, accepts and returns v.

6 Otherwise, rejects v and goes to step 3.
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Parallel Computing Support for Random Number
Generation

In this section...

“What is Parallel Computing?” on page 6-13

“Reproducing Computations” on page 6-13

“Assigning Random Number Generators” on page 6-14

What is Parallel Computing?
Parallel computing is the technique of using multiple processors on a single
problem. The primary reason to use parallel computing is to shorten the
computation time.

The following functions use random number generators and support both
parallel and serial computation. They supply two options to control random
number generation, whether in serial and parallel mode.

• bootci

• bootstrp

• TreeBagger

• TreeBagger.growTrees

Reproducing Computations
The previous functions include the 'UseSubstreams' option. This option
provides a quick and easy way to reproduce computations performed using
random number generators. Use this option to rerun a command with
reproducible results, whether using serial or parallel computation. This
option is available only with RandStream types that support substreams. The
default is not to use substreams, since reproducing random number streams
is not commonly desired.
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Assigning Random Number Generators
The previous functions also include the 'Streams' option. use 'Streams' to
assign specific random number streams to each processor used in the function
evaluation, both in serial and parallel mode. The default is to use the default
random number stream on each processor. The option can be used to control
statistical behavior in your code and in function libraries that you use.

For more information on each of these options, see the function reference
pages.
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Representing Sampling Distributions Using Markov Chain
Samplers

In this section...

“Using the Metropolis-Hastings Algorithm” on page 6-15

“Using Slice Sampling” on page 6-16

The methods in “Common Generation Methods” on page 6-5 might be
inadequate when sampling distributions are difficult to represent in
computations. Such distributions arise, for example, in Bayesian data
analysis and in the large combinatorial problems of Markov chain Monte
Carlo (MCMC) simulations. An alternative is to construct a Markov chain
with a stationary distribution equal to the target sampling distribution, using
the states of the chain to generate random numbers after an initial burn-in
period in which the state distribution converges to the target.

Using the Metropolis-Hastings Algorithm
The Metropolis-Hastings algorithm draws samples from a distribution that
is only known up to a constant. Random numbers are generated from a
distribution with a probability density function that is equal to or proportional
to a proposal function.

To generate random numbers:

1 Assume an initial value x(t).

2 Draw a sample, y(t), from a proposal distribution q(y | x(t)).

3 Accept y(t) as the next sample x(t+1) with probability r(x(t),y(t)), and keep
x(t) as the next sample x(t+1) with probability 1–r(x(t),y(t)), where:

r x y min
f y
f x

q x y
q y x

( , )
( )
( )

( | )
( | )

,= 1
⎧
⎨
⎩

⎫
⎬
⎭

4 Increment t → t+1, and repeat steps 2 and 3 until you get the desired
number of samples.
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Generate random numbers using the Metropolis-Hastings method with
the mhsample function. To produce quality samples efficiently with the
Metropolis-Hastings algorithm, it is crucial to select a good proposal
distribution. If it is difficult to find an efficient proposal distribution, use
the slice sampling algorithm (slicesample) without explicitly specifying a
proposal distribution.

Using Slice Sampling
In instances where it is difficult to find an efficient Metropolis-Hastings
proposal distribution, the slice sampling algorithm does not require an explicit
specification. The slice sampling algorithm draws samples from the region
under the density function using a sequence of vertical and horizontal steps.
First, it selects a height at random from 0 to the density function f (x). Then,
it selects a new x value at random by sampling from the horizontal “slice” of
the density above the selected height. A similar slice sampling algorithm is
used for a multivariate distribution.

If a function f (x) proportional to the density function is given, then do the
following to generate random numbers:

1 Assume an initial value x(t) within the domain of f (x).

2 Draw a real value y uniformly from (0,f (x(t))), thereby defining a horizontal
“slice” as S = {x: y < f (x)}.

3 Find an interval I = (L,R) around x(t) that contains all, or much of the
“slice” S.

4 Draw the new point x(t+1) within this interval.

5 Increment t→ t+1 and repeat steps 2 through 4 until you get the desired
number of samples.

Slice sampling can generate random numbers from a distribution with an
arbitrary form of the density function, provided that an efficient numerical
procedure is available to find the interval I = (L,R), which is the “slice” of
the density.

Generate random numbers using the slice sampling method with the
slicesample function.
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Generating Quasi-Random Numbers

In this section...

“Quasi-Random Sequences” on page 6-17

“Quasi-Random Point Sets” on page 6-18

“Quasi-Random Streams” on page 6-24

Quasi-Random Sequences
Quasi-random number generators (QRNGs) produce highly uniform samples
of the unit hypercube. QRNGs minimize the discrepancy between the
distribution of generated points and a distribution with equal proportions of
points in each sub-cube of a uniform partition of the hypercube. As a result,
QRNGs systematically fill the “holes” in any initial segment of the generated
quasi-random sequence.

Unlike the pseudorandom sequences described in “Common Generation
Methods” on page 6-5, quasi-random sequences fail many statistical tests for
randomness. Approximating true randomness, however, is not their goal.
Quasi-random sequences seek to fill space uniformly, and to do so in such a
way that initial segments approximate this behavior up to a specified density.

QRNG applications include:

• Quasi-Monte Carlo (QMC) integration. Monte Carlo techniques are
often used to evaluate difficult, multi-dimensional integrals without a
closed-form solution. QMC uses quasi-random sequences to improve the
convergence properties of these techniques.

• Space-filling experimental designs. In many experimental settings,
taking measurements at every factor setting is expensive or infeasible.
Quasi-random sequences provide efficient, uniform sampling of the design
space.

• Global optimization. Optimization algorithms typically find a local
optimum in the neighborhood of an initial value. By using a quasi-random
sequence of initial values, searches for global optima uniformly sample the
basins of attraction of all local minima.
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Quasi-Random Point Sets
Statistics Toolbox functions support these quasi-random sequences:

• Halton sequences. Produced by the haltonset function. These sequences
use different prime bases to form successively finer uniform partitions of
the unit interval in each dimension.

• Sobol sequences. Produced by the sobolset function. These sequences
use a base of 2 to form successively finer uniform partitions of the unit
interval, and then reorder the coordinates in each dimension.

• Latin hypercube sequences. Produced by the lhsdesign function.
Though not quasi-random in the sense of minimizing discrepancy,
these sequences nevertheless produce sparse uniform samples useful in
experimental designs.

Quasi-random sequences are functions from the positive integers to the unit
hypercube. To be useful in application, an initial point set of a sequence must
be generated. Point sets are matrices of size n-by-d, where n is the number of
points and d is the dimension of the hypercube being sampled. The functions
haltonset and sobolset construct point sets with properties of a specified
quasi-random sequence. Initial segments of the point sets are generated by
the net method of the qrandset class (parent class of the haltonset class
and sobolset class), but points can be generated and accessed more generally
using parenthesis indexing.

Because of the way in which quasi-random sequences are generated, they
may contain undesirable correlations, especially in their initial segments, and
especially in higher dimensions. To address this issue, quasi-random point
sets often skip, leap over, or scramble values in a sequence. The haltonset
and sobolset functions allow you to specify both a Skip and a Leap property
of a quasi-random sequence, and the scramble method of the qrandset class
allows you apply a variety of scrambling techniques. Scrambling reduces
correlations while also improving uniformity.

Example: Generate a Quasi-Random Point Set
This example uses haltonset to construct a 2-D Halton point set—an object,
p, of the haltonset class—that skips the first 1000 values of the sequence
and then retains every 101st point:
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p = haltonset(2,'Skip',1e3,'Leap',1e2)
p =

Halton point set in 2 dimensions (8.918019e+013 points)
Properties:

Skip : 1000
Leap : 100

ScrambleMethod : none

The object p encapsulates properties of the specified quasi-random sequence.
The point set is finite, with a length determined by the Skip and Leap
properties and by limits on the size of point set indices (maximum value of 253).

Use scramble to apply reverse-radix scrambling:

p = scramble(p,'RR2')
p =

Halton point set in 2 dimensions (8.918019e+013 points)
Properties:

Skip : 1000
Leap : 100

ScrambleMethod : RR2

Use net to generate the first 500 points:

X0 = net(p,500);

This is equivalent to:

X0 = p(1:500,:);

Values of the point set X0 are not generated and stored in memory until you
access p using net or parenthesis indexing.

To appreciate the nature of quasi-random numbers, create a scatter of the
two dimensions in X0:

scatter(X0(:,1),X0(:,2),5,'r')
axis square
title('{\bf Quasi-Random Scatter}')
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Compare this to a scatter of uniform pseudorandom numbers generated by
the MATLAB rand function:

X = rand(500,2);

scatter(X(:,1),X(:,2),5,'b')
axis square
title('{\bf Uniform Random Scatter}')
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The quasi-random scatter appears more uniform, avoiding the clumping in
the pseudorandom scatter.

In a statistical sense, quasi-random numbers are too uniform to pass
traditional tests of randomness. For example, a Kolmogorov-Smirnov test,
performed by kstest, is used to assess whether or not a point set has a
uniform random distribution. When performed repeatedly on uniform
pseudorandom samples, such as those generated by rand, the test produces
a uniform distribution of p-values:

nTests = 1e5;
sampSize = 50;
PVALS = zeros(nTests,1);
for test = 1:nTests

x = rand(sampSize,1);
[h,pval] = kstest(x,[x,x]);
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PVALS(test) = pval;
end

hist(PVALS,100)
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
xlabel('{\it p}-values')
ylabel('Number of Tests')

The results are quite different when the test is performed repeatedly on
uniform quasi-random samples:

p = haltonset(1,'Skip',1e3,'Leap',1e2);
p = scramble(p,'RR2');

nTests = 1e5;
sampSize = 50;
PVALS = zeros(nTests,1);
for test = 1:nTests

6-22



Generating Quasi-Random Numbers

x = p(test:test+(sampSize-1),:);
[h,pval] = kstest(x,[x,x]);
PVALS(test) = pval;

end

hist(PVALS,100)
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
xlabel('{\it p}-values')
ylabel('Number of Tests')

Small p-values call into question the null hypothesis that the data are
uniformly distributed. If the hypothesis is true, about 5% of the p-values are
expected to fall below 0.05. The results are remarkably consistent in their
failure to challenge the hypothesis.
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Quasi-Random Streams
Quasi-random streams, produced by the qrandstream function, are used
to generate sequential quasi-random outputs, rather than point sets of a
specific size. Streams are used like pseudoRNGS, such as rand, when client
applications require a source of quasi-random numbers of indefinite size that
can be accessed intermittently. Properties of a quasi-random stream, such
as its type (Halton or Sobol), dimension, skip, leap, and scramble, are set
when the stream is constructed.

In implementation, quasi-random streams are essentially very large
quasi-random point sets, though they are accessed differently. The state of a
quasi-random stream is the scalar index of the next point to be taken from the
stream. Use the qrand method of the qrandstream class to generate points
from the stream, starting from the current state. Use the reset method to
reset the state to 1. Unlike point sets, streams do not support parenthesis
indexing.

Example: Generate a Quasi-Random Stream
For example, the following code, taken from the example at the end of
“Quasi-Random Point Sets” on page 6-18, uses haltonset to create a
quasi-random point set p, and then repeatedly increments the index into the
point set, test, to generate different samples:

p = haltonset(1,'Skip',1e3,'Leap',1e2);
p = scramble(p,'RR2');

nTests = 1e5;
sampSize = 50;
PVALS = zeros(nTests,1);
for test = 1:nTests

x = p(test:test+(sampSize-1),:);
[h,pval] = kstest(x,[x,x]);
PVALS(test) = pval;

end

The same results are obtained by using qrandstream to construct a
quasi-random stream q based on the point set p and letting the stream take
care of increments to the index:
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p = haltonset(1,'Skip',1e3,'Leap',1e2);
p = scramble(p,'RR2');
q = qrandstream(p)

nTests = 1e5;
sampSize = 50;
PVALS = zeros(nTests,1);
for test = 1:nTests

X = qrand(q,sampSize);
[h,pval] = kstest(X,[X,X]);
PVALS(test) = pval;

end
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Generating Data Using Flexible Families of Distributions

In this section...

“Pearson and Johnson Systems” on page 6-26

“Generating Data Using the Pearson System” on page 6-27

“Generating Data Using the Johnson System” on page 6-29

Pearson and Johnson Systems
As described in “Using Probability Distributions” on page 5-2, choosing an
appropriate parametric family of distributions to model your data can be
based on a priori or a posteriori knowledge of the data-producing process,
but the choice is often difficult. The Pearson and Johnson systems can make
such a choice unnecessary. Each system is a flexible parametric family of
distributions that includes a wide range of distribution shapes, and it is often
possible to find a distribution within one of these two systems that provides
a good match to your data.

Data Input
The following parameters define each member of the Pearson and Johnson
systems

• Mean — Estimated by mean

• Standard deviation — Estimated by std

• Skewness — Estimated by skewness

• Kurtosis — Estimated by kurtosis

These statistics can also be computed with the moment function. The Johnson
system, while based on these four parameters, is more naturally described
using quantiles, estimated by the quantile function.

The Statistics Toolbox functions pearsrnd and johnsrnd take input
arguments defining a distribution (parameters or quantiles, respectively) and
return the type and the coefficients of the distribution in the corresponding
system. Both functions also generate random numbers from the specified
distribution.
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As an example, load the data in carbig.mat, which includes a variable MPG
containing measurements of the gas mileage for each car.

load carbig
MPG = MPG(~isnan(MPG));
[n,x] = hist(MPG,15);
bar(x,n)
set(get(gca,'Children'),'FaceColor',[.8 .8 1])

The following two sections model the distribution with members of the
Pearson and Johnson systems, respectively.

Generating Data Using the Pearson System
The statistician Karl Pearson devised a system, or family, of distributions
that includes a unique distribution corresponding to every valid combination
of mean, standard deviation, skewness, and kurtosis. If you compute sample
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values for each of these moments from data, it is easy to find the distribution
in the Pearson system that matches these four moments and to generate a
random sample.

The Pearson system embeds seven basic types of distribution together in
a single parametric framework. It includes common distributions such
as the normal and t distributions, simple transformations of standard
distributions such as a shifted and scaled beta distribution and the inverse
gamma distribution, and one distribution—the Type IV—that is not a simple
transformation of any standard distribution.

For a given set of moments, there are distributions that are not in the system
that also have those same first four moments, and the distribution in the
Pearson system may not be a good match to your data, particularly if the
data are multimodal. But the system does cover a wide range of distribution
shapes, including both symmetric and skewed distributions.

To generate a sample from the Pearson distribution that closely matches
the MPG data, simply compute the four sample moments and treat those as
distribution parameters.

moments = {mean(MPG),std(MPG),skewness(MPG),kurtosis(MPG)};
[r,type] = pearsrnd(moments{:},10000,1);

The optional second output from pearsrnd indicates which type of distribution
within the Pearson system matches the combination of moments.

type
type =

1

In this case, pearsrnd has determined that the data are best described with a
Type I Pearson distribution, which is a shifted, scaled beta distribution.

Verify that the sample resembles the original data by overlaying the empirical
cumulative distribution functions.

ecdf(MPG);
[Fi,xi] = ecdf(r);
hold on, stairs(xi,Fi,'r'); hold off
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Generating Data Using the Johnson System
Statistician Norman Johnson devised a different system of distributions that
also includes a unique distribution for every valid combination of mean,
standard deviation, skewness, and kurtosis. However, since it is more natural
to describe distributions in the Johnson system using quantiles, working with
this system is different than working with the Pearson system.

The Johnson system is based on three possible transformations of a normal
random variable, plus the identity transformation. The three nontrivial cases
are known as SL, SU, and SB, corresponding to exponential, logistic, and
hyperbolic sine transformations. All three can be written as

Χ Γ
Ζ

 =  + (
( - )

)γ δ
ξ

λ
⋅
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where Z is a standard normal random variable, Γ is the transformation, and
γ, δ, ξ, and λ are scale and location parameters. The fourth case, SN, is the
identity transformation.

To generate a sample from the Johnson distribution that matches the MPG
data, first define the four quantiles to which the four evenly spaced standard
normal quantiles of -1.5, -0.5, 0.5, and 1.5 should be transformed. That is, you
compute the sample quantiles of the data for the cumulative probabilities of
0.067, 0.309, 0.691, and 0.933.

probs = normcdf([-1.5 -0.5 0.5 1.5])
probs =

0.066807 0.30854 0.69146 0.93319

quantiles = quantile(MPG,probs)
quantiles =

13.0000 18.0000 27.2000 36.0000

Then treat those quantiles as distribution parameters.

[r1,type] = johnsrnd(quantiles,10000,1);

The optional second output from johnsrnd indicates which type of distribution
within the Johnson system matches the quantiles.

type
type =
SB

You can verify that the sample resembles the original data by overlaying the
empirical cumulative distribution functions.

ecdf(MPG);
[Fi,xi] = ecdf(r1);
hold on, stairs(xi,Fi,'r'); hold off
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In some applications, it may be important to match the quantiles better in
some regions of the data than in others. To do that, specify four evenly spaced
standard normal quantiles at which you want to match the data, instead
of the default -1.5, -0.5, 0.5, and 1.5. For example, you might care more
about matching the data in the right tail than in the left, and so you specify
standard normal quantiles that emphasizes the right tail.

qnorm = [-.5 .25 1 1.75];
probs = normcdf(qnorm);
qemp = quantile(MPG,probs);
r2 = johnsrnd([qnorm; qemp],10000,1);

However, while the new sample matches the original data better in the right
tail, it matches much worse in the left tail.

[Fj,xj] = ecdf(r2);
hold on, stairs(xj,Fj,'g'); hold off
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7 Hypothesis Tests

Introduction
Hypothesis testing is a common method of drawing inferences about a
population based on statistical evidence from a sample.

As an example, suppose someone says that at a certain time in the state
of Massachusetts the average price of a gallon of regular unleaded gas was
$1.15. How could you determine the truth of the statement? You could try to
find prices at every gas station in the state at the time. That approach would
be definitive, but it could be time-consuming, costly, or even impossible.

A simpler approach would be to find prices at a small number of randomly
selected gas stations around the state, and then compute the sample average.

Sample averages differ from one another due to chance variability in the
selection process. Suppose your sample average comes out to be $1.18. Is the
$0.03 difference an artifact of random sampling or significant evidence that
the average price of a gallon of gas was in fact greater than $1.15? Hypothesis
testing is a statistical method for making such decisions.
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Hypothesis Test Terminology
All hypothesis tests share the same basic terminology and structure.

• A null hypothesis is an assertion about a population that you would like to
test. It is “null” in the sense that it often represents a status quo belief,
such as the absence of a characteristic or the lack of an effect. It may be
formalized by asserting that a population parameter, or a combination of
population parameters, has a certain value. In the example given in the
“Introduction” on page 7-2, the null hypothesis would be that the average
price of gas across the state was $1.15. This is written H0: µ = 1.15.

• An alternative hypothesis is a contrasting assertion about the population
that can be tested against the null hypothesis. In the example given in the
“Introduction” on page 7-2, possible alternative hypotheses are:

H1: µ ≠ 1.15 — State average was different from $1.15 (two-tailed test)

H1: µ > 1.15 — State average was greater than $1.15 (right-tail test)

H1: µ< 1.15 — State average was less than $1.15 (left-tail test)

• To conduct a hypothesis test, a random sample from the population is
collected and a relevant test statistic is computed to summarize the sample.
This statistic varies with the type of test, but its distribution under the null
hypothesis must be known (or assumed).

• The p-value of a test is the probability, under the null hypothesis, of
obtaining a value of the test statistic as extreme or more extreme than the
value computed from the sample.

• The significance level of a test is a threshold of probability α agreed to before
the test is conducted. A typical value of α is 0.05. If the p-value of a test is
less than α, the test rejects the null hypothesis. If the p-value is greater
than α, there is insufficient evidence to reject the null hypothesis. Note
that lack of evidence for rejecting the null hypothesis is not evidence for
accepting the null hypothesis. Also note that substantive “significance” of
an alternative cannot be inferred from the statistical significance of a test.

• The significance level α can be interpreted as the probability of rejecting
the null hypothesis when it is actually true—a type I error. The distribution
of the test statistic under the null hypothesis determines the probability
α of a type I error. Even if the null hypothesis is not rejected, it may still
be false—a type II error. The distribution of the test statistic under the
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alternative hypothesis determines the probability β of a type II error. Type
II errors are often due to small sample sizes. The power of a test, 1 – β, is
the probability of correctly rejecting a false null hypothesis.

• Results of hypothesis tests are often communicated with a confidence
interval. A confidence interval is an estimated range of values with a
specified probability of containing the true population value of a parameter.
Upper and lower bounds for confidence intervals are computed from the
sample estimate of the parameter and the known (or assumed) sampling
distribution of the estimator. A typical assumption is that estimates will be
normally distributed with repeated sampling (as dictated by the Central
Limit Theorem). Wider confidence intervals correspond to poor estimates
(smaller samples); narrow intervals correspond to better estimates
(larger samples). If the null hypothesis asserts the value of a population
parameter, the test rejects the null hypothesis when the hypothesized
value lies outside the computed confidence interval for the parameter.
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Hypothesis Test Assumptions
Different hypothesis tests make different assumptions about the distribution
of the random variable being sampled in the data. These assumptions must
be considered when choosing a test and when interpreting the results.

For example, the z-test (ztest) and the t-test (ttest) both assume that
the data are independently sampled from a normal distribution. Statistics
Toolbox functions are available for testing this assumption, such as chi2gof,
jbtest, lillietest, and normplot.

Both the z-test and the t-test are relatively robust with respect to departures
from this assumption, so long as the sample size n is large enough. Both
tests compute a sample mean , which, by the Central Limit Theorem, has
an approximately normal sampling distribution with mean equal to the
population mean μ, regardless of the population distribution being sampled.

The difference between the z-test and the t-test is in the assumption of the
standard deviation σ of the underlying normal distribution. A z-test assumes
that σ is known; a t-test does not. As a result, a t-test must compute an
estimate s of the standard deviation from the sample.

Test statistics for the z-test and the t-test are, respectively,

z
x

n

t
x
s n

= −

= −





/

/

Under the null hypothesis that the population is distributed with mean μ, the
z-statistic has a standard normal distribution, N(0,1). Under the same null
hypothesis, the t-statistic has Student’s t distribution with n – 1 degrees of
freedom. For small sample sizes, Student’s t distribution is flatter and wider
than N(0,1), compensating for the decreased confidence in the estimate s.
As sample size increases, however, Student’s t distribution approaches the
standard normal distribution, and the two tests become essentially equivalent.
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Knowing the distribution of the test statistic under the null hypothesis allows
for accurate calculation of p-values. Interpreting p-values in the context of
the test assumptions allows for critical analysis of test results.

Assumptions underlying Statistics Toolbox hypothesis tests are given in the
reference pages for implementing functions.
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Example: Hypothesis Testing
This example uses the gas price data in the file gas.mat. The file contains two
random samples of prices for a gallon of gas around the state of Massachusetts
in 1993. The first sample, price1, contains 20 random observations around
the state on a single day in January. The second sample, price2, contains 20
random observations around the state one month later.

load gas
prices = [price1 price2];

As a first step, you might want to test the assumption that the samples come
from normal distributions.

A normal probability plot gives a quick idea.

normplot(prices)
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Both scatters approximately follow straight lines through the first and third
quartiles of the samples, indicating approximate normal distributions.
The February sample (the right-hand line) shows a slight departure from
normality in the lower tail. A shift in the mean from January to February is
evident.

A hypothesis test is used to quantify the test of normality. Since each sample
is relatively small, a Lilliefors test is recommended.

lillietest(price1)
ans =

0
lillietest(price2)
ans =

0

The default significance level of lillietest is 5%. The logical 0 returned by
each test indicates a failure to reject the null hypothesis that the samples are
normally distributed. This failure may reflect normality in the population or
it may reflect a lack of strong evidence against the null hypothesis due to
the small sample size.

Now compute the sample means:

sample_means = mean(prices)
sample_means =

115.1500 118.5000

You might want to test the null hypothesis that the mean price across the
state on the day of the January sample was $1.15. If you know that the
standard deviation in prices across the state has historically, and consistently,
been $0.04, then a z-test is appropriate.

[h,pvalue,ci] = ztest(price1/100,1.15,0.04)
h =

0
pvalue =

0.8668
ci =

1.1340 1.1690
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The logical output h = 0 indicates a failure to reject the null hypothesis
at the default significance level of 5%. This is a consequence of the high
probability under the null hypothesis, indicated by the p-value, of observing
a value as extreme or more extreme of the z-statistic computed from the
sample. The 95% confidence interval on the mean [1.1340 1.1690] includes
the hypothesized population mean of $1.15.

Does the later sample offer stronger evidence for rejecting a null hypothesis
of a state-wide average price of $1.15 in February? The shift shown in the
probability plot and the difference in the computed sample means suggest
this. The shift might indicate a significant fluctuation in the market, raising
questions about the validity of using the historical standard deviation. If a
known standard deviation cannot be assumed, a t-test is more appropriate.

[h,pvalue,ci] = ttest(price2/100,1.15)
h =

1
pvalue =

4.9517e-04
ci =

1.1675 1.2025

The logical output h = 1 indicates a rejection of the null hypothesis at the
default significance level of 5%. In this case, the 95% confidence interval on
the mean does not include the hypothesized population mean of $1.15.

You might want to investigate the shift in prices a little more closely.
The function ttest2 tests if two independent samples come from normal
distributions with equal but unknown standard deviations and the same
mean, against the alternative that the means are unequal.

[h,sig,ci] = ttest2(price1,price2)
h =

1
sig =

0.0083
ci =

-5.7845 -0.9155
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The null hypothesis is rejected at the default 5% significance level, and
the confidence interval on the difference of means does not include the
hypothesized value of 0.

A notched box plot is another way to visualize the shift.

boxplot(prices,1)
set(gca,'XtickLabel',str2mat('January','February'))
xlabel('Month')
ylabel('Prices ($0.01)')

The plot displays the distribution of the samples around their medians. The
heights of the notches in each box are computed so that the side-by-side
boxes have nonoverlapping notches when their medians are different at a
default 5% significance level. The computation is based on an assumption
of normality in the data, but the comparison is reasonably robust for other
distributions. The side-by-side plots provide a kind of visual hypothesis test,
comparing medians rather than means. The plot above appears to barely
reject the null hypothesis of equal medians.
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The nonparametric Wilcoxon rank sum test, implemented by the function
ranksum, can be used to quantify the test of equal medians. It tests if two
independent samples come from identical continuous (not necessarily normal)
distributions with equal medians, against the alternative that they do not
have equal medians.

[p,h] = ranksum(price1,price2)
p =

0.0095
h =

1

The test rejects the null hypothesis of equal medians at the default 5%
significance level.
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Available Hypothesis Tests

Function Description

ansaribradley Ansari-Bradley test. Tests if two independent samples
come from the same distribution, against the alternative
that they come from distributions that have the same
median and shape but different variances.

chi2gof Chi-square goodness-of-fit test. Tests if a sample comes
from a specified distribution, against the alternative
that it does not come from that distribution.

dwtest Durbin-Watson test. Tests if the residuals from a linear
regression are uncorrelated, against the alternative
that there is autocorrelation among them.

jbtest Jarque-Bera test. Tests if a sample comes from a
normal distribution with unknown mean and variance,
against the alternative that it does not come from a
normal distribution.

kstest One-sample Kolmogorov-Smirnov test. Tests if a sample
comes from a continuous distribution with specified
parameters, against the alternative that it does not
come from that distribution.

kstest2 Two-sample Kolmogorov-Smirnov test. Tests if two
samples come from the same continuous distribution,
against the alternative that they do not come from the
same distribution.

lillietest Lilliefors test. Tests if a sample comes from a
distribution in the normal family, against the
alternative that it does not come from a normal
distribution.

linhyptest Linear hypothesis test. Tests if H*b = c for parameter
estimates b with estimated covariance H and specified
c, against the alternative that H*b ≠ c.
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Function Description

ranksum Wilcoxon rank sum test. Tests if two independent
samples come from identical continuous distributions
with equal medians, against the alternative that they
do not have equal medians.

runstest Runs test. Tests if a sequence of values comes in
random order, against the alternative that the ordering
is not random.

signrank One-sample or paired-sample Wilcoxon signed rank test.
Tests if a sample comes from a continuous distribution
symmetric about a specified median, against the
alternative that it does not have that median.

signtest One-sample or paired-sample sign test. Tests if a
sample comes from an arbitrary continuous distribution
with a specified median, against the alternative that it
does not have that median.

ttest One-sample or paired-sample t-test. Tests if a sample
comes from a normal distribution with unknown
variance and a specified mean, against the alternative
that it does not have that mean.

ttest2 Two-sample t-test. Tests if two independent samples
come from normal distributions with unknown but
equal (or, optionally, unequal) variances and the same
mean, against the alternative that the means are
unequal.

vartest One-sample chi-square variance test. Tests if a sample
comes from a normal distribution with specified
variance, against the alternative that it comes from a
normal distribution with a different variance.

vartest2 Two-sample F-test for equal variances. Tests if two
independent samples come from normal distributions
with the same variance, against the alternative that
they come from normal distributions with different
variances.
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Function Description

vartestn Bartlett multiple-sample test for equal variances. Tests
if multiple samples come from normal distributions
with the same variance, against the alternative that
they come from normal distributions with different
variances.

ztest One-sample z-test. Tests if a sample comes from a
normal distribution with known variance and specified
mean, against the alternative that it does not have that
mean.

Note In addition to the previous functions, Statistics Toolbox functions are
available for analysis of variance (ANOVA), which perform hypothesis tests in
the context of linear modeling. These functions are discussed in Chapter 8,
“Analysis of Variance”.
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8 Analysis of Variance

Introduction
Analysis of variance (ANOVA) is a procedure for assigning sample variance to
different sources and deciding whether the variation arises within or among
different population groups. Samples are described in terms of variation
around group means and variation of group means around an overall mean. If
variations within groups are small relative to variations between groups, a
difference in group means may be inferred. Chapter 7, “Hypothesis Tests” are
used to quantify decisions.

This chapter treats ANOVA among groups, that is, among categorical
predictors. ANOVA for regression, with continuous predictors, is discussed in
“Tabulating Diagnostic Statistics” on page 9-13.

Multivariate analysis of variance (MANOVA), for data with multiple
measured responses, is also discussed in this chapter.
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ANOVA

In this section...

“One-Way ANOVA” on page 8-3

“Two-Way ANOVA” on page 8-9

“N-Way ANOVA” on page 8-12

“Other ANOVA Models” on page 8-26

“Analysis of Covariance” on page 8-27

“Nonparametric Methods” on page 8-35

One-Way ANOVA

• “Introduction” on page 8-3

• “Example: One-Way ANOVA” on page 8-4

• “Multiple Comparisons” on page 8-6

• “Example: Multiple Comparisons” on page 8-7

Introduction
The purpose of one-way ANOVA is to find out whether data from several
groups have a common mean. That is, to determine whether the groups are
actually different in the measured characteristic.

One-way ANOVA is a simple special case of the linear model. The one-way
ANOVA form of the model is

where:

• yij is a matrix of observations in which each column represents a different
group.
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• α.j is a matrix whose columns are the group means. (The “dot j” notation
means that α applies to all rows of column j. That is, the value αij is the
same for all i.)

• εij is a matrix of random disturbances.

The model assumes that the columns of y are a constant plus a random
disturbance. You want to know if the constants are all the same.

Example: One-Way ANOVA
The data below comes from a study by Hogg and Ledolter [46] of bacteria
counts in shipments of milk. The columns of the matrix hogg represent
different shipments. The rows are bacteria counts from cartons of milk chosen
randomly from each shipment. Do some shipments have higher counts than
others?

load hogg
hogg
hogg =

24 14 11 7 19
15 7 9 7 24
21 12 7 4 19
27 17 13 7 15
33 14 12 12 10
23 16 18 18 20

[p,tbl,stats] = anova1(hogg);
p
p =

1.1971e-04

The standard ANOVA table has columns for the sums of squares, degrees of
freedom, mean squares (SS/df), F statistic, and p-value.
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You can use the F statistic to do a hypothesis test to find out if the bacteria
counts are the same. anova1 returns the p-value from this hypothesis test.

In this case the p-value is about 0.0001, a very small value. This is a strong
indication that the bacteria counts from the different shipments are not the
same. An F statistic as extreme as the observed F would occur by chance only
once in 10,000 times if the counts were truly equal.

The p-value returned by anova1 depends on assumptions about the random
disturbances εij in the model equation. For the p-value to be correct, these
disturbances need to be independent, normally distributed, and have constant
variance.

You can get some graphical assurance that the means are different by
looking at the box plots in the second figure window displayed by anova1.
Note, however, that the notches are used for a comparison of medians, not a
comparison of means. For more information on this display, see “Box Plots”
on page 4-6.
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Multiple Comparisons
Sometimes you need to determine not just whether there are any differences
among the means, but specifically which pairs of means are significantly
different. It is tempting to perform a series of t tests, one for each pair of
means, but this procedure has a pitfall.

In a t test, you compute a t statistic and compare it to a critical value. The
critical value is chosen so that when the means are really the same (any
apparent difference is due to random chance), the probability that the t
statistic will exceed the critical value is small, say 5%. When the means
are different, the probability that the statistic will exceed the critical value
is larger.

In this example there are five means, so there are 10 pairs of means to
compare. It stands to reason that if all the means are the same, and if there is
a 5% chance of incorrectly concluding that there is a difference in one pair,
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then the probability of making at least one incorrect conclusion among all 10
pairs is much larger than 5%.

Fortunately, there are procedures known as multiple comparison procedures
that are designed to compensate for multiple tests.

Example: Multiple Comparisons
You can perform a multiple comparison test using the multcompare function
and supplying it with the stats output from anova1.

load hogg
[p,tbl,stats] = anova1(hogg);
[c,m] = multcompare(stats)
c =

1.0000 2.0000 2.4953 10.5000 18.5047
1.0000 3.0000 4.1619 12.1667 20.1714
1.0000 4.0000 6.6619 14.6667 22.6714
1.0000 5.0000 -2.0047 6.0000 14.0047
2.0000 3.0000 -6.3381 1.6667 9.6714
2.0000 4.0000 -3.8381 4.1667 12.1714
2.0000 5.0000 -12.5047 -4.5000 3.5047
3.0000 4.0000 -5.5047 2.5000 10.5047
3.0000 5.0000 -14.1714 -6.1667 1.8381
4.0000 5.0000 -16.6714 -8.6667 -0.6619

m =
23.8333 1.9273
13.3333 1.9273
11.6667 1.9273
9.1667 1.9273

17.8333 1.9273

The first output from multcompare has one row for each pair of groups, with
an estimate of the difference in group means and a confidence interval for that
group. For example, the second row has the values

1.0000 3.0000 4.1619 12.1667 20.1714

indicating that the mean of group 1 minus the mean of group 3 is
estimated to be 12.1667, and a 95% confidence interval for this difference is

8-7



8 Analysis of Variance

[4.1619, 20.1714]. This interval does not contain 0, so you can conclude that
the means of groups 1 and 3 are different.

The second output contains the mean and its standard error for each group.

It is easier to visualize the difference between group means by looking at the
graph that multcompare produces.

There are five groups. The graph instructs you to Click on the group you
want to test. Three groups have slopes significantly different from group one.

The graph shows that group 1 is significantly different from groups 2, 3, and
4. By using the mouse to select group 4, you can determine that it is also
significantly different from group 5. Other pairs are not significantly different.

8-8



ANOVA

Two-Way ANOVA

• “Introduction” on page 8-9

• “Example: Two-Way ANOVA” on page 8-10

Introduction
The purpose of two-way ANOVA is to find out whether data from several
groups have a common mean. One-way ANOVA and two-way ANOVA differ
in that the groups in two-way ANOVA have two categories of defining
characteristics instead of one.

Suppose an automobile company has two factories, and each factory makes
the same three models of car. It is reasonable to ask if the gas mileage in the
cars varies from factory to factory as well as from model to model. There are
two predictors, factory and model, to explain differences in mileage.

There could be an overall difference in mileage due to a difference in the
production methods between factories. There is probably a difference in the
mileage of the different models (irrespective of the factory) due to differences
in design specifications. These effects are called additive.

Finally, a factory might make high mileage cars in one model (perhaps
because of a superior production line), but not be different from the other
factory for other models. This effect is called an interaction. It is impossible
to detect an interaction unless there are duplicate observations for some
combination of factory and car model.

Two-way ANOVA is a special case of the linear model. The two-way ANOVA
form of the model is

where, with respect to the automobile example above:

• is a matrix of gas mileage observations (with row index i, column
index j, and repetition index k).

• is a constant matrix of the overall mean gas mileage.
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• is a matrix whose columns are the deviations of each car’s gas mileage
(from the mean gas mileage ) that are attributable to the car’s model.
All values in a given column of are identical, and the values in each
row of sum to 0.

• is a matrix whose rows are the deviations of each car’s gas mileage
(from the mean gas mileage ) that are attributable to the car’s factory. All
values in a given row of are identical, and the values in each column
of sum to 0.

• is a matrix of interactions. The values in each row of sum to 0, and
the values in each column of sum to 0.

• is a matrix of random disturbances.

Example: Two-Way ANOVA
The purpose of the example is to determine the effect of car model and factory
on the mileage rating of cars.

load mileage
mileage

mileage =

33.3000 34.5000 37.4000
33.4000 34.8000 36.8000
32.9000 33.8000 37.6000
32.6000 33.4000 36.6000
32.5000 33.7000 37.0000
33.0000 33.9000 36.7000

cars = 3;
[p,tbl,stats] = anova2(mileage,cars);
p

p =
0.0000 0.0039 0.8411

There are three models of cars (columns) and two factories (rows). The reason
there are six rows in mileage instead of two is that each factory provides
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three cars of each model for the study. The data from the first factory is in the
first three rows, and the data from the second factory is in the last three rows.

The standard ANOVA table has columns for the sums of squares,
degrees-of-freedom, mean squares (SS/df), F statistics, and p-values.

You can use the F statistics to do hypotheses tests to find out if the mileage is
the same across models, factories, and model-factory pairs (after adjusting for
the additive effects). anova2 returns the p-value from these tests.

The p-value for the model effect is zero to four decimal places. This is a strong
indication that the mileage varies from one model to another. An F statistic
as extreme as the observed F would occur by chance less than once in 10,000
times if the gas mileage were truly equal from model to model. If you used the
multcompare function to perform a multiple comparison test, you would find
that each pair of the three models is significantly different.

The p-value for the factory effect is 0.0039, which is also highly significant.
This indicates that one factory is out-performing the other in the gas mileage
of the cars it produces. The observed p-value indicates that an F statistic as
extreme as the observed F would occur by chance about four out of 1000 times
if the gas mileage were truly equal from factory to factory.

There does not appear to be any interaction between factories and models.
The p-value, 0.8411, means that the observed result is quite likely (84 out 100
times) given that there is no interaction.
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The p-values returned by anova2 depend on assumptions about the random
disturbances εijk in the model equation. For the p-values to be correct these
disturbances need to be independent, normally distributed, and have constant
variance.

In addition, anova2 requires that data be balanced, which in this case means
there must be the same number of cars for each combination of model and
factory. The next section discusses a function that supports unbalanced data
with any number of predictors.

N-Way ANOVA

• “Introduction” on page 8-12

• “N-Way ANOVA with a Small Data Set” on page 8-13

• “N-Way ANOVA with a Large Data Set” on page 8-15

• “ANOVA with Random Effects” on page 8-19

Introduction
You can use N-way ANOVA to determine if the means in a set of data differ
when grouped by multiple factors. If they do differ, you can determine which
factors or combinations of factors are associated with the difference.

N-way ANOVA is a generalization of two-way ANOVA. For three factors, the
model can be written

In this notation parameters with two subscripts, such as (αβ)ij., represent
the interaction effect of two factors. The parameter (αβγ)ijk represents the
three-way interaction. An ANOVA model can have the full set of parameters
or any subset, but conventionally it does not include complex interaction
terms unless it also includes all simpler terms for those factors. For example,
one would generally not include the three-way interaction without also
including all two-way interactions.

The anovan function performs N-way ANOVA. Unlike the anova1 and anova2
functions, anovan does not expect data in a tabular form. Instead, it expects
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a vector of response measurements and a separate vector (or text array)
containing the values corresponding to each factor. This input data format is
more convenient than matrices when there are more than two factors or when
the number of measurements per factor combination is not constant.

N-Way ANOVA with a Small Data Set
Consider the following two-way example using anova2.

m = [23 15 20;27 17 63;43 3 55;41 9 90]
m =

23 15 20
27 17 63
43 3 55
41 9 90

anova2(m,2)

ans =
0.0197 0.2234 0.2663

The factor information is implied by the shape of the matrix m and the number
of measurements at each factor combination (2). Although anova2 does not
actually require arrays of factor values, for illustrative purposes you could
create them as follows.

cfactor = repmat(1:3,4,1)

cfactor =
1 2 3
1 2 3
1 2 3
1 2 3

rfactor = [ones(2,3); 2*ones(2,3)]

rfactor =

1 1 1
1 1 1
2 2 2
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2 2 2

The cfactor matrix shows that each column of m represents a different level
of the column factor. The rfactor matrix shows that the top two rows of m
represent one level of the row factor, and bottom two rows of m represent a
second level of the row factor. In other words, each value m(i,j) represents
an observation at column factor level cfactor(i,j) and row factor level
rfactor(i,j).

To solve the above problem with anovan, you need to reshape the matrices m,
cfactor, and rfactor to be vectors.

m = m(:);
cfactor = cfactor(:);
rfactor = rfactor(:);

[m cfactor rfactor]

ans =

23 1 1
27 1 1
43 1 2
41 1 2
15 2 1
17 2 1
3 2 2
9 2 2

20 3 1
63 3 1
55 3 2
90 3 2

anovan(m,{cfactor rfactor},2)

ans =

0.0197
0.2234
0.2663
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N-Way ANOVA with a Large Data Set
The previous example used anova2 to study a small data set measuring car
mileage. This example illustrates how to analyze a larger set of car data with
mileage and other information on 406 cars made between 1970 and 1982.
First, load the data set and look at the variable names.

load carbig
whos

Name Size Bytes Class

Acceleration 406x1 3248 double array
Cylinders 406x1 3248 double array
Displacement 406x1 3248 double array
Horsepower 406x1 3248 double array
MPG 406x1 3248 double array
Model 406x36 29232 char array
Model_Year 406x1 3248 double array
Origin 406x7 5684 char array
Weight 406x1 3248 double array
cyl4 406x5 4060 char array
org 406x7 5684 char array
when 406x5 4060 char array

The example focusses on four variables. MPG is the number of miles per gallon
for each of 406 cars (though some have missing values coded as NaN). The
other three variables are factors: cyl4 (four-cylinder car or not), org (car
originated in Europe, Japan, or the USA), and when (car was built early in the
period, in the middle of the period, or late in the period).

First, fit the full model, requesting up to three-way interactions and Type 3
sums-of-squares.

varnames = {'Origin';'4Cyl';'MfgDate'};
anovan(MPG,{org cyl4 when},3,3,varnames)
ans =

0.0000
NaN

0
0.7032
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0.0001
0.2072
0.6990

Note that many terms are marked by a # symbol as not having full rank,
and one of them has zero degrees of freedom and is missing a p-value. This
can happen when there are missing factor combinations and the model has
higher-order terms. In this case, the cross-tabulation below shows that there
are no cars made in Europe during the early part of the period with other than
four cylinders, as indicated by the 0 in table(2,1,1).

[table, chi2, p, factorvals] = crosstab(org,when,cyl4)

table(:,:,1) =

82 75 25
0 4 3
3 3 4

table(:,:,2) =
12 22 38
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23 26 17
12 25 32

chi2 =

207.7689

p =

0

factorvals =

'USA' 'Early' 'Other'
'Europe' 'Mid' 'Four'
'Japan' 'Late' []

Consequently it is impossible to estimate the three-way interaction effects,
and including the three-way interaction term in the model makes the fit
singular.

Using even the limited information available in the ANOVA table, you can see
that the three-way interaction has a p-value of 0.699, so it is not significant.
So this time you examine only two-way interactions.

[p,tbl,stats,terms] = anovan(MPG,{org cyl4 when},2,3,varnames);
terms

terms =
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
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Now all terms are estimable. The p-values for interaction term 4
(Origin*4Cyl) and interaction term 6 (4Cyl*MfgDate) are much larger than
a typical cutoff value of 0.05, indicating these terms are not significant. You
could choose to omit these terms and pool their effects into the error term.
The output terms variable returns a matrix of codes, each of which is a bit
pattern representing a term. You can omit terms from the model by deleting
their entries from terms and running anovan again, this time supplying the
resulting vector as the model argument.

terms([4 6],:) = []

terms =

1 0 0
0 1 0
0 0 1
1 0 1

anovan(MPG,{org cyl4 when},terms,3,varnames)

ans =

1.0e-003 *
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0.0000
0
0

0.1140

Now you have a more parsimonious model indicating that the mileage of
these cars seems to be related to all three factors, and that the effect of the
manufacturing date depends on where the car was made.

ANOVA with Random Effects

• “Introduction” on page 8-19

• “Setting Up the Model” on page 8-20

• “Fitting a Random Effects Model” on page 8-21

• “F Statistics for Models with Random Effects” on page 8-22

• “Variance Components” on page 8-24

Introduction. In an ordinary ANOVA model, each grouping variable
represents a fixed factor. The levels of that factor are a fixed set of values.
Your goal is to determine whether different factor levels lead to different
response values. This section presents an example that shows how to use
anovan to fit models where a factor’s levels represent a random selection from
a larger (infinite) set of possible levels.
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Setting Up the Model. To set up the example, first load the data, which is
stored in a 6-by-3 matrix, mileage.

load mileage

The anova2 function works only with balanced data, and it infers the values
of the grouping variables from the row and column numbers of the input
matrix. The anovan function, on the other hand, requires you to explicitly
create vectors of grouping variable values. To create these vectors, do the
following steps:

1 Create an array indicating the factory for each value in mileage. This
array is 1 for the first column, 2 for the second, and 3 for the third.

factory = repmat(1:3,6,1);

2 Create an array indicating the car model for each mileage value. This array
is 1 for the first three rows of mileage, and 2 for the remaining three rows.

carmod = [ones(3,3); 2*ones(3,3)];

3 Turn these matrices into vectors and display them.

mileage = mileage(:);
factory = factory(:);
carmod = carmod(:);
[mileage factory carmod]

ans =

33.3000 1.0000 1.0000
33.4000 1.0000 1.0000
32.9000 1.0000 1.0000
32.6000 1.0000 2.0000
32.5000 1.0000 2.0000
33.0000 1.0000 2.0000
34.5000 2.0000 1.0000
34.8000 2.0000 1.0000
33.8000 2.0000 1.0000
33.4000 2.0000 2.0000
33.7000 2.0000 2.0000
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33.9000 2.0000 2.0000
37.4000 3.0000 1.0000
36.8000 3.0000 1.0000
37.6000 3.0000 1.0000
36.6000 3.0000 2.0000
37.0000 3.0000 2.0000
36.7000 3.0000 2.0000

Fitting a Random Effects Model. Continuing the example from the
preceding section, suppose you are studying a few factories but you want
information about what would happen if you build these same car models in
a different factory—either one that you already have or another that you
might construct. To get this information, fit the analysis of variance model,
specifying a model that includes an interaction term and that the factory
factor is random.

[pvals,tbl,stats] = anovan(mileage, {factory carmod}, ...
'model',2, 'random',1,'varnames',{'Factory' 'Car Model'});

In the fixed effects version of this fit, which you get by omitting the inputs
'random',1 in the preceding code, the effect of car model is significant, with a
p-value of 0.0039. But in this example, which takes into account the random
variation of the effect of the variable 'Car Model' from one factory to another,
the effect is still significant, but with a higher p-value of 0.0136.
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F Statistics for Models with Random Effects. The F statistic in a model
having random effects is defined differently than in a model having all fixed
effects. In the fixed effects model, you compute the F statistic for any term by
taking the ratio of the mean square for that term with the mean square for
error. In a random effects model, however, some F statistics use a different
mean square in the denominator.

In the example described in “Setting Up the Model” on page 8-20, the effect
of the variable 'Factory' could vary across car models. In this case, the
interaction mean square takes the place of the error mean square in the F
statistic. The F statistic for factory is:

F = 1.445 / 0.02

F =

72.2500

The degrees of freedom for the statistic are the degrees of freedom for the
numerator (1) and denominator (2) mean squares. Therefore the p-value
for the statistic is:

pval = 1 - fcdf(F,1,2)

pval =

0.0136

With random effects, the expected value of each mean square depends not only
on the variance of the error term, but also on the variances contributed by
the random effects. You can see these dependencies by writing the expected
values as linear combinations of contributions from the various model terms.
To find the coefficients of these linear combinations, enter stats.ems, which
returns the ems field of the stats structure:

stats.ems

ans =

6.0000 0.0000 3.0000 1.0000
0.0000 9.0000 3.0000 1.0000
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0.0000 0.0000 3.0000 1.0000
0 0 0 1.0000

To see text representations of the linear combinations, enter

stats.txtems

ans =

'6*V(Factory)+3*V(Factory*Car Model)+V(Error)'
'9*Q(Car Model)+3*V(Factory*Car Model)+V(Error)'
'3*V(Factory*Car Model)+V(Error)'
'V(Error)'

The expected value for the mean square due to car model (second term)
includes contributions from a quadratic function of the car model effects, plus
three times the variance of the interaction term’s effect, plus the variance
of the error term. Notice that if the car model effects were all zero, the
expression would reduce to the expected mean square for the third term (the
interaction term). That is why the F statistic for the car model effect uses the
interaction mean square in the denominator.

In some cases there is no single term whose expected value matches the one
required for the denominator of theFstatistic. In that case, the denominator is
a linear combination of mean squares. The stats structure contains fields
giving the definitions of the denominators for each F statistic. The txtdenom
field, stats.txtdenom, gives a text representation, and the denom field gives
a matrix that defines a linear combination of the variances of terms in the
model. For balanced models like this one, the denom matrix, stats.denom,
contains zeros and ones, because the denominator is just a single term’s mean
square:

stats.txtdenom

ans =

'MS(Factory*Car Model)'
'MS(Factory*Car Model)'
'MS(Error)'

stats.denom
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ans =

-0.0000 1.0000 0.0000
0.0000 1.0000 -0.0000
0.0000 0 1.0000

Variance Components. For the model described in “Setting Up the Model”
on page 8-20, consider the mileage for a particular car of a particular model
made at a random factory. The variance of that car is the sum of components,
or contributions, one from each of the random terms.

stats.rtnames

ans =

'Factory'
'Factory*Car Model'
'Error'

You do not know those variances, but you can estimate them from the data.
Recall that the ems field of the stats structure expresses the expected value
of each term’s mean square as a linear combination of unknown variances for
random terms, and unknown quadratic forms for fixed terms. If you take
the expected mean square expressions for the random terms, and equate
those expected values to the computed mean squares, you get a system of
equations that you can solve for the unknown variances. These solutions
are the variance component estimates. The varest field contains a variance
component estimate for each term. The rtnames field contains the names
of the random terms.

stats.varest

ans =

4.4426
-0.0313
0.1139

Under some conditions, the variability attributed to a term is unusually low,
and that term’s variance component estimate is negative. In those cases it
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is common to set the estimate to zero, which you might do, for example, to
create a bar graph of the components.

bar(max(0,stats.varest))
set(gca,'xtick',1:3,'xticklabel',stats.rtnames)

You can also compute confidence bounds for the variance estimate. The
anovan function does this by computing confidence bounds for the variance
expected mean squares, and finding lower and upper limits on each variance
component containing all of these bounds. This procedure leads to a set
of bounds that is conservative for balanced data. (That is, 95% confidence
bounds will have a probability of at least 95% of containing the true variances
if the number of observations for each combination of grouping variables
is the same.) For unbalanced data, these are approximations that are not
guaranteed to be conservative.

[{'Term' 'Estimate' 'Lower' 'Upper'};
stats.rtnames, num2cell([stats.varest stats.varci])]

ans =

'Term' 'Estimate' 'Lower' 'Upper'
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'Factory' [ 4.4426] [1.0736] [175.6038]
'Factory*Car Model' [ -0.0313] [ NaN] [ NaN]
'Error' [ 0.1139] [0.0586] [ 0.3103]

Other ANOVA Models
The anovan function also has arguments that enable you to specify two other
types of model terms. First, the 'nested' argument specifies a matrix that
indicates which factors are nested within other factors. A nested factor is one
that takes different values within each level its nested factor.

For example, the mileage data from the previous section assumed that the
two car models produced in each factory were the same. Suppose instead,
each factory produced two distinct car models for a total of six car models, and
we numbered them 1 and 2 for each factory for convenience. Then, the car
model is nested in factory. A more accurate and less ambiguous numbering of
car model would be as follows:

Factory Car Model

1 1

1 2

2 3

2 4

3 5

3 6

However, it is common with nested models to number the nested factor the
same way in each nested factor.

Second, the 'continuous' argument specifies that some factors are to be
treated as continuous variables. The remaining factors are categorical
variables. Although the anovan function can fit models with multiple
continuous and categorical predictors, the simplest model that combines one
predictor of each type is known as an analysis of covariance model. The next
section describes a specialized tool for fitting this model.
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Analysis of Covariance

• “Introduction” on page 8-27

• “Analysis of Covariance Tool” on page 8-27

• “Confidence Bounds” on page 8-32

• “Multiple Comparisons” on page 8-34

Introduction
Analysis of covariance is a technique for analyzing grouped data having a
response (y, the variable to be predicted) and a predictor (x, the variable
used to do the prediction). Using analysis of covariance, you can model y as
a linear function of x, with the coefficients of the line possibly varying from
group to group.

Analysis of Covariance Tool
The aoctool function opens an interactive graphical environment for fitting
and prediction with analysis of covariance (ANOCOVA) models. It fits the
following models for the ith group:

Same mean

Separate means

Same line

Parallel lines

Separate lines

For example, in the parallel lines model the intercept varies from one group
to the next, but the slope is the same for each group. In the same mean
model, there is a common intercept and no slope. In order to make the group
coefficients well determined, the tool imposes the constraints

The following steps describe the use of aoctool.
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1 Load the data. The Statistics Toolbox data set carsmall.mat contains
information on cars from the years 1970, 1976, and 1982. This example
studies the relationship between the weight of a car and its mileage,
and whether this relationship has changed over the years. To start the
demonstration, load the data set.

load carsmall

The Workspace Browser shows the variables in the data set.

You can also use aoctool with your own data.

2 Start the tool. The following command calls aoctool to fit a separate line
to the column vectors Weight and MPG for each of the three model group
defined in Model_Year. The initial fit models the y variable, MPG, as a linear
function of the x variable, Weight.

[h,atab,ctab,stats] = aoctool(Weight,MPG,Model_Year);
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See the aoctool function reference page for detailed information about
calling aoctool.

3 Examine the output. The graphical output consists of a main window
with a plot, a table of coefficient estimates, and an analysis of variance
table. In the plot, each Model_Year group has a separate line. The data
points for each group are coded with the same color and symbol, and the fit
for each group has the same color as the data points.
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The coefficients of the three lines appear in the figure titled ANOCOVA
Coefficients. You can see that the slopes are roughly -0.0078, with a small
deviation for each group:

• Model year 1970:

• Model year 1976:

• Model year 1982:

Because the three fitted lines have slopes that are roughly similar, you may
wonder if they really are the same. The Model_Year*Weight interaction
expresses the difference in slopes, and the ANOVA table shows a test for
the significance of this term. With an F statistic of 5.23 and a p-value of
0.0072, the slopes are significantly different.
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4 Constrain the slopes to be the same. To examine the fits when the
slopes are constrained to be the same, return to the ANOCOVA Prediction
Plot window and use the Model pop-up menu to select a Parallel Lines
model. The window updates to show the following graph.

Though this fit looks reasonable, it is significantly worse than the Separate
Lines model. Use theModel pop-up menu again to return to the original
model.
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Confidence Bounds
The example in “Analysis of Covariance Tool” on page 8-27 provides estimates
of the relationship between MPG and Weight for each Model_Year, but how
accurate are these estimates? To find out, you can superimpose confidence
bounds on the fits by examining them one group at a time.

1 In the Model_Year menu at the lower right of the figure, change the
setting from All Groups to 82. The data and fits for the other groups are
dimmed, and confidence bounds appear around the 82 fit.
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The dashed lines form an envelope around the fitted line for model year 82.
Under the assumption that the true relationship is linear, these bounds
provide a 95% confidence region for the true line. Note that the fits for the
other model years are well outside these confidence bounds for Weight
values between 2000 and 3000.

2 Sometimes it is more valuable to be able to predict the response value for
a new observation, not just estimate the average response value. Use the
aoctool function Bounds menu to change the definition of the confidence
bounds from Line to Observation. The resulting wider intervals reflect
the uncertainty in the parameter estimates as well as the randomness
of a new observation.
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Like the polytool function, the aoctool function has cross hairs that you
can use to manipulate the Weight and watch the estimate and confidence
bounds along the y-axis update. These values appear only when a single
group is selected, not when All Groups is selected.

Multiple Comparisons
You can perform a multiple comparison test by using the stats output
structure from aoctool as input to the multcompare function. The
multcompare function can test either slopes, intercepts, or population
marginal means (the predicted MPG of the mean weight for each group). The
example in “Analysis of Covariance Tool” on page 8-27 shows that the slopes
are not all the same, but could it be that two are the same and only the other
one is different? You can test that hypothesis.

multcompare(stats,0.05,'on','','s')

ans =
1.0000 2.0000 -0.0012 0.0008 0.0029
1.0000 3.0000 0.0013 0.0051 0.0088
2.0000 3.0000 0.0005 0.0042 0.0079

This matrix shows that the estimated difference between the intercepts of
groups 1 and 2 (1970 and 1976) is 0.0008, and a confidence interval for the
difference is [-0.0012, 0.0029]. There is no significant difference between the
two. There are significant differences, however, between the intercept for
1982 and each of the other two. The graph shows the same information.
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Note that the stats structure was created in the initial call to the aoctool
function, so it is based on the initial model fit (typically a separate-lines
model). If you change the model interactively and want to base your multiple
comparisons on the new model, you need to run aoctool again to get another
stats structure, this time specifying your new model as the initial model.

Nonparametric Methods

• “Introduction” on page 8-36
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• “Kruskal-Wallis Test” on page 8-36

• “Friedman’s Test” on page 8-37

Introduction
Statistics Toolbox functions include nonparametric versions of one-way and
two-way analysis of variance. Unlike classical tests, nonparametric tests
make only mild assumptions about the data, and are appropriate when the
distribution of the data is non-normal. On the other hand, they are less
powerful than classical methods for normally distributed data.

Both of the nonparametric functions described here will return a stats
structure that can be used as an input to the multcompare function for
multiple comparisons.

Kruskal-Wallis Test
The example “Example: One-Way ANOVA” on page 8-4 uses one-way
analysis of variance to determine if the bacteria counts of milk varied from
shipment to shipment. The one-way analysis rests on the assumption that
the measurements are independent, and that each has a normal distribution
with a common variance and with a mean that was constant in each column.
You can conclude that the column means were not all the same. The following
example repeats that analysis using a nonparametric procedure.

The Kruskal-Wallis test is a nonparametric version of one-way analysis of
variance. The assumption behind this test is that the measurements come
from a continuous distribution, but not necessarily a normal distribution. The
test is based on an analysis of variance using the ranks of the data values, not
the data values themselves. Output includes a table similar to an ANOVA
table, and a box plot.

You can run this test as follows:

load hogg

p = kruskalwallis(hogg)
p =

0.0020
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The low p-value means the Kruskal-Wallis test results agree with the one-way
analysis of variance results.

Friedman’s Test
The example “Example: Two-Way ANOVA” on page 8-10 uses two-way
analysis of variance to study the effect of car model and factory on car
mileage. The example tests whether either of these factors has a significant
effect on mileage, and whether there is an interaction between these factors.
The conclusion of the example is there is no interaction, but that each
individual factor has a significant effect. The next example examines whether
a nonparametric analysis leads to the same conclusion.

Friedman’s test is a nonparametric test for data having a two-way layout (data
grouped by two categorical factors). Unlike two-way analysis of variance,
Friedman’s test does not treat the two factors symmetrically and it does not
test for an interaction between them. Instead, it is a test for whether the
columns are different after adjusting for possible row differences. The test is
based on an analysis of variance using the ranks of the data across categories
of the row factor. Output includes a table similar to an ANOVA table.

You can run Friedman’s test as follows.

load mileage
p = friedman(mileage,3)
p =

7.4659e-004

Recall the classical analysis of variance gave a p-value to test column effects,
row effects, and interaction effects. This p-value is for column effects. Using
either this p-value or the p-value from ANOVA (p < 0.0001), you conclude that
there are significant column effects.

In order to test for row effects, you need to rearrange the data to swap the
roles of the rows in columns. For a data matrix x with no replications, you
could simply transpose the data and type

p = friedman(x')

With replicated data it is slightly more complicated. A simple way is to
transform the matrix into a three-dimensional array with the first dimension
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representing the replicates, swapping the other two dimensions, and restoring
the two-dimensional shape.

x = reshape(mileage, [3 2 3]);
x = permute(x,[1 3 2]);
x = reshape(x,[9 2])
x =

33.3000 32.6000
33.4000 32.5000
32.9000 33.0000
34.5000 33.4000
34.8000 33.7000
33.8000 33.9000
37.4000 36.6000
36.8000 37.0000
37.6000 36.7000

friedman(x,3)
ans =

0.0082

Again, the conclusion is similar to that of the classical analysis of variance.
Both this p-value and the one from ANOVA (p = 0.0039) lead you to conclude
that there are significant row effects.

You cannot use Friedman’s test to test for interactions between the row and
column factors.
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MANOVA

In this section...

“Introduction” on page 8-39

“ANOVA with Multiple Responses” on page 8-39

Introduction
The analysis of variance technique in “Example: One-Way ANOVA” on
page 8-4 takes a set of grouped data and determine whether the mean of a
variable differs significantly among groups. Often there are multiple response
variables, and you are interested in determining whether the entire set of
means is different from one group to the next. There is a multivariate version
of analysis of variance that can address the problem.

ANOVA with Multiple Responses
The carsmall data set has measurements on a variety of car models from
the years 1970, 1976, and 1982. Suppose you are interested in whether the
characteristics of the cars have changed over time.

First, load the data.

load carsmall
whos

Name Size Bytes Class
Acceleration 100x1 800 double array
Cylinders 100x1 800 double array
Displacement 100x1 800 double array
Horsepower 100x1 800 double array
MPG 100x1 800 double array
Model 100x36 7200 char array
Model_Year 100x1 800 double array
Origin 100x7 1400 char array
Weight 100x1 800 double array

Four of these variables (Acceleration, Displacement, Horsepower, and
MPG) are continuous measurements on individual car models. The variable
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Model_Year indicates the year in which the car was made. You can create a
grouped plot matrix of these variables using the gplotmatrix function.

x = [MPG Horsepower Displacement Weight];
gplotmatrix(x,[],Model_Year,[],'+xo')

(When the second argument of gplotmatrix is empty, the function graphs
the columns of the x argument against each other, and places histograms
along the diagonals. The empty fourth argument produces a graph with the
default colors. The fifth argument controls the symbols used to distinguish
between groups.)

It appears the cars do differ from year to year. The upper right plot, for
example, is a graph of MPG versus Weight. The 1982 cars appear to have
higher mileage than the older cars, and they appear to weigh less on average.
But as a group, are the three years significantly different from one another?
The manova1 function can answer that question.

[d,p,stats] = manova1(x,Model_Year)
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d =
2

p =
1.0e-006 *

0
0.1141

stats =
W: [4x4 double]
B: [4x4 double]
T: [4x4 double]

dfW: 90
dfB: 2
dfT: 92

lambda: [2x1 double]
chisq: [2x1 double]

chisqdf: [2x1 double]
eigenval: [4x1 double]
eigenvec: [4x4 double]

canon: [100x4 double]
mdist: [100x1 double]

gmdist: [3x3 double]

The manova1 function produces three outputs:

• The first output, d, is an estimate of the dimension of the group means. If
the means were all the same, the dimension would be 0, indicating that the
means are at the same point. If the means differed but fell along a line,
the dimension would be 1. In the example the dimension is 2, indicating
that the group means fall in a plane but not along a line. This is the largest
possible dimension for the means of three groups.

• The second output, p, is a vector of p-values for a sequence of tests. The
first p-value tests whether the dimension is 0, the next whether the
dimension is 1, and so on. In this case both p-values are small. That’s
why the estimated dimension is 2.

• The third output, stats, is a structure containing several fields, described
in the following section.
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The Fields of the stats Structure
The W, B, and T fields are matrix analogs to the within, between, and total sums
of squares in ordinary one-way analysis of variance. The next three fields are
the degrees of freedom for these matrices. Fields lambda, chisq, and chisqdf
are the ingredients of the test for the dimensionality of the group means. (The
p-values for these tests are the first output argument of manova1.)

The next three fields are used to do a canonical analysis. Recall that in
principal components analysis (“Principal Component Analysis” on page
10-31) you look for the combination of the original variables that has the
largest possible variation. In multivariate analysis of variance, you instead
look for the linear combination of the original variables that has the largest
separation between groups. It is the single variable that would give the most
significant result in a univariate one-way analysis of variance. Having found
that combination, you next look for the combination with the second highest
separation, and so on.

The eigenvec field is a matrix that defines the coefficients of the linear
combinations of the original variables. The eigenval field is a vector
measuring the ratio of the between-group variance to the within-group
variance for the corresponding linear combination. The canon field is a matrix
of the canonical variable values. Each column is a linear combination of the
mean-centered original variables, using coefficients from the eigenvecmatrix.

A grouped scatter plot of the first two canonical variables shows more
separation between groups then a grouped scatter plot of any pair of original
variables. In this example it shows three clouds of points, overlapping but
with distinct centers. One point in the bottom right sits apart from the others.
By using the gname function, you can see that this is the 20th point.

c1 = stats.canon(:,1);
c2 = stats.canon(:,2);
gscatter(c2,c1,Model_Year,[],'oxs')
gname
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Roughly speaking, the first canonical variable, c1, separates the 1982 cars
(which have high values of c1) from the older cars. The second canonical
variable, c2, reveals some separation between the 1970 and 1976 cars.

The final two fields of the stats structure are Mahalanobis distances. The
mdist field measures the distance from each point to its group mean. Points
with large values may be outliers. In this data set, the largest outlier is the
one in the scatter plot, the Buick Estate station wagon. (Note that you could
have supplied the model name to the gname function above if you wanted to
label the point with its model name rather than its row number.)

max(stats.mdist)
ans =

31.5273
find(stats.mdist == ans)
ans =
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20
Model(20,:)
ans =

buick_estate_wagon_(sw)

The gmdist field measures the distances between each pair of group means.
The following commands examine the group means and their distances:

grpstats(x, Model_Year)
ans =

1.0e+003 *
0.0177 0.1489 0.2869 3.4413
0.0216 0.1011 0.1978 3.0787
0.0317 0.0815 0.1289 2.4535

stats.gmdist
ans =

0 3.8277 11.1106
3.8277 0 6.1374

11.1106 6.1374 0

As might be expected, the multivariate distance between the extreme years
1970 and 1982 (11.1) is larger than the difference between more closely
spaced years (3.8 and 6.1). This is consistent with the scatter plots, where the
points seem to follow a progression as the year changes from 1970 through
1976 to 1982. If you had more groups, you might find it instructive to use
the manovacluster function to draw a diagram that presents clusters of the
groups, formed using the distances between their means.
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9 Regression Analysis

Introduction
Regression is the process of fitting models to data. The process depends on the
model. If a model is parametric, regression estimates the parameters from the
data. If a model is linear in the parameters, estimation is based on methods
from linear algebra that minimize the norm of a residual vector. If a model
is nonlinear in the parameters, estimation is based on search methods from
optimization that minimize the norm of a residual vector. Nonparametric
models, like “Regression Trees” on page 9-90, use methods all their own.

This chapter considers data and models with continuous predictors and
responses. Categorical predictors are the subject of Chapter 8, “Analysis
of Variance”. Categorical responses are the subject of Chapter 12,
“Classification”.
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Linear Regression

In this section...

“Linear Regression Models” on page 9-3

“Multiple Linear Regression” on page 9-8

“Robust Regression” on page 9-14

“Stepwise Regression” on page 9-19

“Ridge Regression” on page 9-29

“Partial Least Squares” on page 9-32

“Polynomial Models” on page 9-37

“Response Surface Models” on page 9-45

“Generalized Linear Models” on page 9-52

“Multivariate Regression” on page 9-57

Linear Regression Models
In statistics, linear regression models often take the form of something like
this:

y x x x x x x= + + + + + +      0 1 1 2 2 3 1 2 4 1
2

5 2
2

Here a response variable y is modeled as a combination of constant, linear,
interaction, and quadratic terms formed from two predictor variables x1 and
x2. Uncontrolled factors and experimental errors are modeled by ε. Given data
on x1, x2, and y, regression estimates the model parameters βj (j = 1, ..., 5).

More general linear regression models represent the relationship between a
continuous response y and a continuous or categorical predictor x in the form:

y f fp p= + + +  1 1( ) ... ( )x x

The response is modeled as a linear combination of (not necessarily linear)
functions of the predictor, plus a random error ε. The expressions fj(x) (j = 1,
..., p) are the terms of the model. The βj (j = 1, ..., p) are the coefficients. Errors
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ε are assumed to be uncorrelated and distributed with mean 0 and constant
(but unknown) variance.

Examples of linear regression models with a scalar predictor variable x
include:

• Linear additive (straight-line) models — Terms are f1(x) = 1 and f2(x) = x.

• Polynomial models — Terms are f1(x) = 1, f2(x) = x, …, fp(x) = x
p–1.

• Chebyshev orthogonal polynomial models — Terms are f1(x) = 1, f2(x) = x,
…, fp(x) = 2xfp–1(x) – fp–2(x).

• Fourier trigonometric polynomial models — Terms are f1(x) = 1/2 and sines
and cosines of different frequencies.

Examples of linear regression models with a vector of predictor variables x
= (x1, ..., xN) include:

• Linear additive (hyperplane) models — Terms are f1(x) = 1 and fk(x) = xk
(k = 1, ..., N).

• Pairwise interaction models — Terms are linear additive terms plus gk1k2(x)
= xk1xk2 (k1, k2 = 1, ..., N, k1 ≠ k2).

• Quadratic models — Terms are pairwise interaction terms plus hk(x) =
xk
2 (k = 1, ..., N).

• Pure quadratic models — Terms are quadratic terms minus the gk1k2(x)
terms.

Whether or not the predictor x is a vector of predictor variables, multivariate
regression refers to the case where the response y = (y1, ..., yM) is a vector of
M response variables. See “Multivariate Regression” on page 9-57 for more
on multivariate regression models.

Given n independent observations (x1, y1), …, (xn, yn) of the predictor x and the
response y, the linear regression model becomes an n-by-p system of equations:
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X is the design matrix of the system. The columns of X are the terms of the
model evaluated at the predictors. To fit the model to the data, the system
must be solved for the p coefficient values in β = (β1, …, βp)

T.

The MATLAB backslash operator \ (mldivide) solves systems of linear
equations. Ignoring the unknown error ε, MATLAB estimates model
coefficients in y = Xβ using

betahat = X\y

where X is the design matrix and y is the vector of observed responses.
MATLAB returns the least-squares solution to the system; betahatminimizes
the norm of the residual vector y-X*beta over all beta. If the system is
consistent, the norm is 0 and the solution is exact. In this case, the regression
model interpolates the data. In more typical regression cases where n > p and
the system is overdetermined, the least-squares solution estimates model
coefficients obscured by the error ε.

The least-squares estimator betahat has several important statistical
properties. First, it is unbiased, with expected value β. Second, by the
Gauss-Markov theorem, it has minimum variance among all unbiased
estimators formed from linear combinations of the response data. Under the
additional assumption that ε is normally distributed, betahat is a maximum
likelihood estimator. The assumption also implies that the estimates
themselves are normally distributed, which is useful for computing confidence
intervals. Even without the assumption, by the Central Limit theorem, the
estimates have an approximate normal distribution if the sample size is large
enough.

Visualize the least-squares estimator as follows.
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For betahat to minimize norm(y-X*beta), y-X*betahat must be
perpendicular to the column space of X, which contains all linear combinations
of the model terms. This requirement is summarized in the normal equations,
which express vanishing inner products between y-X*betahat and the
columns of X:

X y XT −( ) =̂ 0

or

X X X yT T̂ =

If X is n-by-p, the normal equations are a p-by-p square system with solution
betahat = inv(X'*X)*X'*y, where inv is the MATLAB inverse operator.
The matrix inv(X'*X)*X' is the pseudoinverse of X, computed by the
MATLAB function pinv.

The normal equations are often badly conditioned relative to the original
system y = Xβ (the coefficient estimates are much more sensitive to the model
error ε), so the MATLAB backslash operator avoids solving them directly.
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Instead, a QR (orthogonal, triangular) decomposition of X is used to create a
simpler, more stable triangular system:

X X X y

QR QR QR y

R Q QR R Q y
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T T T T

T T T
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Statistics Toolbox functions like regress and regstats call the MATLAB
backslash operator to perform linear regression. The QR decomposition is also
used for efficient computation of confidence intervals.

Once betahat is computed, the model can be evaluated at the predictor data:

yhat = X*betahat

or

yhat = X*inv(X'*X)*X'*y

H = X*inv(X'*X)*X' is the hat matrix. It is a square, symmetric n-by-n
matrix determined by the predictor data. The diagonal elements H(i,i)
(i = 1, ..., n) give the leverage of the ith observation. Since yhat = H*y,
leverage values determine the influence of the observed response y(i) on
the predicted response yhat(i). For leverage values near 1, the predicted
response approximates the observed response. The Statistics Toolbox function
leverage computes leverage values from a QR decomposition of X.

Component residual values in y-yhat are useful for detecting failures in
model assumptions. Like the errors in ε, residuals have an expected value
of 0. Unlike the errors, however, residuals are correlated, with nonconstant
variance. Residuals may be “Studentized” (scaled by an estimate of their
standard deviation) for comparison. Studentized residuals are used by
Statistics Toolbox functions like regress and robustfit to identify outliers
in the data.
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Multiple Linear Regression

• “Introduction” on page 9-8

• “Programmatic Multiple Linear Regression” on page 9-9

• “Interactive Multiple Linear Regression” on page 9-11

• “Tabulating Diagnostic Statistics” on page 9-13

Introduction
The system of linear equations
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in “Linear Regression Models” on page 9-3 expresses a response y as a linear
combination of model terms fj(x) (j = 1, ..., p) at each of the observations
(x1, y1), …, (xn, yn).

If the predictor x is multidimensional, so are the functions fj that form the
terms of the model. For example, if the predictor is x = (x1, x2), terms for the
model might include f1(x) = x1 (a linear term), f2(x) = x12 (a quadratic term),
and f3(x) = x1x2 (a pairwise interaction term). Typically, the function f(x) = 1 is
included among the fj, so that the design matrix X contains a column of 1s and
the model contains a constant (y-intercept) term.

Multiple linear regression models are useful for:

• Understanding which terms fj(x) have greatest effect on the response
(coefficients βj with greatest magnitude)

• Finding the direction of the effects (signs of the βj)

• Predicting unobserved values of the response (y(x) for new x)

The Statistics Toolbox functions regress and regstats are used for multiple
linear regression analysis.
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Programmatic Multiple Linear Regression
For example, the file moore.mat contains the 20-by-6 data matrix moore. The
first five columns are measurements of biochemical oxygen demand on five
predictor variables. The final column contains the observed responses. Use
regress to find coefficient estimates betahat for a linear additive model as
follows. Before using regress give the design matrix X1 a first column of 1s to
include a constant term in the model, betahat(1).

load moore
X1 = [ones(size(moore,1),1) moore(:,1:5)];
y = moore(:,6);
betahat = regress(y,X1)
betahat =

-2.1561
-0.0000
0.0013
0.0001
0.0079
0.0001

The MATLAB backslash (mldivide) operator, which regress calls, obtains
the same result:

betahat = X1\y
betahat =

-2.1561
-0.0000
0.0013
0.0001
0.0079
0.0001

The advantage of working with regress is that it allows for additional inputs
and outputs relevant to statistical analysis of the regression. For example:

alpha = 0.05;
[betahat,Ibeta,res,Ires,stats] = regress(y,X1,alpha);

returns not only the coefficient estimates in betahat, but also
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• Ibeta — A p-by-2 matrix of 95% confidence intervals for the coefficient
estimates, using a 100*(1-alpha)% confidence level. The first column
contains lower confidence bounds for each of the p coefficient estimates; the
second column contains upper confidence bounds.

• res — An n-by-1 vector of residuals.

• Ires— An n-by-2 matrix of intervals that can be used to diagnose outliers.
If the interval Ires(i,:) for observation i does not contain zero, the
corresponding residual is larger than expected in 100*(1-alpha)% of new
observations, suggesting an outlier.

• stats — A 1-by-4 vector that contains, in order, the R2 statistic, the
F statistic and its p-value, and an estimate of the error variance. The
statistics are computed assuming the model contains a constant term, and
are incorrect otherwise.

Visualize the residuals, in case (row number) order, with the rcoplot
function:

rcoplot(res,Ires)
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The interval around the first residual, shown in red when plotted, does not
contain zero. This indicates that the residual is larger than expected in 95%
of new observations, and suggests the data point is an outlier.

Outliers in regression appear for a variety of reasons:

1 If there is sufficient data, 5% of the residuals, by the definition of rint,
are too big.

2 If there is a systematic error in the model (that is, if the model is not
appropriate for generating the data under model assumptions), the mean
of the residuals is not zero.

3 If the errors in the model are not normally distributed, the distributions
of the residuals may be skewed or leptokurtic (with heavy tails and more
outliers).

When errors are normally distributed, Ires(i,:) is a confidence interval for
the mean of res(i) and checking if the interval contains zero is a test of the
null hypothesis that the residual has zero mean.

Interactive Multiple Linear Regression
The function regstats also performs multiple linear regression, but computes
more statistics than regress. By default, regstats automatically adds a first
column of 1s to the design matrix (necessary for computing the F statistic
and its p-value), so a constant term should not be included explicitly as for
regress. For example:

X2 = moore(:,1:5);
stats = regstats(y,X2);

creates a structure stats with fields containing regression statistics. An
optional input argument allows you to specify which statistics are computed.

To interactively specify the computed statistics, call regstats without an
output argument. For example:

regstats(y,X2)

opens the following interface.
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Select the check boxes corresponding to the statistics you want to compute and
click OK. Selected statistics are returned to the MATLAB workspace. Names
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of container variables for the statistics appear on the right-hand side of the
interface, where they can be changed to any valid MATLAB variable name.

Tabulating Diagnostic Statistics
The regstats function computes statistics that are typically used in
regression diagnostics. Statistics can be formatted into standard tabular
displays in a variety of ways. For example, the tstat field of the stats output
structure of regstats is itself a structure containing statistics related to the
estimated coefficients of the regression. Dataset arrays (see “Dataset Arrays”
on page 2-23) provide a natural tabular format for the information:

t = stats.tstat;
CoeffTable = dataset({t.beta,'Coef'},{t.se,'StdErr'}, ...

{t.t,'tStat'},{t.pval,'pVal'})
CoeffTable =

Coef StdErr tStat pVal
-2.1561 0.91349 -2.3603 0.0333

-9.0116e-006 0.00051835 -0.017385 0.98637
0.0013159 0.0012635 1.0415 0.31531
0.0001278 7.6902e-005 1.6618 0.11876
0.0078989 0.014 0.56421 0.58154

0.00014165 7.3749e-005 1.9208 0.075365

The MATLAB function fprintf gives you control over tabular formatting.
For example, the fstat field of the stats output structure of regstats is a
structure with statistics related to the analysis of variance (ANOVA) of the
regression. The following commands produce a standard regression ANOVA
table:

f = stats.fstat;

fprintf('\n')
fprintf('Regression ANOVA');
fprintf('\n\n')

fprintf('%6s','Source');
fprintf('%10s','df','SS','MS','F','P');
fprintf('\n')

fprintf('%6s','Regr');
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fprintf('%10.4f',f.dfr,f.ssr,f.ssr/f.dfr,f.f,f.pval);
fprintf('\n')

fprintf('%6s','Resid');
fprintf('%10.4f',f.dfe,f.sse,f.sse/f.dfe);
fprintf('\n')

fprintf('%6s','Total');
fprintf('%10.4f',f.dfe+f.dfr,f.sse+f.ssr);
fprintf('\n')

The result looks like this:

Regression ANOVA

Source df SS MS F P
Regr 5.0000 4.1084 0.8217 11.9886 0.0001

Resid 14.0000 0.9595 0.0685
Total 19.0000 5.0679

Robust Regression

• “Introduction” on page 9-14

• “Programmatic Robust Regression” on page 9-15

• “Interactive Robust Regression” on page 9-16

Introduction
The models described in “Linear Regression Models” on page 9-3 are based on
certain assumptions, such as a normal distribution of errors in the observed
responses. If the distribution of errors is asymmetric or prone to outliers,
model assumptions are invalidated, and parameter estimates, confidence
intervals, and other computed statistics become unreliable. The Statistics
Toolbox function robustfit is useful in these cases. The function implements
a robust fitting method that is less sensitive than ordinary least squares to
large changes in small parts of the data.

Robust regression works by assigning a weight to each data point. Weighting
is done automatically and iteratively using a process called iteratively
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reweighted least squares. In the first iteration, each point is assigned equal
weight and model coefficients are estimated using ordinary least squares. At
subsequent iterations, weights are recomputed so that points farther from
model predictions in the previous iteration are given lower weight. Model
coefficients are then recomputed using weighted least squares. The process
continues until the values of the coefficient estimates converge within a
specified tolerance.

Programmatic Robust Regression
The example in “Multiple Linear Regression” on page 9-8 shows an outlier
when ordinary least squares is used to model the response variable as a linear
combination of the five predictor variables. To determine the influence of the
outlier, compare the coefficient estimates computed by regress:

load moore
X1 = [ones(size(moore,1),1) moore(:,1:5)];
y = moore(:,6);
betahat = regress(y,X1)
betahat =

-2.1561
-0.0000
0.0013
0.0001
0.0079
0.0001

to those computed by robustfit:

X2 = moore(:,1:5);
robustbeta = robustfit(X2,y)
robustbeta =

-1.7516
0.0000
0.0009
0.0002
0.0060
0.0001

By default, robustfit automatically adds a first column of 1s to the design
matrix, so a constant term does not have to be included explicitly as for
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regress. In addition, the order of inputs is reversed for robustfit and
regress.

To understand the difference in the coefficient estimates, look at the final
weights given to the data points in the robust fit:

[robustbeta,stats] = robustfit(X2,y);
stats.w'
ans =

Columns 1 through 5
0.0246 0.9986 0.9763 0.9323 0.9704

Columns 6 through 10
0.8597 0.9180 0.9992 0.9590 0.9649

Columns 11 through 15
0.9769 0.9868 0.9999 0.9976 0.8122

Columns 16 through 20
0.9733 0.9892 0.9988 0.8974 0.6774

The first data point has a very low weight compared to the other data points,
and so is effectively ignored in the robust regression.

Interactive Robust Regression
The robustdemo function shows the difference between ordinary least squares
and robust fitting for data with a single predictor. You can use data provided
with the demo, or you can supply your own data. The following steps show
you how to use robustdemo.

1 Start the demo. To begin using robustdemo with the built-in data, simply
type the function name:

robustdemo
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The resulting figure shows a scatter plot with two fitted lines. The red line
is the fit using ordinary least-squares regression. The green line is the
fit using robust regression. At the bottom of the figure are the equations
for the fitted lines, together with the estimated root mean squared errors
for each fit.

2 View leverages and robust weights. Right-click on any data point to
see its least-squares leverage and robust weight.
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In the built-in data, the right-most point has a relatively high leverage of
0.35. The point exerts a large influence on the least-squares fit, but its
small robust weight shows that it is effectively excluded from the robust fit.

3 See how changes in the data affect the fits. With the left mouse
button, click and hold on any data point and drag it to a new location.
When you release the mouse button, the displays update.
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Bringing the right-most data point closer to the least-squares line makes
the two fitted lines nearly identical. The adjusted right-most data point
has significant weight in the robust fit.

Stepwise Regression

• “Introduction” on page 9-19

• “Programmatic Stepwise Regression” on page 9-21

• “Interactive Stepwise Regression” on page 9-27

Introduction
Multiple linear regression models, as described in “Multiple Linear
Regression” on page 9-8, are built from a potentially large number of
predictive terms. The number of interaction terms, for example, increases
exponentially with the number of predictor variables. If there is no theoretical
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basis for choosing the form of a model, and no assessment of correlations
among terms, it is possible to include redundant terms in a model that confuse
the identification of significant effects.

Stepwise regression is a systematic method for adding and removing terms
from a multilinear model based on their statistical significance in a regression.
The method begins with an initial model and then compares the explanatory
power of incrementally larger and smaller models. At each step, the p-value of
an F-statistic is computed to test models with and without a potential term. If
a term is not currently in the model, the null hypothesis is that the term would
have a zero coefficient if added to the model. If there is sufficient evidence to
reject the null hypothesis, the term is added to the model. Conversely, if a
term is currently in the model, the null hypothesis is that the term has a zero
coefficient. If there is insufficient evidence to reject the null hypothesis, the
term is removed from the model. The method proceeds as follows:

1 Fit the initial model.

2 If any terms not in the model have p-values less than an entrance tolerance
(that is, if it is unlikely that they would have zero coefficient if added to
the model), add the one with the smallest p-value and repeat this step;
otherwise, go to step 3.

3 If any terms in the model have p-values greater than an exit tolerance (that
is, if it is unlikely that the hypothesis of a zero coefficient can be rejected),
remove the one with the largest p-value and go to step 2; otherwise, end.

Depending on the terms included in the initial model and the order in which
terms are moved in and out, the method may build different models from the
same set of potential terms. The method terminates when no single step
improves the model. There is no guarantee, however, that a different initial
model or a different sequence of steps will not lead to a better fit. In this
sense, stepwise models are locally optimal, but may not be globally optimal.

Statistics Toolbox functions for stepwise regression are:

• stepwisefit — A function that proceeds automatically from a specified
initial model and entrance/exit tolerances

• stepwise— An interactive tool that allows you to explore individual steps
in the regression
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Programmatic Stepwise Regression
For example, load the data in hald.mat, which contains observations of the
heat of reaction of various cement mixtures:

load hald
whos

Name Size Bytes Class Attributes

Description 22x58 2552 char
hald 13x5 520 double
heat 13x1 104 double
ingredients 13x4 416 double

The response (heat) depends on the quantities of the four predictors (the
columns of ingredients).

Use stepwisefit to carry out the stepwise regression algorithm, beginning
with no terms in the model and using entrance/exit tolerances of 0.05/0.10
on the p-values:

stepwisefit(ingredients,heat,...
'penter',0.05,'premove',0.10);

Initial columns included: none
Step 1, added column 4, p=0.000576232
Step 2, added column 1, p=1.10528e-006
Final columns included: 1 4

'Coeff' 'Std.Err.' 'Status' 'P'
[ 1.4400] [ 0.1384] 'In' [1.1053e-006]
[ 0.4161] [ 0.1856] 'Out' [ 0.0517]
[-0.4100] [ 0.1992] 'Out' [ 0.0697]
[-0.6140] [ 0.0486] 'In' [1.8149e-007]

stepwisefit automatically includes an intercept term in the model, so you do
not add it explicitly to ingredients as you would for regress. For terms not
in the model, coefficient estimates and their standard errors are those that
result if the term is added.

The inmodel parameter is used to specify terms in an initial model:

initialModel = ...
[false true false false]; % Force in 2nd term
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stepwisefit(ingredients,heat,...
'inmodel',initialModel,...
'penter',.05,'premove',0.10);

Initial columns included: 2
Step 1, added column 1, p=2.69221e-007
Final columns included: 1 2

'Coeff' 'Std.Err.' 'Status' 'P'
[ 1.4683] [ 0.1213] 'In' [2.6922e-007]
[ 0.6623] [ 0.0459] 'In' [5.0290e-008]
[ 0.2500] [ 0.1847] 'Out' [ 0.2089]
[-0.2365] [ 0.1733] 'Out' [ 0.2054]

The preceding two models, built from different initial models, use different
subsets of the predictive terms. Terms 2 and 4, swapped in the two models,
are highly correlated:

term2 = ingredients(:,2);
term4 = ingredients(:,4);
R = corrcoef(term2,term4)
R =

1.0000 -0.9730
-0.9730 1.0000

To compare the models, use the stats output of stepwisefit:

[betahat1,se1,pval1,inmodel1,stats1] = ...
stepwisefit(ingredients,heat,...
'penter',.05,'premove',0.10,...
'display','off');

[betahat2,se2,pval2,inmodel2,stats2] = ...
stepwisefit(ingredients,heat,...

'inmodel',initialModel,...
'penter',.05,'premove',0.10,...
'display','off');

RMSE1 = stats1.rmse
RMSE1 =

2.7343
RMSE2 = stats2.rmse
RMSE2 =

2.4063
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The second model has a lower Root Mean Square Error (RMSE).

An added variable plot is used to determine the unique effect of adding a new
term to a model. The plot shows the relationship between the part of the
response unexplained by terms already in the model and the part of the new
term unexplained by terms already in the model. The “unexplained” parts
are measured by the residuals of the respective regressions. A scatter of the
residuals from the two regressions forms the added variable plot.

For example, suppose you want to add term2 to a model that already contains
the single term term1. First, consider the ability of term2 alone to explain
the response:

load hald
term2 = ingredients(:,2);

[b2,Ib2,res2] = regress(heat,[ones(size(term2)) term2]);

scatter(term2,heat)
xlabel('Term 2')
ylabel('Heat')
hold on
x2 = 20:80;
y2 = b2(1) + b2(2)*x2;
plot(x2,y2,'r')
title('{\bf Response Explained by Term 2: Ignoring Term 1}')
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Next, consider the following regressions involving the model term term1:

term1 = ingredients(:,1);
[b1,Ib1,res1] = regress(heat,[ones(size(term1)) term1]);
[b21,Ib21,res21] = regress(term2,[ones(size(term1)) term1]);
bres = regress(res1,[ones(size(res21)) res21]);

A scatter of the residuals res1 vs. the residuals res12 forms the added
variable plot:

figure
scatter(res21,res1)
xlabel('Residuals: Term 2 on Term 1')
ylabel('Residuals: Heat on Term 1')
hold on
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xres = -30:30;
yres = bres(1) + bres(2)*xres;
plot(xres,yres,'r')
title('{\bf Response Explained by Term 2: Adjusted for Term 1}')

Since the plot adjusted for term1 shows a stronger relationship (less variation
along the fitted line) than the plot ignoring term1, the two terms act jointly to
explain extra variation. In this case, adding term2 to a model consisting of
term1 would reduce the RMSE.

The Statistics Toolbox function addedvarplot produces added variable plots.
The previous plot is essentially the one produced by the following:

figure
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inmodel = [true false false false];
addedvarplot(ingredients,heat,2,inmodel)

In addition to the scatter of residuals, the plot shows 95% confidence intervals
on predictions from the fitted line. The fitted line has intercept zero because,
under the assumptions outlined in “Linear Regression Models” on page 9-3,
both of the plotted variables have mean zero. The slope of the fitted line is the
coefficient that term2 would have if it was added to the model with term1.

The addevarplot function is useful for considering the unique effect of adding
a new term to an existing model with any number of terms.
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Interactive Stepwise Regression
The stepwise interface provides interactive features that allow you to
investigate individual steps in a stepwise regression, and to build models
from arbitrary subsets of the predictive terms. To open the interface with
data from hald.mat:

load hald
stepwise(ingredients,heat)
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The upper left of the interface displays estimates of the coefficients for all
potential terms, with horizontal bars indicating 90% (colored) and 95% (grey)
confidence intervals. The red color indicates that, initially, the terms are not
in the model. Values displayed in the table are those that would result if
the terms were added to the model.

The middle portion of the interface displays summary statistics for the entire
model. These statistics are updated with each step.

The lower portion of the interface, Model History, displays the RMSE for
the model. The plot tracks the RMSE from step to step, so you can compare
the optimality of different models. Hover over the blue dots in the history to
see which terms were in the model at a particular step. Click on a blue dot
in the history to open a copy of the interface initialized with the terms in
the model at that step.

Initial models, as well as entrance/exit tolerances for the p-values of
F-statistics, are specified using additional input arguments to stepwise.
Defaults are an initial model with no terms, an entrance tolerance of 0.05,
and an exit tolerance of 0.10.

To center and scale the input data (compute z-scores) to improve conditioning
of the underlying least-squares problem, select Scale Inputs from the
Stepwise menu.

You proceed through a stepwise regression in one of two ways:

1 Click Next Step to select the recommended next step. The recommended
next step either adds the most significant term or removes the least
significant term. When the regression reaches a local minimum of RMSE,
the recommended next step is “Move no terms.” You can perform all of the
recommended steps at once by clicking All Steps.

2 Click a line in the plot or in the table to toggle the state of the corresponding
term. Clicking a red line, corresponding to a term not currently in the
model, adds the term to the model and changes the line to blue. Clicking
a blue line, corresponding to a term currently in the model, removes the
term from the model and changes the line to red.
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To call addedvarplot and produce an added variable plot from the stepwise
interface, select Added Variable Plot from the Stepwise menu. A list of
terms is displayed. Select the term you want to add, and then click OK.

Click Export to display a dialog box that allows you to select information
from the interface to save to the MATLAB workspace. Check the information
you want to export and, optionally, change the names of the workspace
variables to be created. Click OK to export the information.

Ridge Regression

• “Introduction” on page 9-29

• “Example: Ridge Regression” on page 9-30

Introduction
Coefficient estimates for the models described in “Multiple Linear Regression”
on page 9-8 rely on the independence of the model terms. When terms are
correlated and the columns of the design matrix X have an approximate
linear dependence, the matrix (XTX)–1 becomes close to singular. As a result,
the least-squares estimate

ˆ ( ) = −X X X yT T1

becomes highly sensitive to random errors in the observed response y,
producing a large variance. This situation of multicollinearity can arise, for
example, when data are collected without an experimental design.

Ridge regression addresses the problem by estimating regression coefficients
using

ˆ ( ) = + −X X kI X yT T1

where k is the ridge parameter and I is the identity matrix. Small positive
values of k improve the conditioning of the problem and reduce the variance
of the estimates. While biased, the reduced variance of ridge estimates
often result in a smaller mean square error when compared to least-squares
estimates.
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The Statistics Toolbox function ridge carries out ridge regression.

Example: Ridge Regression
For example, load the data in acetylene.mat, with observations of the
predictor variables x1, x2, x3, and the response variable y:

load acetylene

Plot the predictor variables against each other:

subplot(1,3,1)
plot(x1,x2,'.')
xlabel('x1'); ylabel('x2'); grid on; axis square

subplot(1,3,2)
plot(x1,x3,'.')
xlabel('x1'); ylabel('x3'); grid on; axis square

subplot(1,3,3)
plot(x2,x3,'.')
xlabel('x2'); ylabel('x3'); grid on; axis square

Note the correlation between x1 and the other two predictor variables.

Use ridge and x2fx to compute coefficient estimates for a multilinear model
with interaction terms, for a range of ridge parameters:

X = [x1 x2 x3];
D = x2fx(X,'interaction');
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D(:,1) = []; % No constant term
k = 0:1e-5:5e-3;
betahat = ridge(y,D,k);

Plot the ridge trace:

figure
plot(k,betahat,'LineWidth',2)
ylim([-100 100])
grid on
xlabel('Ridge Parameter')
ylabel('Standardized Coefficient')
title('{\bf Ridge Trace}')
legend('x1','x2','x3','x1x2','x1x3','x2x3')
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The estimates stabilize to the right of the plot. Note that the coefficient of
the x2x3 interaction term changes sign at a value of the ridge parameter
≈ 5 × 10–4.

Partial Least Squares

• “Introduction” on page 9-33
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• “Example: Partial Least Squares” on page 9-33

Introduction
Partial least-squares (PLS) regression is a technique used with data that
contain correlated predictor variables. This technique constructs new
predictor variables, known as components, as linear combinations of the
original predictor variables. PLS constructs these components while
considering the observed response values, leading to a parsimonious model
with reliable predictive power.

The technique is something of a cross between multiple linear regression
and principal component analysis:

• Multiple linear regression finds a combination of the predictors that best fit
a response.

• Principal component analysis finds combinations of the predictors with
large variance, reducing correlations. The technique makes no use of
response values.

• PLS finds combinations of the predictors that have a large covariance with
the response values.

PLS therefore combines information about the variances of both the predictors
and the responses, while also considering the correlations among them.

PLS shares characteristics with other regression and feature transformation
techniques. It is similar to ridge regression in that it is used in situations with
correlated predictors. It is similar to stepwise regression (or more general
feature selection techniques) in that it can be used to select a smaller set of
model terms. PLS differs from these methods, however, by transforming the
original predictor space into the new component space.

The Statistics Toolbox function plsregress carries out PLS regression.

Example: Partial Least Squares
For example, consider the data on biochemical oxygen demand in moore.mat,
padded with noisy versions of the predictors to introduce correlations:

load moore
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y = moore(:,6); % Response
X0 = moore(:,1:5); % Original predictors
X1 = X0+10*randn(size(X0)); % Correlated predictors
X = [X0,X1];

Use plsregress to perform PLS regression with the same number of
components as predictors, then plot the percentage variance explained in the
response as a function of the number of components:

[XL,yl,XS,YS,beta,PCTVAR] = plsregress(X,y,10);

plot(1:10,cumsum(100*PCTVAR(2,:)),'-bo');
xlabel('Number of PLS components');
ylabel('Percent Variance Explained in y');

Choosing the number of components in a PLS model is a critical step. The plot
gives a rough indication, showing nearly 80% of the variance in y explained
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by the first component, with as many as five additional components making
significant contributions.

The following computes the six-component model:

[XL,yl,XS,YS,beta,PCTVAR,MSE,stats] = plsregress(X,y,6);
yfit = [ones(size(X,1),1) X]*beta;

plot(y,yfit,'o')

The scatter shows a reasonable correlation between fitted and observed
responses, and this is confirmed by the R2 statistic:

TSS = sum((y-mean(y)).^2);
RSS = sum((y-yfit).^2);
Rsquared = 1 - RSS/TSS
Rsquared =

0.8421
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A plot of the weights of the ten predictors in each of the six components shows
that two of the components (the last two computed) explain the majority of
the variance in X:

plot(1:10,stats.W,'o-');
legend({'c1','c2','c3','c4','c5','c6'},'Location','NW')
xlabel('Predictor');
ylabel('Weight');

A plot of the mean-squared errors suggests that as few as two components
may provide an adequate model:

[axes,h1,h2] = plotyy(0:6,MSE(1,:),0:6,MSE(2,:));
set(h1,'Marker','o')
set(h2,'Marker','o')
legend('MSE Predictors','MSE Response')
xlabel('Number of Components')
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The calculation of mean-squared errors by plsregress is controlled by
optional parameter name/value pairs specifying cross-validation type and the
number of Monte Carlo repetitions.

Polynomial Models

• “Introduction” on page 9-37

• “Programmatic Polynomial Regression” on page 9-38

• “Interactive Polynomial Regression” on page 9-43

Introduction
Polynomial models are a special case of the linear models discussed in “Linear
Regression Models” on page 9-3. Polynomial models have the advantages of
being simple, familiar in their properties, and reasonably flexible for following
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data trends. They are also robust with respect to changes in the location and
scale of the data (see “Conditioning Polynomial Fits” on page 9-41). However,
polynomial models may be poor predictors of new values. They oscillate
between data points, especially as the degree is increased to improve the fit.
Asymptotically, they follow power functions, leading to inaccuracies when
extrapolating other long-term trends. Choosing a polynomial model is often a
trade-off between a simple description of overall data trends and the accuracy
of predictions made from the model.

Programmatic Polynomial Regression

• “Functions for Polynomial Fitting” on page 9-38

• “Displaying Polynomial Fits” on page 9-40

• “Conditioning Polynomial Fits” on page 9-41

Functions for Polynomial Fitting. To fit polynomials to data, MATLAB
and Statistics Toolbox software offer a number of dedicated functions. The
MATLAB function polyfit computes least-squares coefficient estimates for
polynomials of arbitrary degree. For example:

x = 0:5; % x data
y = [2 1 4 4 3 2]; % y data
p = polyfit(x,y,3) % Degree 3 fit
p =

-0.1296 0.6865 -0.1759 1.6746

Polynomial coefficients in p are listed from highest to lowest degree, so p(x)
≈ –0.13 x3 + 0.69 x2 – 0.18 x + 1.67. For convenience, polyfit sets up the
Vandermonde design matrix (vander) and calls backslash (mldivide) to
perform the fit.

Once the coefficients of a polynomial are collected in a vector p, use the
MATLAB function polyval to evaluate the polynomial at arbitrary inputs.
For example, the following plots the data and the fit over a range of inputs:

plot(x,y,'ro','LineWidth',2) % Plot data
hold on
xfit = -1:0.01:6;
yfit = polyval(p,xfit);
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plot(xfit,yfit,'LineWidth',2) % Plot fit
ylim([0,5])
grid on

Use the MATLAB function roots to find the roots of p:

r = roots(p)
r =

5.4786
-0.0913 + 1.5328i
-0.0913 - 1.5328i

The MATLAB function poly solves the inverse problem, finding a polynomial
with specified roots. poly is the inverse of roots up to ordering, scaling, and
round-off error.
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An optional output from polyfit is passed to polyval or to the Statistics
Toolbox function polyconf to compute prediction intervals for the fit.
For example, the following computes 95% prediction intervals for new
observations at each value of the predictor x:

[p,S] = polyfit(x,y,3);
[yhat,delta] = polyconf(p,x,S);
PI = [yhat-delta;yhat+delta]'
PI =

-5.3022 8.6514
-4.2068 8.3179
-2.9899 9.0534
-2.1963 9.8471
-2.6036 9.9211
-5.2229 8.7308

Optional input arguments to polyconf allow you to compute prediction
intervals for estimated values (yhat) as well as new observations, and to
compute the bounds simultaneously for all x instead of nonsimultaneously
(the default). The confidence level for the intervals can also be set.

Displaying Polynomial Fits. The documentation example function
polydemo combines the functions polyfit, polyval, roots, and polyconf to
produce a formatted display of data with a polynomial fit.

Note Statistics Toolbox documentation example files are located in the
\help\toolbox\stats\examples subdirectory of your MATLAB root folder
(matlabroot). This subdirectory is not on the MATLAB path at installation.
To use the M-files in this subdirectory, either add the subdirectory to the
MATLAB path (addpath) or make the subdirectory your current working
folder (cd).

For example, the following uses polydemo to produce a display of simulated
data with a quadratic trend, a fitted polynomial, and 95% prediction intervals
for new observations:

x = -5:5;
y = x.^2 - 5*x - 3 + 5*randn(size(x));
p = polydemo(x,y,2,0.05)
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p =
0.8107 -4.5054 -1.1862

polydemo calls the documentation example function polystr to convert the
coefficient vector p into a string for the polynomial expression displayed in the
figure title.

Conditioning Polynomial Fits. If x and y data are on very different
scales, polynomial fits may be badly conditioned, in the sense that coefficient
estimates are very sensitive to random errors in the data. For example,
using polyfit to estimate coefficients of a cubic fit to the U.S. census data in
census.mat produces the following warning:

load census
x = cdate;
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y = pop;
p = polyfit(x,y,3);
Warning: Polynomial is badly conditioned.

Add points with distinct X values,
reduce the degree of the polynomial,
or try centering and scaling as
described in HELP POLYFIT.

The following implements the suggested centering and scaling, and
demonstrates the robustness of polynomial fits under these transformations:

plot(x,y,'ro') % Plot data
hold on

z = zscore(x); % Compute z-scores of x data
zfit = linspace(z(1),z(end),100);
pz = polyfit(z,y,3); % Compute conditioned fit
yfit = polyval(pz,zfit);

xfit = linspace(x(1),x(end),100);
plot(xfit,yfit,'b-') % Plot conditioned fit vs. x data
grid on
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Interactive Polynomial Regression
The functions polyfit, polyval, and polyconf are interactively applied to
data using two graphical interfaces for polynomial fitting:

• “The Basic Fitting Tool” on page 9-43

• “The Polynomial Fitting Tool” on page 9-44

The Basic Fitting Tool. The Basic Fitting Tool is a MATLAB interface,
discussed in “Interactive Fitting” in the MATLAB documentation. The tool
allows you to:

• Fit interpolants and polynomials of degree ≤ 10

• Plot residuals and compute their norm

• Interpolate or extrapolate values from the fit
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• Save results to the MATLAB workspace

The Polynomial Fitting Tool. The Statistics Toolbox function polytool
opens the Polynomial Fitting Tool. For example, the following opens the
interface using simulated data with a quadratic trend and displays a fitted
polynomial with 95% prediction intervals for new observations:

x = -5:5;
y = x.^2 - 5*x - 3 + 5*randn(size(x));
polytool(x,y,2,0.05)

The tool allows you to:
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• Interactively change the degree of the fit. Change the value in the Degree
text box at the top of the figure.

• Evaluate the fit and the bounds using a movable crosshair. Click, hold, and
drag the crosshair to change its position.

• Export estimated coefficients, predicted values, prediction intervals, and
residuals to the MATLAB workspace. Click Export to a open a dialog box
with choices for exporting the data.

Options for the displayed bounds and the fitting method are available through
menu options at the top of the figure:

• The Bounds menu lets you choose between bounds on new observations
(the default) and bounds on estimated values. It also lets you choose
between nonsimultaneous (the default) and simultaneous bounds. See
polyconf for a description of these options.

• The Method menu lets you choose between ordinary least-squares
regression and robust regression, as described in “Robust Regression” on
page 9-14.

Response Surface Models

• “Introduction” on page 9-45

• “Programmatic Response Surface Methodology” on page 9-46

• “Interactive Response Surface Methodology” on page 9-51

Introduction
Polynomial models are generalized to any number of predictor variables xi (i
= 1, ..., N) as follows:

y x a a x a x x a xi
i

N

i ij
i j

N

i j ii
i

N

i( ) = + + + +
= < =
∑ ∑ ∑0

0 0

2 …

The model includes, from left to right, an intercept, linear terms, quadratic
interaction terms, and squared terms. Higher order terms would follow, as
necessary.
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Response surface models are multivariate polynomial models. They typically
arise in the design of experiments (see Chapter 14, “Design of Experiments”),
where they are used to determine a set of design variables that optimize a
response. Linear terms alone produce models with response surfaces that
are hyperplanes. The addition of interaction terms allows for warping of
the hyperplane. Squared terms produce the simplest models in which the
response surface has a maximum or minimum, and so an optimal response.

Response surface methodology (RSM) is the process of adjusting predictor
variables to move the response in a desired direction and, iteratively, to an
optimum. The method generally involves a combination of both computation
and visualization. The use of quadratic response surface models makes the
method much simpler than standard nonlinear techniques for determining
optimal designs.

Programmatic Response Surface Methodology
The file reaction.mat contains simulated data on the rate of a chemical
reaction:

load reaction

The variables include:

• rate — A 13-by-1 vector of observed reaction rates

• reactants— A 13-by-3 matrix of reactant concentrations

• xn — The names of the three reactants

• yn — The name of the response

In “Nonlinear Regression” on page 9-58, the nonlinear Hougen-Watson model
is fit to the data using nlinfit. However, there may be no theoretical basis
for choosing a particular model to fit the data. A quadratic response surface
model provides a simple way to determine combinations of reactants that
lead to high reaction rates.

As described in “Multiple Linear Regression” on page 9-8, the regress and
regstats functions fit linear models—including response surface models—to
data using a design matrix of model terms evaluated at predictor data. The
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x2fx function converts predictor data to design matrices for quadratic models.
The regstats function calls x2fx when instructed to do so.

For example, the following fits a quadratic response surface model to the
data in reaction.mat:

stats = regstats(rate,reactants,'quadratic','beta');
b = stats.beta; % Model coefficients

The 10-by-1 vector b contains, in order, a constant term and then the
coefficients for the model terms x1, x2, x3, x1x2, x1x3, x2x3, x1

2, x2
2, and x3

2, where
x1, x2, and x3 are the three columns of reactants. The order of coefficients for
quadratic models is described in the reference page for x2fx.

Since the model involves only three predictors, it is possible to visualize the
entire response surface using a color dimension for the reaction rate:

x1 = reactants(:,1);
x2 = reactants(:,2);
x3 = reactants(:,3);

xx1 = linspace(min(x1),max(x1),25);
xx2 = linspace(min(x2),max(x2),25);
xx3 = linspace(min(x3),max(x3),25);

[X1,X2,X3] = meshgrid(xx1,xx2,xx3);

RATE = b(1) + b(2)*X1 + b(3)*X2 + b(4)*X3 + ...
b(5)*X1.*X2 + b(6)*X1.*X3 + b(7)*X2.*X3 + ...
b(8)*X1.^2 + b(9)*X2.^2 + b(10)*X3.^2;

hmodel = scatter3(X1(:),X2(:),X3(:),5,RATE(:),'filled');
hold on
hdata = scatter3(x1,x2,x3,'ko','filled');
axis tight
xlabel(xn(1,:))
ylabel(xn(2,:))
zlabel(xn(3,:))
hbar = colorbar;
ylabel(hbar,yn);
title('{\bf Quadratic Response Surface Model}')
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legend(hdata,'Data','Location','NE')

The plot show a general increase in model response, within the space of
the observed data, as the concentration of n-pentane increases and the
concentrations of hydrogen and isopentane decrease.

Before trying to determine optimal values of the predictors, perhaps by
collecting more data in the direction of increased reaction rate indicated by
the plot, it is helpful to evaluate the geometry of the response surface. If x
= (x1, x2, x3)

T is the vector of predictors, and H is the matrix such that xTHx
gives the quadratic terms of the model, the model has a unique optimum if
and only if H is positive definite. For the data in this example, the model does
not have a unique optimum:
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H = [b(8),b(5)/2,b(6)/2; ...
b(5)/2,b(9),b(7)/2; ...
b(6)/2,b(7)/2,b(10)];

lambda = eig(H)
lambda =

1.0e-003 *
-0.1303
0.0412
0.4292

The negative eigenvalue shows a lack of positive definiteness. The saddle in
the model is visible if the range of the predictors in the plot (xx1, xx2, and
xx3) is expanded:
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When the number of predictors makes it impossible to visualize the entire
response surface, 3-, 2-, and 1-dimensional slices provide local views. The
MATLAB function slice displays 2-dimensional contours of the data at fixed
values of the predictors:

delete(hmodel)
X2slice = 200; % Fix n-Pentane concentration
slice(X1,X2,X3,RATE,[],X2slice,[])

One-dimensional contours are displayed by the Response Surface Tool,
rstool, described in the next section.
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Interactive Response Surface Methodology
The Statistics Toolbox function rstool opens a GUI for interactively
investigating simultaneous one-dimensional contours of multidimensional
response surface models. For example, the following opens the interface with
a quadratic response surface fit to the data in reaction.mat:

load reaction
alpha = 0.01; % Significance level
rstool(reactants,rate,'quadratic',alpha,xn,yn)

A sequence of plots is displayed, each showing a contour of the response
surface against a single predictor, with all other predictors held fixed.
Confidence intervals for new observations are shown as dashed red curves
above and below the response. Predictor values are displayed in the text
boxes on the horizontal axis and are marked by vertical dashed blue lines
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in the plots. Predictor values are changed by editing the text boxes or by
dragging the dashed blue lines. When you change the value of a predictor, all
plots update to show the new point in predictor space.

Note The Statistics Toolbox demonstration function rsmdemo generates
simulated data for experimental settings specified by either the user or by
a D-optimal design generated by cordexch. It uses the rstool interface to
visualize response surface models fit to the data, and it uses the nlintool
interface to visualize a nonlinear model fit to the data.

Generalized Linear Models

• “Introduction” on page 9-52

• “Example: Generalized Linear Models” on page 9-53

Introduction
Linear regression models describe a linear relationship between a response
and one or more predictive terms. Many times, however, a nonlinear
relationship exists. “Nonlinear Regression” on page 9-58 describes general
nonlinear models. A special class of nonlinear models, known as generalized
linear models, makes use of linear methods.

Recall that linear models have the following characteristics:

• At each set of values for the predictors, the response has a normal
distribution with mean μ.

• A coefficient vector b defines a linear combination Xb of the predictors X.

• The model is μ = Xb.

In generalized linear models, these characteristics are generalized as follows:

• At each set of values for the predictors, the response has a distribution
that may be normal, binomial, Poisson, gamma, or inverse Gaussian, with
parameters including a mean μ.

• A coefficient vector b defines a linear combination Xb of the predictors X.
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• A link function f defines the model as f (μ) = Xb.

Example: Generalized Linear Models
The following data are derived from carbig.mat, which contains
measurements of large cars of various weights. Each weight in w has a
corresponding number of cars in total and a corresponding number of
poor-mileage cars in poor:

w = [2100 2300 2500 2700 2900 3100 ...
3300 3500 3700 3900 4100 4300]';

total = [48 42 31 34 31 21 23 23 21 16 17 21]';
poor = [1 2 0 3 8 8 14 17 19 15 17 21]';

A plot shows that the proportion of poor-mileage cars follows an S-shaped
sigmoid:

plot(w,poor./total,'x','LineWidth',2)
grid on
xlabel('Weight')
ylabel('Proportion of Poor-Mileage Cars')
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The logistic model is useful for proportion data. It defines the relationship
between the proportion p and the weight w by:

log[p/(1–p)] = b1 + b2w

Some of the proportions in the data are 0 and 1, making the left-hand side of
this equation undefined. To keep the proportions within range, add relatively
small perturbations to the poor and total values. A semi-log plot then shows
a nearly linear relationship, as predicted by the model:

p_adjusted = (poor+.5)./(total+1);
semilogy(w,p_adjusted./(1-p_adjusted),'x','LineWidth',2)
grid on
xlabel('Weight')
ylabel('Adjusted p / (1 - p)')
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It is reasonable to assume that the values of poor follow binomial
distributions, with the number of trials given by total and the percentage
of successes depending on w. This distribution can be accounted for in the
context of a logistic model by using a generalized linear model with link
function log(µ/(1–µ)) = Xb.

Use the glmfit function to carry out the associated regression:

b = glmfit(w,[poor total],'binomial','link','logit')
b =

-13.3801
0.0042

To use the coefficients in b to compute fitted proportions, invert the logistic
relationship:

p = 1/(1 + exp(–b1 – b2w))
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Use the glmval function to compute the fitted values:

x = 2100:100:4500;
y = glmval(b,x,'logit');

plot(w,poor./total,'x','LineWidth',2)
hold on
plot(x,y,'r-','LineWidth',2)
grid on
xlabel('Weight')
ylabel('Proportion of Poor-Mileage Cars')

The previous is an example of logistic regression. For an example of a kind
of stepwise logistic regression, analogous to stepwise regression for linear
models, see “Sequential Feature Selection” on page 10-23.
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Multivariate Regression
Whether or not the predictor x is a vector of predictor variables, multivariate
regression refers to the case where the response y = (y1, ..., yM) is a vector of
M response variables.

The Statistics Toolbox functions mvregress and mvregresslike are used
for multivariate regression analysis.
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Nonlinear Regression

In this section...

“Nonlinear Regression Models” on page 9-58

“Parametric Models” on page 9-59

“Mixed-Effects Models” on page 9-64

“Regression Trees” on page 9-90

Nonlinear Regression Models
The models described in “Linear Regression Models” on page 9-3 are often
called empirical models, because they are based solely on observed data.
Model parameters typically have no relationship to any mechanism producing
the data. To increase the accuracy of a linear model within the range of
observations, the number of terms is simply increased.

Nonlinear models, on the other hand, typically involve parameters with
specific physical interpretations. While they require a priori assumptions
about the data-producing process, they are often more parsimonious than
linear models, and more accurate outside the range of observed data.

Parametric nonlinear models represent the relationship between a continuous
response variable and one or more predictor variables (either continuous or
categorical) in the form y = f (X, β) + ε, where

• y is an n by-1 vector of observations of the response variable.

• X is an n-by-p design matrix determined by the predictors.

• β is a p-by-1 vector of unknown parameters to be estimated.

• f is any function of X and β.

• ε is an n-by-1 vector of independent, identically distributed random
disturbances.

Nonparametric models do not attempt to characterize the relationship
between predictors and response with model parameters. Descriptions are
often graphical, as in the case of “Regression Trees” on page 9-90.
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Parametric Models

• “A Parametric Nonlinear Model” on page 9-59

• “Confidence Intervals for Parameter Estimates” on page 9-61

• “Confidence Intervals for Predicted Responses” on page 9-61

• “Interactive Nonlinear Parametric Regression” on page 9-62

A Parametric Nonlinear Model
The Hougen-Watson model (Bates and Watts, [2], pp. 271–272) for reaction
kinetics is an example of a parametric nonlinear model. The form of the
model is

rate
x x

x x x
= −

+ + +
 
  

1 2 3 5

2 1 3 2 4 31
/

where rate is the reaction rate, x1, x2, and x3 are concentrations of hydrogen,
n-pentane, and isopentane, respectively, and β1, β2, ... , β5 are the unknown
parameters.

The file reaction.mat contains simulated reaction data:

load reaction

The variables are:

• rate — A 13-by-1 vector of observed reaction rates

• reactants— A 13-by-3 matrix of reactant concentrations

• beta — A 5-by-1 vector of initial parameter estimates

• model— The name of an M-file function for the model

• xn — The names of the reactants

• yn — The name of the response

The M-file function for the model is hougen, which looks like this:

type hougen
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function yhat = hougen(beta,x)
%HOUGEN Hougen-Watson model for reaction kinetics.
% YHAT = HOUGEN(BETA,X) gives the predicted values of the
% reaction rate, YHAT, as a function of the vector of
% parameters, BETA, and the matrix of data, X.
% BETA must have five elements and X must have three
% columns.
%
% The model form is:
% y = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3)

b1 = beta(1);
b2 = beta(2);
b3 = beta(3);
b4 = beta(4);
b5 = beta(5);

x1 = x(:,1);
x2 = x(:,2);
x3 = x(:,3);

yhat = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3);

The function nlinfit is used to find least-squares parameter estimates
for nonlinear models. It uses the Gauss-Newton algorithm with
Levenberg-Marquardt modifications for global convergence.

nlinfit requires the predictor data, the responses, and an initial guess of the
unknown parameters. It also requires a function handle to a function that
takes the predictor data and parameter estimates and returns the responses
predicted by the model.

To fit the reaction data, call nlinfit using the following syntax:

load reaction
betahat = nlinfit(reactants,rate,@hougen,beta)
betahat =

1.2526
0.0628
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0.0400
0.1124
1.1914

The output vector betahat contains the parameter estimates.

The function nlinfit has robust options, similar to those for robustfit, for
fitting nonlinear models to data with outliers.

Confidence Intervals for Parameter Estimates
To compute confidence intervals for the parameter estimates, use the function
nlparci, together with additional outputs from nlinfit:

[betahat,resid,J] = nlinfit(reactants,rate,@hougen,beta);
betaci = nlparci(betahat,resid,J)
betaci =

-0.7467 3.2519
-0.0377 0.1632
-0.0312 0.1113
-0.0609 0.2857
-0.7381 3.1208

The columns of the output betaci contain the lower and upper bounds,
respectively, of the (default) 95% confidence intervals for each parameter.

Confidence Intervals for Predicted Responses
The function nlpredci is used to compute confidence intervals for predicted
responses:

[yhat,delta] = nlpredci(@hougen,reactants,betahat,resid,J);
opd = [rate yhat delta]
opd =

8.5500 8.4179 0.2805
3.7900 3.9542 0.2474
4.8200 4.9109 0.1766
0.0200 -0.0110 0.1875
2.7500 2.6358 0.1578

14.3900 14.3402 0.4236
2.5400 2.5662 0.2425
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4.3500 4.0385 0.1638
13.0000 13.0292 0.3426
8.5000 8.3904 0.3281
0.0500 -0.0216 0.3699

11.3200 11.4701 0.3237
3.1300 3.4326 0.1749

The output opd contains the observed rates in the first column and the
predicted rates in the second column. The (default) 95% simultaneous
confidence intervals on the predictions are the values in the second column ±
the values in the third column. These are not intervals for new observations
at the predictors, even though most of the confidence intervals do contain the
original observations.

Interactive Nonlinear Parametric Regression
Calling nlintool opens a graphical user interface (GUI) for interactive
exploration of multidimensional nonlinear functions, and for fitting
parametric nonlinear models. The GUI calls nlinfit, and requires the same
inputs. The interface is analogous to polytool and rstool for polynomial
models.

Open nlintool with the reaction data and the hougen model by typing

load reaction
nlintool(reactants,rate,@hougen,beta,0.01,xn,yn)
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You see three plots. The response variable for all plots is the reaction rate,
plotted in green. The red lines show confidence intervals on predicted
responses. The first plot shows hydrogen as the predictor, the second shows
n-pentane, and the third shows isopentane.

Each plot displays the fitted relationship of the reaction rate to one predictor
at a fixed value of the other two predictors. The fixed values are in the text
boxes below each predictor axis. Change the fixed values by typing in a new
value or by dragging the vertical lines in the plots to new positions. When
you change the value of a predictor, all plots update to display the model
at the new point in predictor space.
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While this example uses only three predictors, nlintool can accommodate
any number of predictors.

Note The Statistics Toolbox demonstration function rsmdemo generates
simulated data for experimental settings specified by either the user or by
a D-optimal design generated by cordexch. It uses the rstool interface to
visualize response surface models fit to the data, and it uses the nlintool
interface to visualize a nonlinear model fit to the data.

Mixed-Effects Models

• “Introduction” on page 9-64

• “Mixed-Effects Model Hierarchy” on page 9-65

• “Specifying Mixed-Effects Models” on page 9-67

• “Specifying Covariate Models” on page 9-69

• “Using Output Functions with Mixed-Effects Models” on page 9-71

• “Example: Mixed-Effects Models” on page 9-76

Introduction
In statistics, an effect is anything that influences the value of a response
variable at a particular setting of the predictor variables. Effects are
translated into model parameters. In linear models, effects become
coefficients, representing the proportional contributions of model terms. In
nonlinear models, effects often have specific physical interpretations, and
appear in more general nonlinear combinations.

Fixed effects represent population parameters, assumed to be the same each
time data is collected. Estimating fixed effects is the traditional domain of
regression modeling. Random effects, by comparison, are sample-dependent
random variables. In modeling, random effects act like additional error terms,
and their distributions and covariances must be specified.

For example, consider a model of the elimination of a drug from the
bloodstream. The model uses time t as a predictor and the concentration
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of the drug C as the response. The nonlinear model term C0e
–rt combines

parameters C0 and r, representing, respectively, an initial concentration
and an elimination rate. If data is collected across multiple individuals, it
is reasonable to assume that the elimination rate is a random variable ri
depending on individual i, varying around a population mean r . The term
C0e

–rt becomes

C e C er r r t b ti i
0 0

− + − − +=[ ( )] ( ) ,

where β = r is a fixed effect and bi = r ri − is a random effect.

Random effects are useful when data falls into natural groups. In the drug
elimination model, the groups are simply the individuals under study. More
sophisticated models might group data by an individual’s age, weight, diet,
etc. Although the groups are not the focus of the study, adding random effects
to a model extends the reliability of inferences beyond the specific sample of
individuals.

Mixed-effects models account for both fixed and random effects. As with
all regression models, their purpose is to describe a response variable as a
function of the predictor variables. Mixed-effects models, however, recognize
correlations within sample subgroups. In this way, they provide a compromise
between ignoring data groups entirely and fitting each group with a separate
model.

Mixed-Effects Model Hierarchy
Suppose data for a nonlinear regression model falls into one of m distinct
groups i = 1, ..., m. To account for the groups in a model, write response j
in group i as:

y f xij ij ij= +( , ) 

yij is the response, xij is a vector of predictors, φ is a vector of model
parameters, and εij is the measurement or process error. The index j ranges
from 1 to ni, where ni is the number of observations in group i. The function
f specifies the form of the model. Often, xij is simply an observation time tij.
The errors are usually assumed to be independent and identically, normally
distributed, with constant variance.
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Estimates of the parameters in φ describe the population, assuming those
estimates are the same for all groups. If, however, the estimates vary by
group, the model becomes

y f xij i ij ij= +( , ) 

In a mixed-effects model, φi may be a combination of a fixed and a random
effect:

 i ib= +

The random effects bi are usually described as multivariate normally
distributed, with mean zero and covarianceΨ. Estimating the fixed effects
β and the covariance of the random effects Ψ provides a description of the
population that does not assume the parameters φi are the same across
groups. Estimating the random effects bi also gives a description of specific
groups within the data.

Model parameters do not have to be identified with individual effects. In
general, design matrices A and B are used to identify parameters with linear
combinations of fixed and random effects:

 i iA Bb= +

If the design matrices differ among groups, the model becomes

 i i i iA B b= +

If the design matrices also differ among observations, the model becomes

 

 
ij ij ij i

ij ij ij ij

A B b

y f x

= +

= +( , )

Some of the group-specific predictors in xij may not change with observation j.
Calling those vi, the model becomes

y f x vij ij ij i ij= +( , , ) 
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Specifying Mixed-Effects Models
Suppose data for a nonlinear regression model falls into one of m distinct
groups i = 1, ..., m. (Specifically, suppose that the groups are not nested.) To
specify a general nonlinear mixed-effects model for this data:

1 Define group-specific model parameters φi as linear combinations of fixed
effects β and random effects bi.

2 Define response values yi as a nonlinear function f of the parameters and
group-specific predictor variables Xi.

The model is:

 
 

 

i i i i

i i i i

i

i

A B b

y f X

b N

N

= +
= +( , )

( , )

( , )

∼

∼

0

0 2
Ψ

This formulation of the nonlinear mixed-effects model uses the following
notation:

φi A vector of group-specific model parameters

β A vector of fixed effects, modeling population parameters

bi A vector of multivariate normally distributed group-specific random
effects

Ai A group-specific design matrix for combining fixed effects

Bi A group-specific design matrix for combining random effects

Xi A data matrix of group-specific predictor values

yi A data vector of group-specific response values

f A general, real-valued function of φi and Xi
εi A vector of group-specific errors, assumed to be independent,

identically, normally distributed, and independent of bi
Ψ A covariance matrix for the random effects

σ2 The error variance, assumed to be constant across observations
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For example, consider a model of the elimination of a drug from the
bloodstream. The model incorporates two overlapping phases:

• An initial phase p during which drug concentrations reach equilibrium
with surrounding tissues

• A second phase q during which the drug is eliminated from the bloodstream

For data on multiple individuals i, the model is

y C e C eij pi
r t

qi
r t

ij
pi ij qi ij= + +− −  ,

where yij is the observed concentration in individual i at time tij. The model
allows for different sampling times and different numbers of observations for
different individuals.

The elimination rates rpi and rqi must be positive to be physically meaningful.
Enforce this by introducing the log rates Rpi = log(rpi) and Rqi = log(rqi) and
reparametrizing the model:

y C e C eij pi
R t

qi
R t

ij
pi ij qi ij= + +− −exp( ) exp( ) 

Choosing which parameters to model with random effects is an important
consideration when building a mixed-effects model. One technique is to add
random effects to all parameters, and use estimates of their variances to
determine their significance in the model. An alternative is to fit the model
separately to each group, without random effects, and look at the variation
of the parameter estimates. If an estimate varies widely across groups, or if
confidence intervals for each group have minimal overlap, the parameter is a
good candidate for a random effect.

To introduce fixed effects β and random effects bi for all model parameters,
reexpress the model as follows:
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y C C C e

C C C e

ij p pi p
R R R t

q qi q

p pi p ij= + − +

+ −

− + −

−

[ ( )]

[ ( )]

exp[ ( )]
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ij

i
b t

i

q qi q ij

i ijb e

b e

+ −

− +

−

+

= + +

+

( )]

exp( )

ex

( )

( )








1 1

3 3

2 2

pp( ) 4 4+ +b t
ij

i ij

In the notation of the general model:





=
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟1

4

1

4

1

� � �, ,b
b

b
y

y

y
i

i

i

i

i

ini

⎟⎟
⎟

=
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, ,X
t

t
i

i

ini

1

�

where ni is the number of observations of individual i. In this case, the design
matrices Ai and Bi are, at least initially, 4-by-4 identity matrices. Design
matrices may be altered, as necessary, to introduce weighting of individual
effects, or time dependency.

Fitting the model and estimating the covariance matrix Ψ often leads to
further refinements. A relatively small estimate for the variance of a random
effect suggests that it can be removed from the model. Likewise, relatively
small estimates for covariances among certain random effects suggests that a
full covariance matrix is unnecessary. Since random effects are unobserved,
Ψ must be estimated indirectly. Specifying a diagonal or block-diagonal
covariance pattern forΨ can improve convergence and efficiency of the fitting
algorithm.

The Statistics Toolbox function nlmefit fits the general nonlinear
mixed-effects model to data, estimating the fixed and random effects. The
function also estimates the covariance matrix Ψ for the random effects.
Additional diagnostic outputs allow you to assess tradeoffs between the
number of model parameters and the goodness of fit.

Specifying Covariate Models
If the model in “Specifying Mixed-Effects Models” on page 9-67 assumes a
group-dependent covariate such as weight (w) the model becomes:
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Thus, the parameter φi for any individual in the ith group is:
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To specify a covariate model, use the 'FEGroupDesign' option.

'FEGroupDesign' is a p-by-q-by-m array specifying a different p-by-q
fixed-effects design matrix for each of the m groups. Using the previous
example, the array resembles the following:
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1 Create the array.

% Number of parameters in the model (Phi)
num_params = 3;
% Number of covariates
num_cov = 1;
% Assuming number of groups in the data set is 7
num_groups = 7;
% Array of covariate values
covariates = [75; 52; 66; 55; 70; 58; 62 ];
A = repmat(eye(num_params, num_params+num_cov),...
[1,1,num_groups]);
A(1,num_params+1,1:num_groups) = covariates(:,1)

2 Create a struct with the specified design matrix.

options.FEGroupDesign = A;

3 Specify the arguments for nlmefit as shown in “Example: Mixed-Effects
Models” on page 9-76.

Using Output Functions with Mixed-Effects Models
The Outputfcn field of the options structure specifies one or more functions
that the solver calls after each iteration. Typically, you might use an output
function to plot points at each iteration or to display optimization quantities
from the algorithm. To set up an output function:

9-71



9 Regression Analysis

1 Write the output function as a MATLAB file function or subfunction.

2 Use statset to set the value of Outputfcn to be a function handle, that is,
the name of the function preceded by the @ sign. For example, if the output
function is outfun.m, the command

options = statset('OutputFcn', @outfun);

specifies OutputFcn to be the handle to outfun. To specify multiple output
functions, use the syntax:

options = statset('OutputFcn',{@outfun, @outfun2});

3 Call the optimization function with options as an input argument.

For an example of an output function, see “Sample Output Function” on page
9-75.

Structure of the Output Function. The function definition line of the
output function has the following form:

stop = outfun(beta,status,state)

where

• beta is the current fixed effects.

• status is a structure containing data from the current iteration. “Fields in
status” on page 9-72 describes the structure in detail.

• state is the current state of the algorithm. “States of the Algorithm” on
page 9-74 lists the possible values.

• stop is a flag that is true or false depending on whether the optimization
routine should quit or continue. See “Stop Flag” on page 9-74 for more
information.

The solver passes the values of the input arguments to outfun at each
iteration.

Fields in status. The following table lists the fields of the status structure:
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Field Description

procedure • 'ALT' — alternating algorithm for the optimization of
the linear mixed effects or restricted linear mixed effects
approximations

• 'LAP'— optimization of the Laplacian approximation for
first order or first order conditional estimation

iteration An integer starting from 0

inner A structure describing the status of the inner iterations
within the ALT and LAP procedures, with the fields:

• procedure — When procedure is 'ALT':

- 'PNLS' (penalized non-linear least squares)

- 'LME' (linear mixed-effects estimation)

- 'none'
When procedure is 'LAP',

- 'PNLS' (penalized non-linear least squares)

- 'PLM' (profiled likelihood maximization)

- 'none'

• state — one of the following:

- 'init'

- 'iter'

- 'done'

- 'none'

• iteration— an integer starting from 0, or NaN

fval The current log likelihood

Psi The current random-effects covariance matrix

theta The current parameterization of Psi

mse The current error variance
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States of the Algorithm. The following table lists the possible values for
state:

state Description

'init' The algorithm is in the initial state before the first
iteration.

'iter' The algorithm is at the end of an iteration.

'done' The algorithm is in the final state after the last iteration.

The following code illustrates how the output function might use the value of
state to decide which tasks to perform at the current iteration:

switch state
case 'iter'

% Make updates to plot or guis as needed
case 'init'

% Setup for plots or guis
case 'done'

% Cleanup of plots, guis, or final plot
otherwise
end

Stop Flag. The output argument stop is a flag that is true or false.
The flag tells the solver whether it should quit or continue. The following
examples show typical ways to use the stop flag.

Stopping an Optimization Based on Data in the procedure
Option

The output function can stop a solver at any iteration based on the current
data in optimValues. For example, the following code sets stop to true if the
directional derivative is less than .01:

stop = outfun(beta,status,state)
stop = false;
% Check if loglikelihood is more than 132.
if status.logl > -132

stop = true;
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end

Stopping an Iteration Based on GUI Input

If you design a GUI to perform nlmefit iterations, you can make the output
function stop when a user clicks a Stop button on the GUI. The following
code shows how to do this:

outpufunction stopper(varargin)
% Set flag to stop when button is pressed
stop = true;
disp('Calculation stopped.')

end

Sample Output Function. The following code implements a dialog to cancel
calculations:

function retval = stop_outfcn(beta,str,status)
persistent h stop;
if isequal(str.inner.state,'none')

switch(status)
case 'init'

% Initialize dialog
stop = false;
h = msgbox('Press STOP to cancel calculations.',...

'NLMEFIT: Iteration 0 ');
button = findobj(h,'type','uicontrol');
set(button,'String','STOP','Callback',@stopper)
pos = get(h,'Position');
pos(3) = 1.1 * pos(3);
set(h,'Position',pos)
drawnow

case 'iter'
% Display iteration number in the dialog title
set(h,'Name',sprintf('NLMEFIT: Iteration %d',...

str.iteration))
drawnow;

case 'done'
% Delete dialog
delete(h);
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end
end
if stop

% Stop if the dialog button has been pressed
delete(h)

end
retval = stop;

function stopper(varargin)
% Set flag to stop when button is pressed
stop = true;
disp('Calculation stopped.')

end
end

Example: Mixed-Effects Models
The data in indomethacin.mat records concentrations of the drug
indomethacin in the bloodstream of six subjects over eight hours:

load indomethacin

gscatter(time,concentration,subject)
xlabel('Time (hours)')
ylabel('Concentration (mcg/ml)')
title('{\bf Indomethacin Elimination}')
hold on
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“Specifying Mixed-Effects Models” on page 9-67 discusses a useful model for
this type of data. Construct the model via an anonymous function as follows:

model = @(phi,t)(phi(1)*exp(-exp(phi(2))*t) + ...
phi(3)*exp(-exp(phi(4))*t));

Use the nlinfit function to fit the model to all of the data, ignoring
subject-specific effects:

phi0 = [1 1 1 1];
[phi,res] = nlinfit(time,concentration,model,phi0);

numObs = length(time);
numParams = 4;
df = numObs-numParams;
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mse = (res'*res)/df
mse =

0.0304

tplot = 0:0.01:8;
plot(tplot,model(phi,tplot),'k','LineWidth',2)
hold off

A boxplot of residuals by subject shows that the boxes are mostly above or
below zero, indicating that the model has failed to account for subject-specific
effects:

colors = 'rygcbm';
h = boxplot(res,subject,'colors',colors,'symbol','o');
set(h(~isnan(h)),'LineWidth',2)
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hold on
boxplot(res,subject,'colors','k','symbol','ko')
grid on
xlabel('Subject')
ylabel('Residual')
hold off

To account for subject-specific effects, fit the model separately to the data
for each subject:

phi0 = [1 1 1 1];
PHI = zeros(4,6);
RES = zeros(11,6);
for I = 1:6

tI = time(subject == I);
cI = concentration(subject == I);
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[PHI(:,I),RES(:,I)] = nlinfit(tI,cI,model,phi0);
end

PHI
PHI =

0.1915 0.4989 1.6757 0.2545 3.5661 0.9685
-1.7878 -1.6354 -0.4122 -1.6026 1.0408 -0.8731
2.0293 2.8277 5.4683 2.1981 0.2915 3.0023
0.5794 0.8013 1.7498 0.2423 -1.5068 1.0882

numParams = 24;
df = numObs-numParams;
mse = (RES(:)'*RES(:))/df
mse =

0.0057

gscatter(time,concentration,subject)
xlabel('Time (hours)')
ylabel('Concentration (mcg/ml)')
title('{\bf Indomethacin Elimination}')
hold on
for I = 1:6

plot(tplot,model(PHI(:,I),tplot),'Color',colors(I))
end
axis([0 8 0 3.5])
hold off

9-80



Nonlinear Regression

PHI gives estimates of the four model parameters for each of the six subjects.
The estimates vary considerably, but taken as a 24-parameter model of the
data, the mean-squared error of 0.0057 is a significant reduction from 0.0304
in the original four-parameter model.

A boxplot of residuals by subject shows that the larger model accounts for
most of the subject-specific effects:

h = boxplot(RES,'colors',colors,'symbol','o');
set(h(~isnan(h)),'LineWidth',2)
hold on
boxplot(RES,'colors','k','symbol','ko')
grid on
xlabel('Subject')
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ylabel('Residual')
hold off

The spread of the residuals (the vertical scale of the boxplot) is much smaller
than in the previous boxplot, and the boxes are now mostly centered on zero.

While the 24-parameter model successfully accounts for variations due
to the specific subjects in the study, it does not consider the subjects as
representatives of a larger population. The sampling distribution from which
the subjects are drawn is likely more interesting than the sample itself. The
purpose of mixed-effects models is to account for subject-specific variations
more broadly, as random effects varying around population means.

Use the nlmefit function to fit a mixed-effects model to the data.
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The following anonymous function, nlme_model, adapts the four-parameter
model used by nlinfit to the calling syntax of nlmefit by allowing separate
parameters for each individual. By default, nlmefit assigns random effects
to all the model parameters. Also by default, nlmefit assumes a diagonal
covariance matrix (no covariance among the random effects) to avoid
overparametrization and related convergence issues.

nlme_model = @(PHI,t)(PHI(:,1).*exp(-exp(PHI(:,2)).*t) + ...
PHI(:,3).*exp(-exp(PHI(:,4)).*t));

phi0 = [1 1 1 1];
[phi,PSI,stats] = nlmefit(time,concentration,subject, ...

[],nlme_model,phi0)
phi =

0.4606
-1.3459
2.8277
0.7729

PSI =
0.0124 0 0 0

0 0.0000 0 0
0 0 0.3264 0
0 0 0 0.0250

stats =
logl: 54.5884
mse: 0.0066
aic: -91.1767
bic: -71.4698

sebeta: NaN
dfe: 57

The mean-squared error of 0.0066 is comparable to the 0.0057 of the
24-parameter model without random effects, and significantly better than the
0.0304 of the four-parameter model without random effects.

The estimated covariance matrix PSI shows that the variance of the second
random effect is essentially zero, suggesting that you can remove it to simplify
the model. To do this, use the REParamsSelect parameter to specify the
indices of the parameters to be modeled with random effects in nlmefit:

[phi,PSI,stats] = nlmefit(time,concentration,subject, ...
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[],nlme_model,phi0, ...
'REParamsSelect',[1 3 4])

phi =
0.4606

-1.3460
2.8277
0.7729

PSI =
0.0124 0 0

0 0.3270 0
0 0 0.0250

stats =
logl: 54.5876
mse: 0.0066
aic: -93.1752
bic: -75.6580

sebeta: NaN
dfe: 58

The log-likelihood logl is almost identical to what it was with random effects
for all of the parameters, the Akaike information criterion aic is reduced
from -91.1767 to -93.1752, and the Bayesian information criterion bic is
reduced from -71.4698 to -75.6580. These measures support the decision to
drop the second random effect.

Refitting the simplified model with a full covariance matrix allows for
identification of correlations among the random effects. To do this, use the
CovPattern parameter to specify the pattern of nonzero elements in the
covariance matrix:

[phi,PSI,stats] = nlmefit(time,concentration,subject, ...
[],nlme_model,phi0, ...
'REParamsSelect',[1 3 4], ...
'CovPattern',ones(3))

phi =
0.5613

-1.1407
2.8148
0.8293

PSI =
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0.0236 0.0500 0.0032
0.0500 0.4768 0.1152
0.0032 0.1152 0.0321

stats =
logl: 58.4731
mse: 0.0061
aic: -94.9462
bic: -70.8600

sebeta: NaN
dfe: 55

The estimated covariance matrix PSI shows that the random effects on the
last two parameters have a relatively strong correlation, and both have a
relatively weak correlation with the first random effect. This structure in
the covariance matrix is more apparent if you convert PSI to a correlation
matrix using corrcov:

RHO = corrcov(PSI)
RHO =

1.0000 0.4707 0.1179
0.4707 1.0000 0.9316
0.1179 0.9316 1.0000

imagesc(RHO)
set(gca,'XTick',[1 2 3],'YTick',[1 2 3])
title('{\bf Random Effect Correlation}')
h = colorbar;
set(get(h,'YLabel'),'String','Correlation');
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Incorporate this structure into the model by changing the specification of the
covariance pattern to block-diagonal:

P = [1 0 0;0 1 1;0 1 1] % Covariance pattern
P =

1 0 0
0 1 1
0 1 1

[phi,PSI,stats,b] = nlmefit(time,concentration,subject, ...
[],nlme_model,phi0, ...
'REParamsSelect',[1 3 4], ...
'CovPattern',P)

phi =
0.5850
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-1.1087
2.8056
0.8476

PSI =
0.0331 0 0

0 0.4793 0.1069
0 0.1069 0.0294

stats =
logl: 57.4996
mse: 0.0061
aic: -96.9992
bic: -77.2923

sebeta: NaN
dfe: 57

b =
-0.2438 0.0723 0.2014 0.0592 -0.2181 0.1289
-0.8500 -0.1237 0.9538 -0.7267 0.5895 0.1571
-0.1591 0.0033 0.1568 -0.2144 0.1834 0.0300

The block-diagonal covariance structure reduces aic from -94.9462 to
-96.9992 and bic from -70.8600 to -77.2923 without significantly affecting
the log-likelihood. These measures support the covariance structure used in
the final model.

The output b gives predictions of the three random effects for each of the six
subjects. These are combined with the estimates of the fixed effects in phi
to produce the mixed-effects model.

Use the following commands to plot the mixed-effects model for each of the six
subjects. For comparison, the model without random effects is also shown.

PHI = repmat(phi,1,6) + ... % Fixed effects
[b(1,:);zeros(1,6);b(2,:);b(3,:)]; % Random effects

RES = zeros(11,6); % Residuals
colors = 'rygcbm';
for I = 1:6

fitted_model = @(t)(PHI(1,I)*exp(-exp(PHI(2,I))*t) + ...
PHI(3,I)*exp(-exp(PHI(4,I))*t));

tI = time(subject == I);
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cI = concentration(subject == I);
RES(:,I) = cI - fitted_model(tI);

subplot(2,3,I)
scatter(tI,cI,20,colors(I),'filled')
hold on
plot(tplot,fitted_model(tplot),'Color',colors(I))
plot(tplot,model(phi,tplot),'k')
axis([0 8 0 3.5])
xlabel('Time (hours)')
ylabel('Concentration (mcg/ml)')
legend(num2str(I),'Subject','Fixed')

end

9-88



Nonlinear Regression

If obvious outliers in the data (visible in previous box plots) are ignored, a
normal probability plot of the residuals shows reasonable agreement with
model assumptions on the errors:

normplot(RES(:))

9-89



9 Regression Analysis

Regression Trees

Introduction
Parametric models specify the form of the relationship between predictors and
a response, as in the Hougen-Watson model described in “Parametric Models”
on page 9-59. In many cases, the form of the relationship is unknown, and
a parametric model requires assumptions and simplifications. Regression
trees offer a nonparametric alternative. When response data are categorical,
classification trees are a natural modification.
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Note This section demonstrates methods for objects of the classregtree
class. These methods supersede the functions treefit, treedisp, treeval,
treeprune, and treetest, which are maintained in Statistics Toolbox
software only for backwards compatibility.

Algorithm Reference. The algorithms used by Statistics Toolbox
classification and regression tree functions are based on those in Breiman,
L., et al., Classification and Regression Trees, Chapman & Hall, Boca Raton,
1993.

Example: Regression Trees
This example uses the data on cars in carsmall.mat to create a regression
tree for predicting mileage using measurements of weight and the number
of cylinders as predictors. Note that, in this case, one predictor (weight) is
continuous and the other (cylinders) is categorical. The response (mileage) is
continuous.

Load the data and use the classregtree constructor of the classregtree
class to create the regression tree:

load carsmall

t = classregtree([Weight, Cylinders],MPG,...
'cat',2,'splitmin',20,...
'names',{'Weight','Cylinders'})

t =
Decision tree for regression
1 if Weight<3085.5 then node 2 else node 3
2 if Weight<2371 then node 4 else node 5
3 if Cylinders=8 then node 6 else node 7
4 if Weight<2162 then node 8 else node 9
5 if Cylinders=6 then node 10 else node 11
6 if Weight<4381 then node 12 else node 13
7 fit = 19.2778
8 fit = 33.3056
9 fit = 29.6111

10 fit = 23.25
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11 if Weight<2827.5 then node 14 else node 15
12 if Weight<3533.5 then node 16 else node 17
13 fit = 11
14 fit = 27.6389
15 fit = 24.6667
16 fit = 16.6
17 fit = 14.3889

t is a classregtree object and can be operated on with any of the methods
of the class.

Use the type method of the classregtree class to show the type of the tree:

treetype = type(t)
treetype =
regression

classregtree creates a regression tree because MPG is a numerical vector,
and the response is assumed to be continuous.

To view the tree, use the view method of the classregtree class:

view(t)
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The tree predicts the response values at the circular leaf nodes based on a
series of questions about the car at the triangular branching nodes. A true
answer to any question follows the branch to the left; a false follows the
branch to the right.

Use the tree to predict the mileage for a 2000-pound car with either 4, 6, or
8 cylinders:

mileage2K = t([2000 4; 2000 6; 2000 8])
mileage2K =

33.3056
33.3056
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33.3056

Note that the object allows for functional evaluation, of the form t(X). This is
a shorthand way of calling the eval method of the classregtree class.

The predicted responses computed above are all the same. This is because they
follow a series of splits in the tree that depend only on weight, terminating
at the left-most leaf node in the view above. A 4000-pound car, following the
right branch from the top of the tree, leads to different predicted responses:

mileage4K = t([4000 4; 4000 6; 4000 8])
mileage4K =

19.2778
19.2778
14.3889

You can use a variety of other methods of the classregtree class, such as
cutvar, cuttype, and cutcategories, to get more information about the split
at node 3 that distinguishes the 8-cylinder car:

var3 = cutvar(t,3) % What variable determines the split?
var3 =

'Cylinders'

type3 = cuttype(t,3) % What type of split is it?
type3 =

'categorical'

c = cutcategories(t,3) % Which classes are sent to the left
% child node, and which to the right?

c =
[8] [1x2 double]

c{1}
ans =

8
c{2}
ans =

4 6

Regression trees fit the original (training) data well, but may do a poor job of
predicting new values. Lower branches, especially, may be strongly affected
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by outliers. A simpler tree often avoids over-fitting. To find the best regression
tree, employing the techniques of resubstitution and cross-validation, use the
test method of the classregtree class.

9-95



9 Regression Analysis

9-96



10

Multivariate Methods

• “Introduction” on page 10-2

• “Multidimensional Scaling” on page 10-3

• “Procrustes Analysis” on page 10-14

• “Feature Selection” on page 10-23

• “Feature Transformation” on page 10-28



10 Multivariate Methods

Introduction
Large, high-dimensional data sets are common in the modern era
of computer-based instrumentation and electronic data storage.
High-dimensional data present many challenges for statistical visualization,
analysis, and modeling.

Data visualization, of course, is impossible beyond a few dimensions. As a
result, pattern recognition, data preprocessing, and model selection must
rely heavily on numerical methods.

A fundamental challenge in high-dimensional data analysis is the so-called
curse of dimensionality. Observations in a high-dimensional space are
necessarily sparser and less representative than those in a low-dimensional
space. In higher dimensions, data over-represent the edges of a sampling
distribution, because regions of higher-dimensional space contain the majority
of their volume near the surface. (A d-dimensional spherical shell has a
volume, relative to the total volume of the sphere, that approaches 1 as d
approaches infinity.) In high dimensions, typical data points at the interior of
a distribution are sampled less frequently.

Often, many of the dimensions in a data set—the measured features—are
not useful in producing a model. Features may be irrelevant or redundant.
Regression and classification algorithms may require large amounts of
storage and computation time to process raw data, and even if the algorithms
are successful the resulting models may contain an incomprehensible number
of terms.

Because of these challenges, multivariate statistical methods often begin with
some type of dimension reduction, in which data are approximated by points
in a lower-dimensional space. Dimension reduction is the goal of the methods
presented in this chapter. Dimension reduction often leads to simpler models
and fewer measured variables, with consequent benefits when measurements
are expensive and visualization is important.
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Multidimensional Scaling

In this section...

“Introduction” on page 10-3

“Classical Multidimensional Scaling” on page 10-3

“Nonclassical Multidimensional Scaling” on page 10-8

“Nonmetric Multidimensional Scaling” on page 10-10

Introduction
One of the most important goals in visualizing data is to get a sense of how
near or far points are from each other. Often, you can do this with a scatter
plot. However, for some analyses, the data that you have might not be in
the form of points at all, but rather in the form of pairwise similarities or
dissimilarities between cases, observations, or subjects. There are no points
to plot.

Even if your data are in the form of points rather than pairwise distances,
a scatter plot of those data might not be useful. For some kinds of data,
the relevant way to measure how near two points are might not be their
Euclidean distance. While scatter plots of the raw data make it easy to
compare Euclidean distances, they are not always useful when comparing
other kinds of inter-point distances, city block distance for example, or even
more general dissimilarities. Also, with a large number of variables, it is very
difficult to visualize distances unless the data can be represented in a small
number of dimensions. Some sort of dimension reduction is usually necessary.

Multidimensional scaling (MDS) is a set of methods that address all these
problems. MDS allows you to visualize how near points are to each other
for many kinds of distance or dissimilarity metrics and can produce a
representation of your data in a small number of dimensions. MDS does not
require raw data, but only a matrix of pairwise distances or dissimilarities.

Classical Multidimensional Scaling

• “Introduction” on page 10-4
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• “Example: Multidimensional Scaling” on page 10-6

Introduction
The function cmdscale performs classical (metric) multidimensional scaling,
also known as principal coordinates analysis. cmdscale takes as an input a
matrix of inter-point distances and creates a configuration of points. Ideally,
those points are in two or three dimensions, and the Euclidean distances
between them reproduce the original distance matrix. Thus, a scatter plot
of the points created by cmdscale provides a visual representation of the
original distances.

As a very simple example, you can reconstruct a set of points from only their
inter-point distances. First, create some four dimensional points with a small
component in their fourth coordinate, and reduce them to distances.

X = [ normrnd(0,1,10,3), normrnd(0,.1,10,1) ];
D = pdist(X,'euclidean');

Next, use cmdscale to find a configuration with those inter-point distances.
cmdscale accepts distances as either a square matrix, or, as in this example,
in the vector upper-triangular form produced by pdist.

[Y,eigvals] = cmdscale(D);

cmdscale produces two outputs. The first output, Y, is a matrix containing the
reconstructed points. The second output, eigvals, is a vector containing the
sorted eigenvalues of what is often referred to as the “scalar product matrix,”
which, in the simplest case, is equal to Y*Y'. The relative magnitudes of those
eigenvalues indicate the relative contribution of the corresponding columns of
Y in reproducing the original distance matrix D with the reconstructed points.

format short g
[eigvals eigvals/max(abs(eigvals))]
ans =

12.623 1
4.3699 0.34618
1.9307 0.15295

0.025884 0.0020505
1.7192e-015 1.3619e-016
6.8727e-016 5.4445e-017
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4.4367e-017 3.5147e-018
-9.2731e-016 -7.3461e-017
-1.327e-015 -1.0513e-016

-1.9232e-015 -1.5236e-016

If eigvals contains only positive and zero (within round-off error) eigenvalues,
the columns of Y corresponding to the positive eigenvalues provide an exact
reconstruction of D, in the sense that their inter-point Euclidean distances,
computed using pdist, for example, are identical (within round-off) to the
values in D.

maxerr4 = max(abs(D - pdist(Y))) % exact reconstruction
maxerr4 =

2.6645e-015

If two or three of the eigenvalues in eigvals are much larger than the rest,
then the distance matrix based on the corresponding columns of Y nearly
reproduces the original distance matrix D. In this sense, those columns
form a lower-dimensional representation that adequately describes the
data. However it is not always possible to find a good low-dimensional
reconstruction.

% good reconstruction in 3D
maxerr3 = max(abs(D - pdist(Y(:,1:3))))
maxerr3 =

0.029728

% poor reconstruction in 2D
maxerr2 = max(abs(D - pdist(Y(:,1:2))))
maxerr2 =

0.91641

The reconstruction in three dimensions reproduces D very well, but the
reconstruction in two dimensions has errors that are of the same order of
magnitude as the largest values in D.

max(max(D))
ans =

3.4686
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Often, eigvals contains some negative eigenvalues, indicating that the
distances in D cannot be reproduced exactly. That is, there might not be any
configuration of points whose inter-point Euclidean distances are given by
D. If the largest negative eigenvalue is small in magnitude relative to the
largest positive eigenvalues, then the configuration returned by cmdscale
might still reproduce D well.

Example: Multidimensional Scaling
Given only the distances between 10 US cities, cmdscale can construct a map
of those cities. First, create the distance matrix and pass it to cmdscale.
In this example,D is a full distance matrix: it is square and symmetric, has
positive entries off the diagonal, and has zeros on the diagonal.

cities = ...
{'Atl','Chi','Den','Hou','LA','Mia','NYC','SF','Sea','WDC'};
D = [ 0 587 1212 701 1936 604 748 2139 2182 543;

587 0 920 940 1745 1188 713 1858 1737 597;
1212 920 0 879 831 1726 1631 949 1021 1494;
701 940 879 0 1374 968 1420 1645 1891 1220;

1936 1745 831 1374 0 2339 2451 347 959 2300;
604 1188 1726 968 2339 0 1092 2594 2734 923;
748 713 1631 1420 2451 1092 0 2571 2408 205;

2139 1858 949 1645 347 2594 2571 0 678 2442;
2182 1737 1021 1891 959 2734 2408 678 0 2329;
543 597 1494 1220 2300 923 205 2442 2329 0];

[Y,eigvals] = cmdscale(D);

Next, look at the eigenvalues returned by cmdscale. Some of these are
negative, indicating that the original distances are not Euclidean. This is
because of the curvature of the earth.

format short g
[eigvals eigvals/max(abs(eigvals))]
ans =

9.5821e+006 1
1.6868e+006 0.17604

8157.3 0.0008513
1432.9 0.00014954
508.67 5.3085e-005
25.143 2.624e-006
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5.3394e-010 5.5722e-017
-897.7 -9.3685e-005

-5467.6 -0.0005706
-35479 -0.0037026

However, in this case, the two largest positive eigenvalues are much larger
in magnitude than the remaining eigenvalues. So, despite the negative
eigenvalues, the first two coordinates of Y are sufficient for a reasonable
reproduction of D.

Dtriu = D(find(tril(ones(10),-1)))';
maxrelerr = max(abs(Dtriu-pdist(Y(:,1:2))))./max(Dtriu)
maxrelerr =

0.0075371

Here is a plot of the reconstructed city locations as a map. The orientation of
the reconstruction is arbitrary. In this case, it happens to be close to, although
not exactly, the correct orientation.

plot(Y(:,1),Y(:,2),'.')
text(Y(:,1)+25,Y(:,2),cities)
xlabel('Miles')
ylabel('Miles')
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Nonclassical Multidimensional Scaling
The function mdscale performs nonclassical multidimensional scaling. As
with cmdcale, you use mdscale either to visualize dissimilarity data for which
no “locations” exist, or to visualize high-dimensional data by reducing its
dimensionality. Both functions take a matrix of dissimilarities as an input
and produce a configuration of points. However, mdscale offers a choice of
different criteria to construct the configuration, and allows missing data and
weights.

For example, the cereal data include measurements on 10 variables describing
breakfast cereals. You can use mdscale to visualize these data in two
dimensions. First, load the data. For clarity, this example code selects a
subset of 22 of the observations.

load cereal.mat
X = [Calories Protein Fat Sodium Fiber ...

Carbo Sugars Shelf Potass Vitamins];
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X = X(strmatch('G',Mfg),:); % Take a subset from a
% single manufacturer

size(X)
ans =

22 10

Then use pdist to transform the 10-dimensional data into dissimilarities.
The output from pdist is a symmetric dissimilarity matrix, stored as a vector
containing only the (23*22/2) elements in its upper triangle.

dissimilarities = pdist(zscore(X),'cityblock');
size(dissimilarities)
ans =

1 231

This example code first standardizes the cereal data, and then uses city block
distance as a dissimilarity. The choice of transformation to dissimilarities is
application-dependent, and the choice here is only for simplicity. In some
applications, the original data are already in the form of dissimilarities.

Next, use mdscale to perform metric MDS. Unlike cmdscale, you must
specify the desired number of dimensions, and the method to use to construct
the output configuration. For this example, use two dimensions. The metric
STRESS criterion is a common method for computing the output; for other
choices, see the mdscale reference page in the online documentation. The
second output from mdscale is the value of that criterion evaluated for the
output configuration. It measures the how well the inter-point distances of
the output configuration approximate the original input dissimilarities:

[Y,stress] =...
mdscale(dissimilarities,2,'criterion','metricstress');
stress
stress =

0.1856

A scatterplot of the output from mdscale represents the original
10-dimensional data in two dimensions, and you can use the gname function to
label selected points:

plot(Y(:,1),Y(:,2),'o','LineWidth',2);
gname(Name(strmatch('G',Mfg)))
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Nonmetric Multidimensional Scaling
Metric multidimensional scaling creates a configuration of points whose
inter-point distances approximate the given dissimilarities. This is sometimes
too strict a requirement, and non-metric scaling is designed to relax it a bit.
Instead of trying to approximate the dissimilarities themselves, non-metric
scaling approximates a nonlinear, but monotonic, transformation of them.
Because of the monotonicity, larger or smaller distances on a plot of the
output will correspond to larger or smaller dissimilarities, respectively.
However, the nonlinearity implies that mdscale only attempts to preserve the
ordering of dissimilarities. Thus, there may be contractions or expansions of
distances at different scales.

You use mdscale to perform nonmetric MDS in much the same way as for
metric scaling. The nonmetric STRESS criterion is a common method for
computing the output; for more choices, see the mdscale reference page in
the online documentation. As with metric scaling, the second output from

10-10



Multidimensional Scaling

mdscale is the value of that criterion evaluated for the output configuration.
For nonmetric scaling, however, it measures the how well the inter-point
distances of the output configuration approximate the disparities. The
disparities are returned in the third output. They are the transformed values
of the original dissimilarities:

[Y,stress,disparities] = ...
mdscale(dissimilarities,2,'criterion','stress');
stress
stress =

0.1562

To check the fit of the output configuration to the dissimilarities, and to
understand the disparities, it helps to make a Shepard plot:

distances = pdist(Y);
[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);
plot(dissimilarities,distances,'bo', ...

dissimilarities(ord),disparities(ord),'r.-', ...
[0 25],[0 25],'k-')

xlabel('Dissimilarities')
ylabel('Distances/Disparities')
legend({'Distances' 'Disparities' '1:1 Line'},...

'Location','NorthWest');
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This plot shows that mdscale has found a configuration of points in two
dimensions whose inter-point distances approximates the disparities, which
in turn are a nonlinear transformation of the original dissimilarities. The
concave shape of the disparities as a function of the dissimilarities indicates
that fit tends to contract small distances relative to the corresponding
dissimilarities. This may be perfectly acceptable in practice.

mdscale uses an iterative algorithm to find the output configuration, and
the results can often depend on the starting point. By default, mdscale
uses cmdscale to construct an initial configuration, and this choice often
leads to a globally best solution. However, it is possible for mdscale to
stop at a configuration that is a local minimum of the criterion. Such
cases can be diagnosed and often overcome by running mdscale multiple
times with different starting points. You can do this using the 'start'
and 'replicates' parameters. The following code runs five replicates of
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MDS, each starting at a different randomly-chosen initial configuration.
The criterion value is printed out for each replication; mdscale returns the
configuration with the best fit.

opts = statset('Display','final');
[Y,stress] =...
mdscale(dissimilarities,2,'criterion','stress',...
'start','random','replicates',5,'Options',opts);
90 iterations, Final stress criterion = 0.156209
100 iterations, Final stress criterion = 0.195546
116 iterations, Final stress criterion = 0.156209
85 iterations, Final stress criterion = 0.156209
106 iterations, Final stress criterion = 0.17121

Notice that mdscale finds several different local solutions, some of which
do not have as low a stress value as the solution found with the cmdscale
starting point.
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Procrustes Analysis

In this section...

“Comparing Landmark Data” on page 10-14

“Data Input” on page 10-14

“Preprocessing Data for Accurate Results” on page 10-15

“Example: Comparing Handwritten Shapes” on page 10-16

Comparing Landmark Data
The procrustes function analyzes the distribution of a set of shapes using
Procrustes analysis. This analysis method matches landmark data (geometric
locations representing significant features in a given shape) to calculate the
best shape-preserving Euclidian transformations. These transformations
minimize the differences in location between compared landmark data.

Procrustes analysis is also useful in conjunction with multidimensional
scaling. In “Example: Multidimensional Scaling” on page 10-6 there is an
observation that the orientation of the reconstructed points is arbitrary. Two
different applications of multidimensional scaling could produce reconstructed
points that are very similar in principle, but that look different because they
have different orientations. The procrustes function transforms one set of
points to make them more comparable to the other.

Data Input
The procrustes function takes two matrices as input:

• The target shape matrix X has dimension n × p, where n is the number
of landmarks in the shape and p is the number of measurements per
landmark.

• The comparison shape matrix Y has dimension n × q with q ≤ p. If there
are fewer measurements per landmark for the comparison shape than
the target shape (q < p), the function adds columns of zeros to Y, yielding
an n × p matrix.

The equation to obtain the transformed shape, Z, is
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Z bYT c= + (10-1)

where:

• b is a scaling factor that stretches (b>1) or shrinks (b<1) the points.

• T is the orthogonal rotation and reflection matrix.

• c is a matrix with constant values in each column, used to shift the points.

The procrustes function chooses b, T, and c to minimize the distance between
the target shape X and the transformed shape Z as measured by the least
squares criterion:
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Preprocessing Data for Accurate Results
Procrustes analysis is appropriate when all p measurement dimensions have
similar scales. The analysis would be inaccurate, for example, if the columns
of Z had different scales:

• The first column is measured in milliliters ranging from 2,000 to 6,000.

• The second column is measured in degrees Celsius ranging from 10 to 25.

• The third column is measured in kilograms ranging from 50 to 230.

In such cases, standardize your variables by:

1 Subtracting the sample mean from each variable.

2 Dividing each resultant variable by its sample standard deviation.

Use the zscore function to perform this standardization.
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Example: Comparing Handwritten Shapes
In this example, use Procrustes analysis to compare two handwritten number
threes. Visually and analytically explore the effects of forcing size and
reflection changes as follows:

• “Step 1: Load and Display the Original Data” on page 10-16

• “Step 2: Calculate the Best Transformation” on page 10-17

• “Step 3: Examine the Similarity of the Two Shapes” on page 10-18

• “Step 4: Restrict the Form of the Transformations” on page 10-20

Step 1: Load and Display the Original Data
Input landmark data for two handwritten number threes:

A = [11 39;17 42;25 42;25 40;23 36;19 35;30 34;35 29;...
30 20;18 19];
B = [15 31;20 37;30 40;29 35;25 29;29 31;31 31;35 20;...
29 10;25 18];

Create X and Y from A and B, moving B to the side to make each shape more
visible:

X = A;
Y = B + repmat([25 0], 10,1);

Plot the shapes, using letters to designate the landmark points. Lines in the
figure join the points to indicate the drawing path of each shape.

plot(X(:,1), X(:,2),'r-', Y(:,1), Y(:,2),'b-');
text(X(:,1), X(:,2),('abcdefghij')')
text(Y(:,1), Y(:,2),('abcdefghij')')
legend('X = Target','Y = Comparison','location','SE')
set(gca,'YLim',[0 55],'XLim',[0 65]);
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Step 2: Calculate the Best Transformation
Use Procrustes analysis to find the transformation that minimizes distances
between landmark data points.

Call procrustes as follows:

[d, Z, tr] = procrustes(X,Y);

The outputs of the function are:

• d – A standardized dissimilarity measure.)

• Z – A matrix of the transformed landmarks.

• tr – A structure array of the computed transformation with fields T, b, and
c which correspond to the transformation equation, Equation 10-1.

10-17



10 Multivariate Methods

Visualize the transformed shape, Z, using a dashed blue line:

plot(X(:,1), X(:,2),'r-', Y(:,1), Y(:,2),'b-',...
Z(:,1),Z(:,2),'b:');
text(X(:,1), X(:,2),('abcdefghij')')
text(Y(:,1), Y(:,2),('abcdefghij')')
text(Z(:,1), Z(:,2),('abcdefghij')')
legend('X = Target','Y = Comparison',...
'Z = Transformed','location','SW')
set(gca,'YLim',[0 55],'XLim',[0 65]);

Step 3: Examine the Similarity of the Two Shapes
Use two different numerical values to assess the similarity of the target shape
and the transformed shape.
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Dissimilarity Measure d. The dissimilarity measure d gives a number
between 0 and 1 describing the difference between the target shape and the
transformed shape. Values near 0 imply more similar shapes, while values
near 1 imply dissimilarity. For this example:

d =
0.1502

The small value of d in this case shows that the two shapes are similar.

procrustes calculates d by comparing the sum of squared deviations between
the set of points with the sum of squared deviations of the original points from
their column means:

numerator = sum(sum((X-Z).^2))
numerator =

166.5321

denominator = sum(sum(bsxfun(@minus,X,mean(X)).^2))
denominator =

1.1085e+003

ratio = numerator/denominator
ratio =

0.1502

Note The resulting measure d is independent of the scale of the size of
the shapes and takes into account only the similarity of landmark data.
“Examining the Scaling Measure b” on page 10-19 shows how to examine the
size similarity of the shapes.

Examining the Scaling Measure b. The target and comparison threes in
the previous figure visually show that the two numbers are of a similar size.
The closeness of calculated value of the scaling factor b to 1 supports this
observation as well:
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tr.b
ans =

0.9291

The sizes of the target and comparison shapes appear similar. This visual
impression is reinforced by the value of b = 0.93, which implies that the best
transformation results in shrinking the comparison shape by a factor .93
(only 7%).

Step 4: Restrict the Form of the Transformations
Explore the effects of manually adjusting the scaling and reflection
coefficients.

Fixing the Scaling Factor b = 1. Force b to equal 1 (set 'Scaling' to
false) to examine the amount of dissimilarity in size of the target and
transformed figures:

ds = procrustes(X,Y,'Scaling',false)
ds =

0.1552

In this case, setting 'Scaling' to false increases the calculated value of
d only 0.0049, which further supports the similarity in the size of the two
number threes. A larger increase in d would have indicated a greater size
discrepancy.

Forcing a Reflection in the Transformation. This example requires only a
rotation, not a reflection, to align the shapes. You can show this by observing
that the determinant of the matrix T is 1 in this analysis:

det(tr.T)
ans =

1.0000

If you need a reflection in the transformation, the determinant of T is -1. You
can force a reflection into the transformation as follows:

[dr,Zr,trr] = procrustes(X,Y,'Reflection',true);
dr
dr =
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0.8130

The d value increases dramatically, indicating that a forced reflection leads
to a poor transformation of the landmark points. A plot of the transformed
shape shows a similar result:

• The landmark data points are now further away from their target
counterparts.

• The transformed three is now an undesirable mirror image of the target
three.

plot(X(:,1), X(:,2),'r-', Y(:,1), Y(:,2),'b-',...
Zr(:,1),Zr(:,2),'b:');
text(X(:,1), X(:,2),('abcdefghij')')
text(Y(:,1), Y(:,2),('abcdefghij')')
text(Zr(:,1), Zr(:,2),('abcdefghij')')
legend('X = Target','Y = Comparison',...
'Z = Transformed','location','SW')
set(gca,'YLim',[0 55],'XLim',[0 65]);
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It appears that the shapes might be better matched if you flipped the
transformed shape upside down. Flipping the shapes would make the
transformation even worse, however, because the landmark data points
would be further away from their target counterparts. From this example,
it is clear that manually adjusting the scaling and reflection parameters is
generally not optimal.
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Feature Selection

In this section...

“Introduction” on page 10-23

“Sequential Feature Selection” on page 10-23

Introduction
Feature selection reduces the dimensionality of data by selecting only a subset
of measured features (predictor variables) to create a model. Selection criteria
usually involve the minimization of a specific measure of predictive error for
models fit to different subsets. Algorithms search for a subset of predictors
that optimally model measured responses, subject to constraints such as
required or excluded features and the size of the subset.

Feature selection is preferable to feature transformation when the original
units and meaning of features are important and the modeling goal is to
identify an influential subset. When categorical features are present, and
numerical transformations are inappropriate, feature selection becomes the
primary means of dimension reduction.

Sequential Feature Selection

• “Introduction” on page 10-23

• “Example: Sequential Feature Selection” on page 10-24

Introduction
A common method of feature selection is sequential feature selection. This
method has two components:

• An objective function, called the criterion, which the method seeks to
minimize over all feasible feature subsets. Common criteria are mean
squared error (for regression models) and misclassification rate (for
classification models).

• A sequential search algorithm, which adds or removes features from a
candidate subset while evaluating the criterion. Since an exhaustive
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comparison of the criterion value at all 2n subsets of an n-feature data set
is typically infeasible (depending on the size of n and the cost of objective
calls), sequential searches move in only one direction, always growing or
always shrinking the candidate set.

The method has two variants:

• Sequential forward selection (SFS), in which features are sequentially
added to an empty candidate set until the addition of further features does
not decrease the criterion.

• Sequential backward selection (SBS), in which features are sequentially
removed from a full candidate set until the removal of further features
increase the criterion.

Stepwise regression is a sequential feature selection technique designed
specifically for least-squares fitting. The functions stepwise and stepwisefit
make use of optimizations that are only possible with least-squares criteria.
Unlike generalized sequential feature selection, stepwise regression may
remove features that have been added or add features that have been removed.

The Statistics Toolbox function sequentialfs carries out sequential feature
selection. Input arguments include predictor and response data and a
function handle to an M-file implementing the criterion function. Optional
inputs allow you to specify SFS or SBS, required or excluded features, and the
size of the feature subset. The function calls cvpartition and crossval to
evaluate the criterion at different candidate sets.

Example: Sequential Feature Selection
For example, consider a data set with 100 observations of 10 predictors.
As described in “Example: Generalized Linear Models” on page 9-53, the
following generates random data from a logistic model, with a binomial
distribution of responses at each set of values for the predictors. Some
coefficients are set to zero so that not all of the predictors affect the response:

n = 100;
m = 10;
X = rand(n,m);
b = [1 0 0 2 .5 0 0 0.1 0 1];
Xb = X*b';
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p = 1./(1+exp(-Xb));
N = 50;
y = binornd(N,p);

The glmfit function fits a logistic model to the data:

Y = [y N*ones(size(y))];
[b0,dev0,stats0] = glmfit(X,Y,'binomial');

% Display coefficient estimates and their standard errors:
model0 = [b0 stats0.se]
model0 =

0.3115 0.2596
0.9614 0.1656

-0.1100 0.1651
-0.2165 0.1683
1.9519 0.1809
0.5683 0.2018

-0.0062 0.1740
0.0651 0.1641

-0.1034 0.1685
0.0017 0.1815
0.7979 0.1806

% Display the deviance of the fit:
dev0
dev0 =

101.2594

This is the full model, using all of the features (and an initial constant term).
Sequential feature selection searches for a subset of the features in the full
model with comparative predictive power.

First, you must specify a criterion for selecting the features. The following
function, which calls glmfit and returns the deviance of the fit (a
generalization of the residual sum of squares) is a useful criterion in this case:

function dev = critfun(X,Y)

[b,dev] = glmfit(X,Y,'binomial');
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This function should be created as an M-file on the MATLAB path.

The function sequentialfs performs feature selection, calling the criterion
function via a function handle:

maxdev = chi2inv(.95,1);
opt = statset('display','iter',...

'TolFun',maxdev,...
'TolTypeFun','abs');

inmodel = sequentialfs(@critfun,X,Y,...
'cv','none',...
'nullmodel',true,...
'options',opt,...
'direction','forward');

Start forward sequential feature selection:
Initial columns included: none
Columns that can not be included: none
Step 1, used initial columns, criterion value 309.118
Step 2, added column 4, criterion value 180.732
Step 3, added column 1, criterion value 138.862
Step 4, added column 10, criterion value 114.238
Step 5, added column 5, criterion value 103.503
Final columns included: 1 4 5 10

The iterative display shows a decrease in the criterion value as each new
feature is added to the model. The final result is a reduced model with only
four of the original ten features: columns 1, 4, 5, and 10 of X. These features
are indicated in the logical vector inmodel returned by sequentialfs.

The deviance of the reduced model is higher than for the full model, but
the addition of any other single feature would not decrease the criterion
by more than the absolute tolerance, maxdev, set in the options structure.
Adding a feature with no effect reduces the deviance by an amount that has
a chi-square distribution with one degree of freedom. Adding a significant
feature results in a larger change. By setting maxdev to chi2inv(.95,1), you
instruct sequentialfs to continue adding features so long as the change in
deviance is more than would be expected by random chance.
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The reduced model (also with an initial constant term) is:

[b,dev,stats] = glmfit(x(:,in),Y,'binomial');

% Display coefficient estimates and their standard errors:
model = [b stats.se]
model =

0.0784 0.1642
1.0040 0.1592
1.9459 0.1789
0.6134 0.1872
0.8245 0.1730
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Feature Transformation

In this section...

“Introduction” on page 10-28

“Nonnegative Matrix Factorization” on page 10-28

“Principal Component Analysis” on page 10-31

“Factor Analysis” on page 10-45

Introduction
Feature transformation is a group of methods that create new features
(predictor variables). The methods are useful for dimension reduction when
the transformed features have a descriptive power that is more easily ordered
than the original features. In this case, less descriptive features can be
dropped from consideration when building models.

Feature transformation methods are contrasted with the methods presented
in “Feature Selection” on page 10-23, where dimension reduction is achieved
by computing an optimal subset of predictive features measured in the
original data.

The methods presented in this section share some common methodology.
Their goals, however, are essentially different:

• Nonnegative matrix factorization is used when model terms must represent
nonnegative quantities, such as physical quantities.

• Principal component analysis is used to summarize data in fewer
dimensions, for example, to visualize it.

• Factor analysis is used to build explanatory models of data correlations.

Nonnegative Matrix Factorization

• “Introduction” on page 10-29

• “Example: Nonnegative Matrix Factorization” on page 10-29
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Introduction
Nonnegative matrix factorization (NMF) is a dimension-reduction technique
based on a low-rank approximation of the feature space. Besides providing
a reduction in the number of features, NMF guarantees that the features
are nonnegative, producing additive models that respect, for example, the
nonnegativity of physical quantities.

Given a nonnegative m-by-n matrix X and a positive integer k < min(m,n),
NMF finds nonnegative m-by-k and k-by-n matrices W and H, respectively,
that minimize the norm of the difference X – WH. W and H are thus
approximate nonnegative factors of X.

The k columns of W represent transformations of the variables in X; the k
rows of H represent the coefficients of the linear combinations of the original
n variables in X that produce the transformed variables in W. Since k is
generally smaller than the rank of X, the product WH provides a compressed
approximation of the data in X. A range of possible values for k is often
suggested by the modeling context.

The Statistics Toolbox function nnmf carries out nonnegative matrix
factorization. nnmf uses one of two iterative algorithms that begin with
random initial values for W and H. Because the norm of the residual X
– WH may have local minima, repeated calls to nnmf may yield different
factorizations. Sometimes the algorithm converges to a solution of lower rank
than k, which may indicate that the result is not optimal.

Example: Nonnegative Matrix Factorization
For example, consider the five predictors of biochemical oxygen demand in the
data set moore.mat:

load moore
X = moore(:,1:5);

The following uses nnmf to compute a rank-two approximation of X with a
multiplicative update algorithm that begins from five random initial values
for W and H:

opt = statset('MaxIter',10,'Display','final');
[W0,H0] = nnmf(X,2,'replicates',5,...

'options',opt,...
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'algorithm','mult');
rep iteration rms resid |delta x|

1 10 358.296 0.00190554
2 10 78.3556 0.000351747
3 10 230.962 0.0172839
4 10 326.347 0.00739552
5 10 361.547 0.00705539

Final root mean square residual = 78.3556

The 'mult' algorithm is sensitive to initial values, which makes it a good
choice when using 'replicates' to find W and H from multiple random
starting values.

Now perform the factorization using an alternating least-squares algorithm,
which converges faster and more consistently. Run 100 times more iterations,
beginning from the initial W0 and H0 identified above:

opt = statset('Maxiter',1000,'Display','final');
[W,H] = nnmf(X,2,'w0',W0,'h0',H0,...

'options',opt,...
'algorithm','als');

rep iteration rms resid |delta x|
1 3 77.5315 3.52673e-005

Final root mean square residual = 77.5315

The two columns of W are the transformed predictors. The two rows of H give
the relative contributions of each of the five predictors in X to the predictors
in W:

H
H =

0.0835 0.0190 0.1782 0.0072 0.9802
0.0558 0.0250 0.9969 0.0085 0.0497

The fifth predictor in X (weight 0.9802) strongly influences the first predictor
in W. The third predictor in X (weight 0.9969) strongly influences the second
predictor in W.

Visualize the relative contributions of the predictors in X with a biplot,
showing the data and original variables in the column space of W:
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biplot(H','scores',W,'varlabels',{'','','v3','','v5'});
axis([0 1.1 0 1.1])
xlabel('Column 1')
ylabel('Column 2')

Principal Component Analysis

• “Introduction” on page 10-31

• “Example: Principal Component Analysis” on page 10-33

Introduction
One of the difficulties inherent in multivariate statistics is the problem of
visualizing data that has many variables. The MATLAB function plot
displays a graph of the relationship between two variables. The plot3
and surf commands display different three-dimensional views. But when
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there are more than three variables, it is more difficult to visualize their
relationships.

Fortunately, in data sets with many variables, groups of variables often
move together. One reason for this is that more than one variable might be
measuring the same driving principle governing the behavior of the system.
In many systems there are only a few such driving forces. But an abundance
of instrumentation enables you to measure dozens of system variables. When
this happens, you can take advantage of this redundancy of information.
You can simplify the problem by replacing a group of variables with a single
new variable.

Principal component analysis is a quantitatively rigorous method for achieving
this simplification. The method generates a new set of variables, called
principal components. Each principal component is a linear combination of
the original variables. All the principal components are orthogonal to each
other, so there is no redundant information. The principal components as a
whole form an orthogonal basis for the space of the data.

There are an infinite number of ways to construct an orthogonal basis for
several columns of data. What is so special about the principal component
basis?

The first principal component is a single axis in space. When you project
each observation on that axis, the resulting values form a new variable. And
the variance of this variable is the maximum among all possible choices of
the first axis.

The second principal component is another axis in space, perpendicular to
the first. Projecting the observations on this axis generates another new
variable. The variance of this variable is the maximum among all possible
choices of this second axis.

The full set of principal components is as large as the original set of variables.
But it is commonplace for the sum of the variances of the first few principal
components to exceed 80% of the total variance of the original data. By
examining plots of these few new variables, researchers often develop a
deeper understanding of the driving forces that generated the original data.
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You can use the function princomp to find the principal components. To use
princomp, you need to have the actual measured data you want to analyze.
However, if you lack the actual data, but have the sample covariance or
correlation matrix for the data, you can still use the function pcacov to
perform a principal components analysis. See the reference page for pcacov
for a description of its inputs and outputs.

Example: Principal Component Analysis

• “Computing Components” on page 10-33

• “Component Coefficients” on page 10-36

• “Component Scores” on page 10-36

• “Component Variances” on page 10-40

• “Hotelling’s T2” on page 10-42

• “Visualizing the Results” on page 10-42

Computing Components. Consider a sample application that uses nine
different indices of the quality of life in 329 U.S. cities. These are climate,
housing, health, crime, transportation, education, arts, recreation, and
economics. For each index, higher is better. For example, a higher index
for crime means a lower crime rate.

Start by loading the data in cities.mat.

load cities
whos

Name Size Bytes Class
categories 9x14 252 char array
names 329x43 28294 char array
ratings 329x9 23688 double array

The whos command generates a table of information about all the variables
in the workspace.

The cities data set contains three variables:

• categories, a string matrix containing the names of the indices
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• names, a string matrix containing the 329 city names

• ratings, the data matrix with 329 rows and 9 columns

The categories variable has the following values:

categories
categories =

climate
housing
health
crime
transportation
education
arts
recreation
economics

The first five rows of names are

first5 = names(1:5,:)
first5 =

Abilene, TX
Akron, OH
Albany, GA
Albany-Troy, NY
Albuquerque, NM

To get a quick impression of the ratings data, make a box plot.

boxplot(ratings,'orientation','horizontal','labels',categories)

This command generates the plot below. Note that there is substantially
more variability in the ratings of the arts and housing than in the ratings
of crime and climate.
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Ordinarily you might also graph pairs of the original variables, but there are
36 two-variable plots. Perhaps principal components analysis can reduce the
number of variables you need to consider.

Sometimes it makes sense to compute principal components for raw data. This
is appropriate when all the variables are in the same units. Standardizing the
data is often preferable when the variables are in different units or when the
variance of the different columns is substantial (as in this case).

You can standardize the data by dividing each column by its standard
deviation.

stdr = std(ratings);
sr = ratings./repmat(stdr,329,1);

Now you are ready to find the principal components.
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[coefs,scores,variances,t2] = princomp(sr);

The following sections explain the four outputs from princomp.

Component Coefficients. The first output of the princomp function, coefs,
contains the coefficients of the linear combinations of the original variables
that generate the principal components. The coefficients are also known as
loadings.

The first three principal component coefficient vectors are:

c3 = coefs(:,1:3)
c3 =

0.2064 0.2178 -0.6900
0.3565 0.2506 -0.2082
0.4602 -0.2995 -0.0073
0.2813 0.3553 0.1851
0.3512 -0.1796 0.1464
0.2753 -0.4834 0.2297
0.4631 -0.1948 -0.0265
0.3279 0.3845 -0.0509
0.1354 0.4713 0.6073

The largest coefficients in the first column (first principal component) are
the third and seventh elements, corresponding to the variables health and
arts. All the coefficients of the first principal component have the same sign,
making it a weighted average of all the original variables.

The principal components are unit length and orthogonal:

I = c3'*c3
I =

1.0000 -0.0000 -0.0000
-0.0000 1.0000 -0.0000
-0.0000 -0.0000 1.0000

Component Scores. The second output, scores, contains the coordinates
of the original data in the new coordinate system defined by the principal
components. This output is the same size as the input data matrix.
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A plot of the first two columns of scores shows the ratings data projected
onto the first two principal components. princomp computes the scores to
have mean zero.

plot(scores(:,1),scores(:,2),'+')
xlabel('1st Principal Component')
ylabel('2nd Principal Component')

Note the outlying points in the right half of the plot.

While it is possible to create a three-dimensional plot using three columns
of scores, the examples in this section create two-dimensional plots, which
are easier to describe.

The function gname is useful for graphically identifying a few points in a plot
like this. You can call gname with a string matrix containing as many case

10-37



10 Multivariate Methods

labels as points in the plot. The string matrix names works for labeling points
with the city names.

gname(names)

Move your cursor over the plot and click once near each point in the right
half. As you click each point, it is labeled with the proper row from the names
string matrix. Here is the plot after a few clicks:

When you are finished labeling points, press the Return key.

The labeled cities are some of the biggest population centers in the United
States. They are definitely different from the remainder of the data, so
perhaps they should be considered separately. To remove the labeled cities
from the data, first identify their corresponding row numbers as follows:
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1 Close the plot window.

2 Redraw the plot by entering

plot(scores(:,1),scores(:,2),'+')
xlabel('1st Principal Component');
ylabel('2nd Principal Component');

3 Enter gname without any arguments.

4 Click near the points you labeled in the preceding figure. This labels the
points by their row numbers, as shown in the following figure.

Then you can create an index variable containing the row numbers of all
the metropolitan areas you choose.
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metro = [43 65 179 213 234 270 314];
names(metro,:)
ans =

Boston, MA
Chicago, IL
Los Angeles, Long Beach, CA
New York, NY
Philadelphia, PA-NJ
San Francisco, CA
Washington, DC-MD-VA

To remove these rows from the ratings matrix, enter the following.

rsubset = ratings;
nsubset = names;
nsubset(metro,:) = [];
rsubset(metro,:) = [];
size(rsubset)
ans =

322 9

Component Variances. The third output, variances, is a vector containing
the variance explained by the corresponding principal component. Each
column of scores has a sample variance equal to the corresponding element
of variances.

variances
variances =

3.4083
1.2140
1.1415
0.9209
0.7533
0.6306
0.4930
0.3180
0.1204

You can easily calculate the percent of the total variability explained by each
principal component.
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percent_explained = 100*variances/sum(variances)
percent_explained =

37.8699
13.4886
12.6831
10.2324
8.3698
7.0062
5.4783
3.5338
1.3378

Use the pareto function to make a scree plot of the percent variability
explained by each principal component.

pareto(percent_explained)
xlabel('Principal Component')
ylabel('Variance Explained (%)')
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The preceding figure shows that the only clear break in the amount of
variance accounted for by each component is between the first and second
components. However, that component by itself explains less than 40% of the
variance, so more components are probably needed. You can see that the first
three principal components explain roughly two-thirds of the total variability
in the standardized ratings, so that might be a reasonable way to reduce the
dimensions in order to visualize the data.

Hotelling’s T2. The last output of the princomp function, t2, is Hotelling’s T2,
a statistical measure of the multivariate distance of each observation from
the center of the data set. This is an analytical way to find the most extreme
points in the data.

[st2, index] = sort(t2,'descend'); % Sort in descending order.
extreme = index(1)
extreme =

213
names(extreme,:)
ans =

New York, NY

It is not surprising that the ratings for New York are the furthest from the
average U.S. town.

Visualizing the Results. Use the biplot function to help visualize both
the principal component coefficients for each variable and the principal
component scores for each observation in a single plot. For example, the
following command plots the results from the principal components analysis
on the cities and labels each of the variables.

biplot(coefs(:,1:2), 'scores',scores(:,1:2),...
'varlabels',categories);
axis([-.26 1 -.51 .51]);
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Each of the nine variables is represented in this plot by a vector, and the
direction and length of the vector indicates how each variable contributes to
the two principal components in the plot. For example, you have seen that the
first principal component, represented in this biplot by the horizontal axis,
has positive coefficients for all nine variables. That corresponds to the nine
vectors directed into the right half of the plot. You have also seen that the
second principal component, represented by the vertical axis, has positive
coefficients for the variables education, health, arts, and transportation, and
negative coefficients for the remaining five variables. That corresponds to
vectors directed into the top and bottom halves of the plot, respectively. This
indicates that this component distinguishes between cities that have high
values for the first set of variables and low for the second, and cities that
have the opposite.

10-43



10 Multivariate Methods

The variable labels in this figure are somewhat crowded. You could either
leave out the VarLabels parameter when making the plot, or simply select
and drag some of the labels to better positions using the Edit Plot tool from
the figure window toolbar.

Each of the 329 observations is represented in this plot by a point, and
their locations indicate the score of each observation for the two principal
components in the plot. For example, points near the left edge of this plot
have the lowest scores for the first principal component. The points are
scaled to fit within the unit square, so only their relative locations may be
determined from the plot.

You can use the Data Cursor, in the Tools menu in the figure window, to
identify the items in this plot. By clicking on a variable (vector), you can read
off that variable’s coefficients for each principal component. By clicking on
an observation (point), you can read off that observation’s scores for each
principal component.

You can also make a biplot in three dimensions. This can be useful if the first
two principal coordinates do not explain enough of the variance in your data.
Selecting Rotate 3D in the Tools menu enables you to rotate the figure to
see it from different angles.

biplot(coefs(:,1:3), 'scores',scores(:,1:3),...
'obslabels',names);
axis([-.26 1 -.51 .51 -.61 .81]);
view([30 40]);
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Factor Analysis

• “Introduction” on page 10-45

• “Example: Factor Analysis” on page 10-46

Introduction
Multivariate data often includes a large number of measured variables, and
sometimes those variables overlap, in the sense that groups of them might be
dependent. For example, in a decathlon, each athlete competes in 10 events,
but several of them can be thought of as speed events, while others can be
thought of as strength events, etc. Thus, you can think of a competitor’s 10
event scores as largely dependent on a smaller set of three or four types of
athletic ability.
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Factor analysis is a way to fit a model to multivariate data to estimate just this
sort of interdependence. In a factor analysis model, the measured variables
depend on a smaller number of unobserved (latent) factors. Because each
factor might affect several variables in common, they are known as common
factors. Each variable is assumed to be dependent on a linear combination
of the common factors, and the coefficients are known as loadings. Each
measured variable also includes a component due to independent random
variability, known as specific variance because it is specific to one variable.

Specifically, factor analysis assumes that the covariance matrix of your data
is of the form

where is the matrix of loadings, and the elements of the diagonal matrix
are the specific variances. The function factoran fits the Factor Analysis

model using maximum likelihood.

Example: Factor Analysis

• “Factor Loadings” on page 10-46

• “Factor Rotation” on page 10-48

• “Factor Scores” on page 10-50

• “Visualizing the Results” on page 10-52

Factor Loadings. Over the course of 100 weeks, the percent change in stock
prices for ten companies has been recorded. Of the ten companies, the first
four can be classified as primarily technology, the next three as financial, and
the last three as retail. It seems reasonable that the stock prices for companies
that are in the same sector might vary together as economic conditions
change. Factor Analysis can provide quantitative evidence that companies
within each sector do experience similar week-to-week changes in stock price.

In this example, you first load the data, and then call factoran, specifying a
model fit with three common factors. By default, factoran computes rotated
estimates of the loadings to try and make their interpretation simpler. But in
this example, you specify an unrotated solution.
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load stockreturns

[Loadings,specificVar,T,stats] = ...
factoran(stocks,3,'rotate','none');

The first two factoran return arguments are the estimated loadings and the
estimated specific variances. Each row of the loadings matrix represents one
of the ten stocks, and each column corresponds to a common factor. With
unrotated estimates, interpretation of the factors in this fit is difficult because
most of the stocks contain fairly large coefficients for two or more factors.

Loadings
Loadings =

0.8885 0.2367 -0.2354
0.7126 0.3862 0.0034
0.3351 0.2784 -0.0211
0.3088 0.1113 -0.1905
0.6277 -0.6643 0.1478
0.4726 -0.6383 0.0133
0.1133 -0.5416 0.0322
0.6403 0.1669 0.4960
0.2363 0.5293 0.5770
0.1105 0.1680 0.5524

Note “Factor Rotation” on page 10-48 helps to simplify the structure in the
Loadings matrix, to make it easier to assign meaningful interpretations to
the factors.

From the estimated specific variances, you can see that the model indicates
that a particular stock price varies quite a lot beyond the variation due to
the common factors.

specificVar
specificVar =

0.0991
0.3431
0.8097
0.8559
0.1429
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0.3691
0.6928
0.3162
0.3311
0.6544

A specific variance of 1 would indicate that there is no common factor
component in that variable, while a specific variance of 0 would indicate that
the variable is entirely determined by common factors. These data seem to
fall somewhere in between.

The p-value returned in the stats structure fails to reject the null hypothesis
of three common factors, suggesting that this model provides a satisfactory
explanation of the covariation in these data.

stats.p
ans =

0.8144

To determine whether fewer than three factors can provide an acceptable fit,
you can try a model with two common factors. The p-value for this second fit
is highly significant, and rejects the hypothesis of two factors, indicating that
the simpler model is not sufficient to explain the pattern in these data.

[Loadings2,specificVar2,T2,stats2] = ...
factoran(stocks, 2,'rotate','none');

stats2.p
ans =

3.5610e-006

Factor Rotation. As the results illustrate, the estimated loadings from an
unrotated factor analysis fit can have a complicated structure. The goal of
factor rotation is to find a parameterization in which each variable has only a
small number of large loadings. That is, each variable is affected by a small
number of factors, preferably only one. This can often make it easier to
interpret what the factors represent.

If you think of each row of the loadings matrix as coordinates of a point
in M-dimensional space, then each factor corresponds to a coordinate axis.
Factor rotation is equivalent to rotating those axes and computing new
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loadings in the rotated coordinate system. There are various ways to do this.
Some methods leave the axes orthogonal, while others are oblique methods
that change the angles between them. For this example, you can rotate the
estimated loadings by using the promax criterion, a common oblique method.

[LoadingsPM,specVarPM] = factoran(stocks,3,'rotate','promax');
LoadingsPM
LoadingsPM =

0.9452 0.1214 -0.0617
0.7064 -0.0178 0.2058
0.3885 -0.0994 0.0975
0.4162 -0.0148 -0.1298
0.1021 0.9019 0.0768
0.0873 0.7709 -0.0821

-0.1616 0.5320 -0.0888
0.2169 0.2844 0.6635
0.0016 -0.1881 0.7849

-0.2289 0.0636 0.6475

Promax rotation creates a simpler structure in the loadings, one in which
most of the stocks have a large loading on only one factor. To see this
structure more clearly, you can use the biplot function to plot each stock
using its factor loadings as coordinates.

biplot(LoadingsPM,'varlabels',num2str((1:10)'));
axis square
view(155,27);

10-49



10 Multivariate Methods

This plot shows that promax has rotated the factor loadings to a simpler
structure. Each stock depends primarily on only one factor, and it is possible
to describe each factor in terms of the stocks that it affects. Based on which
companies are near which axes, you could reasonably conclude that the first
factor axis represents the financial sector, the second retail, and the third
technology. The original conjecture, that stocks vary primarily within sector,
is apparently supported by the data.

Factor Scores. Sometimes, it is useful to be able to classify an observation
based on its factor scores. For example, if you accepted the three-factor model
and the interpretation of the rotated factors, you might want to categorize
each week in terms of how favorable it was for each of the three stock sectors,
based on the data from the 10 observed stocks.

Because the data in this example are the raw stock price changes, and not
just their correlation matrix, you can have factoran return estimates of the
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value of each of the three rotated common factors for each week. You can
then plot the estimated scores to see how the different stock sectors were
affected during each week.

[LoadingsPM,specVarPM,TPM,stats,F] = ...
factoran(stocks, 3,'rotate','promax');

plot3(F(:,1),F(:,2),F(:,3),'b.')
line([-4 4 NaN 0 0 NaN 0 0], [0 0 NaN -4 4 NaN 0 0],...

[0 0 NaN 0 0 NaN -4 4], 'Color','black')
xlabel('Financial Sector')
ylabel('Retail Sector')
zlabel('Technology Sector')
grid on
axis square
view(-22.5, 8)
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Oblique rotation often creates factors that are correlated. This plot shows
some evidence of correlation between the first and third factors, and you can
investigate further by computing the estimated factor correlation matrix.

inv(TPM'*TPM)
ans =

1.0000 0.1559 0.4082
0.1559 1.0000 -0.0559
0.4082 -0.0559 1.0000

Visualizing the Results. You can use the biplot function to help visualize
both the factor loadings for each variable and the factor scores for each
observation in a single plot. For example, the following command plots the
results from the factor analysis on the stock data and labels each of the 10
stocks.

biplot(LoadingsPM,'scores',F,'varlabels',num2str((1:10)'))
xlabel('Financial Sector')
ylabel('Retail Sector')
zlabel('Technology Sector')
axis square
view(155,27)
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In this case, the factor analysis includes three factors, and so the biplot is
three-dimensional. Each of the 10 stocks is represented in this plot by a vector,
and the direction and length of the vector indicates how each stock depends
on the underlying factors. For example, you have seen that after promax
rotation, the first four stocks have positive loadings on the first factor, and
unimportant loadings on the other two factors. That first factor, interpreted
as a financial sector effect, is represented in this biplot as one of the horizontal
axes. The dependence of those four stocks on that factor corresponds to the
four vectors directed approximately along that axis. Similarly, the dependence
of stocks 5, 6, and 7 primarily on the second factor, interpreted as a retail
sector effect, is represented by vectors directed approximately along that axis.

Each of the 100 observations is represented in this plot by a point, and their
locations indicate the score of each observation for the three factors. For
example, points near the top of this plot have the highest scores for the
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technology sector factor. The points are scaled to fit within the unit square, so
only their relative locations can be determined from the plot.

You can use the Data Cursor tool from the Tools menu in the figure window
to identify the items in this plot. By clicking a stock (vector), you can read off
that stock’s loadings for each factor. By clicking an observation (point), you
can read off that observation’s scores for each factor.
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Introduction
Cluster analysis, also called segmentation analysis or taxonomy analysis,
creates groups, or clusters, of data. Clusters are formed in such a way that
objects in the same cluster are very similar and objects in different clusters
are very distinct. Measures of similarity depend on the application.

“Hierarchical Clustering” on page 11-3 groups data over a variety of scales by
creating a cluster tree or dendrogram. The tree is not a single set of clusters,
but rather a multilevel hierarchy, where clusters at one level are joined
as clusters at the next level. This allows you to decide the level or scale
of clustering that is most appropriate for your application. The Statistics
Toolbox function clusterdata performs all of the necessary steps for you.
It incorporates the pdist, linkage, and cluster functions, which may be
used separately for more detailed analysis. The dendrogram function plots
the cluster tree.

“K-Means Clustering” on page 11-21 is a partitioning method. The function
kmeans partitions data into k mutually exclusive clusters, and returns
the index of the cluster to which it has assigned each observation. Unlike
hierarchical clustering, k-means clustering operates on actual observations
(rather than the larger set of dissimilarity measures), and creates a single
level of clusters. The distinctions mean that k-means clustering is often more
suitable than hierarchical clustering for large amounts of data.

“Gaussian Mixture Models” on page 11-28 form clusters by representing the
probability density function of observed variables as a mixture of multivariate
normal densities. Mixture models of the gmdistribution class are fit to data
using an expectation maximization (EM) algorithm, which assigns posterior
probabilities to each component density with respect to each observation.
Clusters are assigned by selecting the component that maximizes the
posterior probability. Like k-means clustering, Gaussian mixture modeling
uses an iterative algorithm that converges to a local optimum. Gaussian
mixture modeling may be more appropriate than k-means clustering when
clusters have different sizes and correlation within them.
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Hierarchical Clustering

In this section...

“Introduction” on page 11-3

“Algorithm Description” on page 11-3

“Similarity Measures” on page 11-4

“Linkages” on page 11-6

“Dendrograms” on page 11-8

“Verifying the Cluster Tree” on page 11-10

“Creating Clusters” on page 11-16

Introduction
Hierarchical clustering groups data over a variety of scales by creating a
cluster tree or dendrogram. The tree is not a single set of clusters, but rather
a multilevel hierarchy, where clusters at one level are joined as clusters at
the next level. This allows you to decide the level or scale of clustering that
is most appropriate for your application. The Statistics Toolbox function
clusterdata supports agglomerative clustering and performs all of the
necessary steps for you. It incorporates the pdist, linkage, and cluster
functions, which you can use separately for more detailed analysis. The
dendrogram function plots the cluster tree.

Algorithm Description
To perform agglomerative hierarchical cluster analysis on a data set using
Statistics Toolbox functions, follow this procedure:

1 Find the similarity or dissimilarity between every pair of objects
in the data set. In this step, you calculate the distance between objects
using the pdist function. The pdist function supports many different
ways to compute this measurement. See “Similarity Measures” on page
11-4 for more information.

2 Group the objects into a binary, hierarchical cluster tree. In this
step, you link pairs of objects that are in close proximity using the linkage
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function. The linkage function uses the distance information generated in
step 1 to determine the proximity of objects to each other. As objects are
paired into binary clusters, the newly formed clusters are grouped into
larger clusters until a hierarchical tree is formed. See “Linkages” on page
11-6 for more information.

3 Determine where to cut the hierarchical tree into clusters. In this
step, you use the cluster function to prune branches off the bottom of
the hierarchical tree, and assign all the objects below each cut to a single
cluster. This creates a partition of the data. The cluster function can
create these clusters by detecting natural groupings in the hierarchical tree
or by cutting off the hierarchical tree at an arbitrary point.

The following sections provide more information about each of these steps.

Note The Statistics Toolbox function clusterdata performs all of the
necessary steps for you. You do not need to execute the pdist, linkage, or
cluster functions separately.

Similarity Measures
You use the pdist function to calculate the distance between every pair
of objects in a data set. For a data set made up of m objects, there are

pairs in the data set. The result of this computation is commonly
known as a distance or dissimilarity matrix.

There are many ways to calculate this distance information. By default, the
pdist function calculates the Euclidean distance between objects; however,
you can specify one of several other options. See pdist for more information.

Note You can optionally normalize the values in the data set before
calculating the distance information. In a real world data set, variables can
be measured against different scales. For example, one variable can measure
Intelligence Quotient (IQ) test scores and another variable can measure head
circumference. These discrepancies can distort the proximity calculations.
Using the zscore function, you can convert all the values in the data set to
use the same proportional scale. See zscore for more information.
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For example, consider a data set, X, made up of five objects where each object
is a set of x,y coordinates.

• Object 1: 1, 2

• Object 2: 2.5, 4.5

• Object 3: 2, 2

• Object 4: 4, 1.5

• Object 5: 4, 2.5

You can define this data set as a matrix

X = [1 2;2.5 4.5;2 2;4 1.5;4 2.5]

and pass it to pdist. The pdist function calculates the distance between
object 1 and object 2, object 1 and object 3, and so on until the distances
between all the pairs have been calculated. The following figure plots these
objects in a graph. The Euclidean distance between object 2 and object 3 is
shown to illustrate one interpretation of distance.

Distance Information
The pdist function returns this distance information in a vector, Y, where
each element contains the distance between a pair of objects.
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Y = pdist(X)

Y =

Columns 1 through 5

2.9155 1.0000 3.0414 3.0414 2.5495

Columns 6 through 10

3.3541 2.5000 2.0616 2.0616 1.0000

To make it easier to see the relationship between the distance information
generated by pdist and the objects in the original data set, you can reformat
the distance vector into a matrix using the squareform function. In this
matrix, element i,j corresponds to the distance between object i and object j in
the original data set. In the following example, element 1,1 represents the
distance between object 1 and itself (which is zero). Element 1,2 represents
the distance between object 1 and object 2, and so on.

squareform(Y)
ans =

0 2.9155 1.0000 3.0414 3.0414
2.9155 0 2.5495 3.3541 2.5000
1.0000 2.5495 0 2.0616 2.0616
3.0414 3.3541 2.0616 0 1.0000
3.0414 2.5000 2.0616 1.0000 0

Linkages
Once the proximity between objects in the data set has been computed, you
can determine how objects in the data set should be grouped into clusters,
using the linkage function. The linkage function takes the distance
information generated by pdist and links pairs of objects that are close
together into binary clusters (clusters made up of two objects). The linkage
function then links these newly formed clusters to each other and to other
objects to create bigger clusters until all the objects in the original data set
are linked together in a hierarchical tree.

For example, given the distance vector Y generated by pdist from the sample
data set of x- and y-coordinates, the linkage function generates a hierarchical
cluster tree, returning the linkage information in a matrix, Z.

Z = linkage(Y)
Z =

4.0000 5.0000 1.0000
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1.0000 3.0000 1.0000
6.0000 7.0000 2.0616
2.0000 8.0000 2.5000

In this output, each row identifies a link between objects or clusters. The first
two columns identify the objects that have been linked. The third column
contains the distance between these objects. For the sample data set of x-
and y-coordinates, the linkage function begins by grouping objects 4 and 5,
which have the closest proximity (distance value = 1.0000). The linkage
function continues by grouping objects 1 and 3, which also have a distance
value of 1.0000.

The third row indicates that the linkage function grouped objects 6 and 7. If
the original sample data set contained only five objects, what are objects 6
and 7? Object 6 is the newly formed binary cluster created by the grouping
of objects 4 and 5. When the linkage function groups two objects into a
new cluster, it must assign the cluster a unique index value, starting with
the value m+1, where m is the number of objects in the original data set.
(Values 1 through m are already used by the original data set.) Similarly,
object 7 is the cluster formed by grouping objects 1 and 3.

linkage uses distances to determine the order in which it clusters objects.
The distance vector Y contains the distances between the original objects 1
through 5. But linkage must also be able to determine distances involving
clusters that it creates, such as objects 6 and 7. By default, linkage uses a
method known as single linkage. However, there are a number of different
methods available. See the linkage reference page for more information.

As the final cluster, the linkage function grouped object 8, the newly formed
cluster made up of objects 6 and 7, with object 2 from the original data set.
The following figure graphically illustrates the way linkage groups the
objects into a hierarchy of clusters.

11-7



11 Cluster Analysis

Dendrograms
The hierarchical, binary cluster tree created by the linkage function is most
easily understood when viewed graphically. The Statistics Toolbox function
dendrogram plots the tree, as follows:

dendrogram(Z)
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4 5 1 3 2

1

1.5

2

2.5

In the figure, the numbers along the horizontal axis represent the indices of
the objects in the original data set. The links between objects are represented
as upside-down U-shaped lines. The height of the U indicates the distance
between the objects. For example, the link representing the cluster containing
objects 1 and 3 has a height of 1. The link representing the cluster that groups
object 2 together with objects 1, 3, 4, and 5, (which are already clustered as
object 8) has a height of 2.5. The height represents the distance linkage
computes between objects 2 and 8. For more information about creating a
dendrogram diagram, see the dendrogram reference page.
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Verifying the Cluster Tree
After linking the objects in a data set into a hierarchical cluster tree, you
might want to verify that the distances (that is, heights) in the tree reflect
the original distances accurately. In addition, you might want to investigate
natural divisions that exist among links between objects. Statistics Toolbox
functions are available for both of these tasks, as described in the following
sections:

• “Verifying Dissimilarity” on page 11-10

• “Verifying Consistency” on page 11-11

Verifying Dissimilarity
In a hierarchical cluster tree, any two objects in the original data set are
eventually linked together at some level. The height of the link represents
the distance between the two clusters that contain those two objects. This
height is known as the cophenetic distance between the two objects. One
way to measure how well the cluster tree generated by the linkage function
reflects your data is to compare the cophenetic distances with the original
distance data generated by the pdist function. If the clustering is valid, the
linking of objects in the cluster tree should have a strong correlation with
the distances between objects in the distance vector. The cophenet function
compares these two sets of values and computes their correlation, returning a
value called the cophenetic correlation coefficient. The closer the value of the
cophenetic correlation coefficient is to 1, the more accurately the clustering
solution reflects your data.

You can use the cophenetic correlation coefficient to compare the results of
clustering the same data set using different distance calculation methods or
clustering algorithms. For example, you can use the cophenet function to
evaluate the clusters created for the sample data set

c = cophenet(Z,Y)
c =

0.8615

where Z is the matrix output by the linkage function and Y is the distance
vector output by the pdist function.
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Execute pdist again on the same data set, this time specifying the city block
metric. After running the linkage function on this new pdist output using
the average linkage method, call cophenet to evaluate the clustering solution.

Y = pdist(X,'cityblock');
Z = linkage(Y,'average');
c = cophenet(Z,Y)
c =

0.9047

The cophenetic correlation coefficient shows that using a different distance
and linkage method creates a tree that represents the original distances
slightly better.

Verifying Consistency
One way to determine the natural cluster divisions in a data set is to compare
the height of each link in a cluster tree with the heights of neighboring links
below it in the tree.

A link that is approximately the same height as the links below it indicates
that there are no distinct divisions between the objects joined at this level of
the hierarchy. These links are said to exhibit a high level of consistency,
because the distance between the objects being joined is approximately the
same as the distances between the objects they contain.

On the other hand, a link whose height differs noticeably from the height of
the links below it indicates that the objects joined at this level in the cluster
tree are much farther apart from each other than their components were when
they were joined. This link is said to be inconsistent with the links below it.

In cluster analysis, inconsistent links can indicate the border of a natural
division in a data set. The cluster function uses a quantitative measure of
inconsistency to determine where to partition your data set into clusters.

The following dendrogram illustrates inconsistent links. Note how the objects
in the dendrogram fall into two groups that are connected by links at a much
higher level in the tree. These links are inconsistent when compared with the
links below them in the hierarchy.
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The relative consistency of each link in a hierarchical cluster tree can be
quantified and expressed as the inconsistency coefficient. This value compares
the height of a link in a cluster hierarchy with the average height of links
below it. Links that join distinct clusters have a high inconsistency coefficient;
links that join indistinct clusters have a low inconsistency coefficient.

To generate a listing of the inconsistency coefficient for each link in the
cluster tree, use the inconsistent function. By default, the inconsistent
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function compares each link in the cluster hierarchy with adjacent links that
are less than two levels below it in the cluster hierarchy. This is called the
depth of the comparison. You can also specify other depths. The objects at
the bottom of the cluster tree, called leaf nodes, that have no further objects
below them, have an inconsistency coefficient of zero. Clusters that join two
leaves also have a zero inconsistency coefficient.

For example, you can use the inconsistent function to calculate the
inconsistency values for the links created by the linkage function in
“Linkages” on page 11-6.

I = inconsistent(Z)
I =

1.0000 0 1.0000 0
1.0000 0 1.0000 0
1.3539 0.6129 3.0000 1.1547
2.2808 0.3100 2.0000 0.7071

The inconsistent function returns data about the links in an (m-1)-by-4
matrix, whose columns are described in the following table.

Column Description

1 Mean of the heights of all the links included in the calculation

2 Standard deviation of all the links included in the calculation

3 Number of links included in the calculation

4 Inconsistency coefficient

In the sample output, the first row represents the link between objects 4
and 5. This cluster is assigned the index 6 by the linkage function. Because
both 4 and 5 are leaf nodes, the inconsistency coefficient for the cluster is zero.
The second row represents the link between objects 1 and 3, both of which are
also leaf nodes. This cluster is assigned the index 7 by the linkage function.

The third row evaluates the link that connects these two clusters, objects 6
and 7. (This new cluster is assigned index 8 in the linkage output). Column 3
indicates that three links are considered in the calculation: the link itself and
the two links directly below it in the hierarchy. Column 1 represents the mean
of the heights of these links. The inconsistent function uses the height
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information output by the linkage function to calculate the mean. Column 2
represents the standard deviation between the links. The last column contains
the inconsistency value for these links, 1.1547. It is the difference between
the current link height and the mean, normalized by the standard deviation:

(2.0616 - 1.3539) / .6129
ans =

1.1547

The following figure illustrates the links and heights included in this
calculation.
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Note In the preceding figure, the lower limit on the y-axis is set to 0 to show
the heights of the links. To set the lower limit to 0, select Axes Properties
from the Editmenu, click the Y Axis tab, and enter 0 in the field immediately
to the right of Y Limits.

Row 4 in the output matrix describes the link between object 8 and object 2.
Column 3 indicates that two links are included in this calculation: the link
itself and the link directly below it in the hierarchy. The inconsistency
coefficient for this link is 0.7071.

The following figure illustrates the links and heights included in this
calculation.
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Creating Clusters
After you create the hierarchical tree of binary clusters, you can prune the
tree to partition your data into clusters using the cluster function. The
cluster function lets you create clusters in two ways, as discussed in the
following sections:

• “Finding Natural Divisions in Data” on page 11-17

• “Specifying Arbitrary Clusters” on page 11-18
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Finding Natural Divisions in Data
The hierarchical cluster tree may naturally divide the data into distinct,
well-separated clusters. This can be particularly evident in a dendrogram
diagram created from data where groups of objects are densely packed in
certain areas and not in others. The inconsistency coefficient of the links in
the cluster tree can identify these divisions where the similarities between
objects change abruptly. (See “Verifying the Cluster Tree” on page 11-10 for
more information about the inconsistency coefficient.) You can use this value
to determine where the cluster function creates cluster boundaries.

For example, if you use the cluster function to group the sample data set
into clusters, specifying an inconsistency coefficient threshold of 1.2 as the
value of the cutoff argument, the cluster function groups all the objects
in the sample data set into one cluster. In this case, none of the links in the
cluster hierarchy had an inconsistency coefficient greater than 1.2.

T = cluster(Z,'cutoff',1.2)
T =

1
1
1
1
1

The cluster function outputs a vector, T, that is the same size as the original
data set. Each element in this vector contains the number of the cluster into
which the corresponding object from the original data set was placed.

If you lower the inconsistency coefficient threshold to 0.8, the cluster
function divides the sample data set into three separate clusters.

T = cluster(Z,'cutoff',0.8)
T =

3
2
3
1
1
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This output indicates that objects 1 and 3 were placed in cluster 1, objects 4
and 5 were placed in cluster 2, and object 2 was placed in cluster 3.

When clusters are formed in this way, the cutoff value is applied to the
inconsistency coefficient. These clusters may, but do not necessarily,
correspond to a horizontal slice across the dendrogram at a certain height.
If you want clusters corresponding to a horizontal slice of the dendrogram,
you can either use the criterion option to specify that the cutoff should be
based on distance rather than inconsistency, or you can specify the number of
clusters directly as described in the following section.

Specifying Arbitrary Clusters
Instead of letting the cluster function create clusters determined by the
natural divisions in the data set, you can specify the number of clusters you
want created.

For example, you can specify that you want the cluster function to partition
the sample data set into two clusters. In this case, the cluster function
creates one cluster containing objects 1, 3, 4, and 5 and another cluster
containing object 2.

T = cluster(Z,'maxclust',2)
T =

2
1
2
2
2

To help you visualize how the cluster function determines these clusters, the
following figure shows the dendrogram of the hierarchical cluster tree. The
horizontal dashed line intersects two lines of the dendrogram, corresponding
to setting 'maxclust' to 2. These two lines partition the objects into two
clusters: the objects below the left-hand line, namely 1, 3, 4, and 5, belong to
one cluster, while the object below the right-hand line, namely 2, belongs to
the other cluster.
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On the other hand, if you set 'maxclust' to 3, the cluster function groups
objects 4 and 5 in one cluster, objects 1 and 3 in a second cluster, and object 2
in a third cluster. The following command illustrates this.

T = cluster(Z,'maxclust',3)
T =

1
3
1
2
2
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This time, the cluster function cuts off the hierarchy at a lower point,
corresponding to the horizontal line that intersects three lines of the
dendrogram in the following figure.
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K-Means Clustering

In this section...

“Introduction” on page 11-21

“Creating Clusters and Determining Separation” on page 11-22

“Determining the Correct Number of Clusters” on page 11-23

“Avoiding Local Minima” on page 11-26

Introduction
K-means clustering is a partitioning method. The function kmeans partitions
data into k mutually exclusive clusters, and returns the index of the cluster
to which it has assigned each observation. Unlike hierarchical clustering,
k-means clustering operates on actual observations (rather than the larger
set of dissimilarity measures), and creates a single level of clusters. The
distinctions mean that k-means clustering is often more suitable than
hierarchical clustering for large amounts of data.

kmeans treats each observation in your data as an object having a location in
space. It finds a partition in which objects within each cluster are as close to
each other as possible, and as far from objects in other clusters as possible.
You can choose from five different distance measures, depending on the kind
of data you are clustering.

Each cluster in the partition is defined by its member objects and by its
centroid, or center. The centroid for each cluster is the point to which the sum
of distances from all objects in that cluster is minimized. kmeans computes
cluster centroids differently for each distance measure, to minimize the sum
with respect to the measure that you specify.

kmeans uses an iterative algorithm that minimizes the sum of distances from
each object to its cluster centroid, over all clusters. This algorithm moves
objects between clusters until the sum cannot be decreased further. The
result is a set of clusters that are as compact and well-separated as possible.
You can control the details of the minimization using several optional input
parameters to kmeans, including ones for the initial values of the cluster
centroids, and for the maximum number of iterations.
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Creating Clusters and Determining Separation
The following example explores possible clustering in four-dimensional data
by analyzing the results of partitioning the points into three, four, and five
clusters.

Note Because each part of this example generates random numbers
sequentially, i.e., without setting a new state, you must perform all steps
in sequence to duplicate the results shown. If you perform the steps out of
sequence, the answers will be essentially the same, but the intermediate
results, number of iterations, or ordering of the silhouette plots may differ.

First, load some data:

load kmeansdata;
size(X)
ans =

560 4

Even though these data are four-dimensional, and cannot be easily visualized,
kmeans enables you to investigate whether a group structure exists in them.
Call kmeans with k, the desired number of clusters, equal to 3. For this
example, specify the city block distance measure, and use the default starting
method of initializing centroids from randomly selected data points:

idx3 = kmeans(X,3,'distance','city');

To get an idea of how well-separated the resulting clusters are, you can make
a silhouette plot using the cluster indices output from kmeans. The silhouette
plot displays a measure of how close each point in one cluster is to points in
the neighboring clusters. This measure ranges from +1, indicating points that
are very distant from neighboring clusters, through 0, indicating points that
are not distinctly in one cluster or another, to -1, indicating points that are
probably assigned to the wrong cluster. silhouette returns these values in
its first output:

[silh3,h] = silhouette(X,idx3,'city');
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
xlabel('Silhouette Value')
ylabel('Cluster')
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From the silhouette plot, you can see that most points in the third cluster
have a large silhouette value, greater than 0.6, indicating that the cluster is
somewhat separated from neighboring clusters. However, the first cluster
contains many points with low silhouette values, and the second contains a
few points with negative values, indicating that those two clusters are not
well separated.

Determining the Correct Number of Clusters
Increase the number of clusters to see if kmeans can find a better grouping
of the data. This time, use the optional 'display' parameter to print
information about each iteration:

idx4 = kmeans(X,4, 'dist','city', 'display','iter');
iter phase num sum

1 1 560 2897.56
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2 1 53 2736.67
3 1 50 2476.78
4 1 102 1779.68
5 1 5 1771.1
6 2 0 1771.1

6 iterations, total sum of distances = 1771.1

Notice that the total sum of distances decreases at each iteration as kmeans
reassigns points between clusters and recomputes cluster centroids. In this
case, the second phase of the algorithm did not make any reassignments,
indicating that the first phase reached a minimum after five iterations. In
some problems, the first phase might not reach a minimum, but the second
phase always will.

A silhouette plot for this solution indicates that these four clusters are better
separated than the three in the previous solution:

[silh4,h] = silhouette(X,idx4,'city');
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
xlabel('Silhouette Value')
ylabel('Cluster')
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A more quantitative way to compare the two solutions is to look at the average
silhouette values for the two cases:

mean(silh3)
ans =

0.52594
mean(silh4)
ans =

0.63997

Finally, try clustering the data using five clusters:

idx5 = kmeans(X,5,'dist','city','replicates',5);
[silh5,h] = silhouette(X,idx5,'city');
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
xlabel('Silhouette Value')
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ylabel('Cluster')
mean(silh5)
ans =

0.52657

This silhouette plot indicates that this is probably not the right number of
clusters, since two of the clusters contain points with mostly low silhouette
values. Without some knowledge of how many clusters are really in the data,
it is a good idea to experiment with a range of values for k.

Avoiding Local Minima
Like many other types of numerical minimizations, the solution that kmeans
reaches often depends on the starting points. It is possible for kmeans to
reach a local minimum, where reassigning any one point to a new cluster
would increase the total sum of point-to-centroid distances, but where a
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better solution does exist. However, you can use the optional 'replicates'
parameter to overcome that problem.

For four clusters, specify five replicates, and use the 'display' parameter to
print out the final sum of distances for each of the solutions.

[idx4,cent4,sumdist] = kmeans(X,4,'dist','city',...
'display','final','replicates',5);

17 iterations, total sum of distances = 2303.36
5 iterations, total sum of distances = 1771.1
6 iterations, total sum of distances = 1771.1
5 iterations, total sum of distances = 1771.1
8 iterations, total sum of distances = 2303.36

The output shows that, even for this relatively simple problem, non-global
minima do exist. Each of these five replicates began from a different randomly
selected set of initial centroids, and kmeans found two different local minima.
However, the final solution that kmeans returns is the one with the lowest
total sum of distances, over all replicates.

sum(sumdist)
ans =

1771.1
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Gaussian Mixture Models

In this section...

“Introduction” on page 11-28

“Clustering with Gaussian Mixtures” on page 11-28

Introduction
Gaussian mixture models are formed by combining multivariate normal
density components. For information on individual multivariate normal
densities, see “Multivariate Normal Distribution” on page B-58 and related
distribution functions listed under “Multivariate Distributions” on page 5-8.

In Statistics Toolbox software, mixture models of the gmdistribution class
are fit to data using an expectation maximization (EM) algorithm, which
assigns posterior probabilities to each component density with respect to
each observation.

Gaussian mixture models are often used for data clustering. Clusters are
assigned by selecting the component that maximizes the posterior probability.
Like k-means clustering, Gaussian mixture modeling uses an iterative
algorithm that converges to a local optimum. Gaussian mixture modeling may
be more appropriate than k-means clustering when clusters have different
sizes and correlation within them.

Creation of Gaussian mixture models is described in the “Gaussian Mixture
Models” on page 5-100 section of Chapter 5, “Probability Distributions”. This
section describes their application in cluster analysis.

Clustering with Gaussian Mixtures
Use the cluster method of the gmdistribution class to cluster data with
Gaussian mixture models. The method takes as input a gmdistribution
object obj and a data matrix X. The method assigns a cluster to each
observation in X by choosing the component of obj with the largest posterior
probability, weighted by the component probability.
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Note The data in X is typically the same as the data used to create the
Gaussian mixture distribution defined by obj. Clustering with cluster is
treated as a separate step, apart from density estimation. For cluster to
provide meaningful clustering with new data, X should come from the same
population as the data used to create obj.

The following example illustrates this procedure.

First, generate data from a mixture of two bivariate Gaussian distributions
using the mvnrnd function:

MU1 = [1 2];
SIGMA1 = [2 0; 0 .5];
MU2 = [-3 -5];
SIGMA2 = [1 0; 0 1];
X = [mvnrnd(MU1,SIGMA1,1000);mvnrnd(MU2,SIGMA2,1000)];

scatter(X(:,1),X(:,2),10,'.')
hold on
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Next, fit a two-component Gaussian mixture model:

options = statset('Display','final');
obj = gmdistribution.fit(X,2,'Options',options);
h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);

This returns

tex10 iterations, log-likelihood = -7046.78
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Finally, use the fit to cluster the data:

idx = cluster(obj,X);
cluster1 = X(idx == 1,:);
cluster2 = X(idx == 2,:);

delete(h)
h1 = scatter(cluster1(:,1),cluster1(:,2),10,'r.');
h2 = scatter(cluster2(:,1),cluster2(:,2),10,'g.');
legend([h1 h2],'Cluster 1','Cluster 2','Location','NW')
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The posterior method of the gmdistribution class returns the posterior
probabilities for each cluster used to cluster the data:

P = posterior(obj,X);

figure
scatter(X(:,1),X(:,2),10,P(:,1),'.')
hb = colorbar;
ylabel(hb,'Component 1 Probability')
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The mahal method of the gmdistribution class measures the Mahalanobis
distance (in squared units) of each observation to the mean of each of the
components:

D = mahal(obj,X);

figure
delete(h)
scatter(X(:,1),X(:,2),10,D(:,1),'.')
hb = colorbar;
ylabel(hb,'Mahalanobis Distance to Component 1')
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12 Classification

Introduction
Models of data with a categorical response are called classifiers. A classifier is
built from training data, for which classifications are known. The classifier
assigns new test data to one of the categorical levels of the response.

Parametric methods, like “Discriminant Analysis” on page 12-3, fit a
parametric model to the training data and interpolate to classify test data.

Nonparametric methods, like “Classification Trees” on page 12-9, use other
means to determine classifications. In this sense, classification methods are
analogous to the methods discussed in “Nonlinear Regression” on page 9-58.
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Discriminant Analysis

In this section...

“Introduction” on page 12-3

“Example: Discriminant Analysis” on page 12-3

Introduction
Discriminant analysis uses training data to estimate the parameters of
discriminant functions of the predictor variables. Discriminant functions
determine boundaries in predictor space between various classes. The
resulting classifier discriminates among the classes (the categorical levels of
the response) based on the predictor data.

The Statistics Toolbox function classify performs discriminant analysis.

Example: Discriminant Analysis

1 For training data, use Fisher’s sepal measurements for iris versicolor and
virginica:

load fisheriris
SL = meas(51:end,1);
SW = meas(51:end,2);
group = species(51:end);
h1 = gscatter(SL,SW,group,'rb','v^',[],'off');
set(h1,'LineWidth',2)
legend('Fisher versicolor','Fisher virginica',...

'Location','NW')
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2 Classify a grid of measurements on the same scale, using classify:

[X,Y] = meshgrid(linspace(4.5,8),linspace(2,4));
X = X(:); Y = Y(:);
[C,err,P,logp,coeff] = classify([X Y],[SL SW],...

group,'quadratic');

3 Visualize the classification:

hold on;
gscatter(X,Y,C,'rb','.',1,'off');
K = coeff(1,2).const;
L = coeff(1,2).linear;
Q = coeff(1,2).quadratic;
f = sprintf('0 = %g+%g*x+%g*y+%g*x^2+%g*x.*y+%g*y.^2',...

K,L,Q(1,1),Q(1,2)+Q(2,1),Q(2,2));
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h2 = ezplot(f,[4.5 8 2 4]);
set(h2,'Color','m','LineWidth',2)
axis([4.5 8 2 4])
xlabel('Sepal Length')
ylabel('Sepal Width')
title('{\bf Classification with Fisher Training Data}')
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Naive Bayes Classification
The Naive Bayes classifier is designed for use when features are independent
of one another within each class, but it appears to work well in practice
even when that independence assumption is not valid. It classifies data in
two steps:

1 Training step: Using the training samples, the method estimates
the parameters of a probability distribution, assuming features are
conditionally independent given the class.

2 Prediction step: For any unseen test sample, the method computes the
posterior probability of that sample belonging to each class. The method
then classifies the test sample according the largest posterior probability.

The class-conditional independence assumption greatly simplifies the training
step since you can estimate the one-dimensional class-conditional density
for each feature individually. While the class-conditional independence
between features is not true in general, research shows that this optimistic
assumption works well in practice. This assumption of class independence
allows the Naive Bayes classifier to better estimate the parameters required
for accurate classification while using less training data than many other
classifiers. This makes it particularly effective for datasets containing many
predictors or features.

Supported Distributions
Naive Bayes classification is based on estimating P(X|Y), the probability or
probability density of features X given class Y. The Naive Bayes classification
object NaiveBayes provides support for normal (Gaussian), kernel,
multinomial, and multivariate multinomial distributions. It is possible to use
different distributions for different features.

Normal (Gaussian) Distribution
The 'normal' distribution is appropriate for features that have normal
distributions in each class. For each feature you model with a normal
distribution, the Naive Bayes classifier estimates a separate normal
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distribution for each class by computing the mean and standard deviation of
the training data in that class. For more information on normal distributions,
see “Normal Distribution” on page B-82.

Kernel Distribution
The 'kernel' distribution is appropriate for features that have a continuous
distribution. It does not require a strong assumption such as a normal
distribution and you can use it in cases where the distribution of a feature may
be skewed or have multiple peaks or modes. It requires more computing time
and more memory than the normal distribution. For each feature you model
with a kernel distribution, the Naive Bayes classifier computes a separate
kernel density estimate for each class based on the training data for that class.
By default the kernel is the normal kernel, and the classifier selects a width
automatically for each class and feature. It is possible to specify different
kernels for each feature, and different widths for each feature or class.

Multinomial Distribution
The multinomial distribution (specify with the 'mn' keyword) is appropriate
when all features represent counts of a set of words or tokens. This is
sometimes called the "bag of words" model. For example, an e-mail spam
classifier might be based on features that count the number of occurrences
of various tokens in an e-mail. One feature might count the number of
exclamation points, another might count the number of times the word
"money" appears, and another might count the number of times the recipient’s
name appears. This is a Naive Bayes model under the further assumption
that the total number of tokens (or the total document length) is independent
of response class.

For the multinomial option, each feature represents the count of one token.
The classifier counts the set of relative token probabilities separately for
each class. The classifier defines the multinomial distribution for each row
by the vector of probabilities for the corresponding class, and by N, the total
token count for that row.

Classification is based on the relative frequencies of the tokens. For a row in
which no token appears, N is 0 and no classification is possible. This classifier
is not appropriate when the total number of tokens provides information
about the response class.
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Multivariate Multinomial Distribution
The multivariate multinomial distribution (specify with the 'mvmn' keyword)
is appropriate for categorical features. For example, you could fit a feature
describing the weather in categories such as rain/sun/snow/clouds using the
multivariate multinomial model. The feature categories are sometimes called
the feature levels, and differ from the class levels for the response variable.

For each feature you model with a multivariate multinomial distribution, the
Naive Bayes classifier computes a separate set of probabilities for the set of
feature levels for each class.
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Classification Trees

In this section...

“Introduction” on page 12-9

“Example: Classification Trees” on page 12-9

“References” on page 12-13

Introduction
Parametric models specify the form of the relationship between predictors
and a response, as in the Hougen-Watson model described in “Parametric
Models” on page 9-59. In many cases, however, the form of the relationship is
unknown, and a parametric model requires assumptions and simplifications.
Regression Trees offer a nonparametric alternative. When response data are
categorical, classification trees are a natural modification.

Note This section demonstrates methods for objects of the classregtree
class. These methods supersede the functions treefit, treedisp, treeval,
treeprune, and treetest, which are maintained in Statistics Toolbox
software only for backwards compatibility.

Example: Classification Trees
This example uses Fisher’s iris data in fisheriris.mat to create a
classification tree for predicting species using measurements of sepal length,
sepal width, petal length, and petal width as predictors. Note that, in this
case, the predictors are continuous and the response is categorical.

1 Load the data and use the classregtree constructor of the classregtree
class to create the classification tree:

load fisheriris

t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})

t =
Decision tree for classification
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1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

t is a classregtree object and can be operated on with any of the methods
of the class.

2 Use the typemethod of the classregtree class to show the type of the tree:

treetype = type(t)
treetype =
classification

classregtree creates a classification tree because species is a cell array
of strings, and the response is assumed to be categorical.

3 To view the tree, use the view method of the classregtree class:

view(t)
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The tree predicts the response values at the circular leaf nodes based on a
series of questions about the iris at the triangular branching nodes. A true
answer to any question follows the branch to the left; a false follows the
branch to the right.

4 The tree does not use sepal measurements for predicting species. These
can go unmeasured in new data, and you can enter them as NaN values for
predictions. For example, to use the tree to predict the species of an iris
with petal length 4.8 and petal width 1.6, type:

predicted = t([NaN NaN 4.8 1.6])
predicted =
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'versicolor'

Note that the object allows for functional evaluation, of the form t(X).
This is a shorthand way of calling the eval method of the classregtree
class. The predicted species is the left leaf node at the bottom of the tree
in the previous view.

5 You can use a variety of other methods of the classregtree class, such as
cutvar and cuttype to get more information about the split at node 6 that
makes the final distinction between versicolor and virginica:

var6 = cutvar(t,6) % What variable determines the split?
var6 =

'PW'

type6 = cuttype(t,6) % What type of split is it?
type6 =

'continuous'

6 Classification trees fit the original (training) data well, but may do a poor
job of classifying new values. Lower branches, especially, may be strongly
affected by outliers. A simpler tree often avoids overfitting. You can use
the prune method of the classregtree class to find the next largest tree
from an optimal pruning sequence:

pruned = prune(t,'level',1)
pruned =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 class = versicolor
7 class = virginica

view(pruned)
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To find the best classification tree, employing the techniques of resubstitution
and cross-validation, use the test method of the classregtree class.

References

[1] Breiman, L., et al., Classification and Regression Trees, Chapman & Hall,
Boca Raton, 1993.
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Regression and Classification by Bagging Decision Trees

In this section...

“Introduction” on page 12-14

“Examples” on page 12-15

“Regression of Insurance Risk Rating for Car Imports” on page 12-15

“Classifying Radar Returns for Ionosphere Data” on page 12-24

“Plotting a Performance Curve” on page 12-33

“See Also” on page 12-36

Introduction
Bagging, which stands for “bootstrap aggregation”, is a type of ensemble
learning. To bag a weak learner such as a decision tree on a dataset, generate
many bootstrap replicas of this dataset and grow decision trees on these
replicas. Obtain each bootstrap replica by randomly selecting N observations
out of N with replacement, where N is the dataset size. To find the predicted
response of a trained ensemble, take an average over predictions from
individual trees.

Bagging works by reducing variance of an unbiased base learner such as
a decision tree. The base learner must be unstable; its configuration must
vary significantly from one bootstrap replica to another. A decision tree with
fine leaves satisfies this requirement.

In the process of training decision trees on bootstrap replicas of input data,
you can also randomly select input variables, or features, for each decision
split. Instead of attempting splits on all variables at each node of a decision
tree, the algorithm only looks at feature subsets of fixed size randomly
selected from input variables. For example, if data has 10 input features,
you can select 3 features at random for each decision split. If the best split
uses one of the omitted seven variables, it is suboptimal. Surprisingly, this
technique tends to improve the predictive power of the ensemble, as random
selection of features reduces correlation between trees in the ensemble and
increases the overall predictive power.
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Several features of bagged decision trees make them a unique algorithm.
Drawing N out of N observations with replacement omits on average 37% of
observations for each decision tree. These are "out-of-bag" observations. You
can use them to estimate the predictive power and feature importance. For
each observation, you can estimate the out-of-bag prediction by averaging over
predictions from all trees in the ensemble for which this observation is out of
bag. You can then compare the computed prediction against the true response
for this observation. By comparing the out-of-bag predicted responses against
the true responses for all observations used for training, you can estimate the
average out-of-bag error. This out-of-bag average is an unbiased estimator of
the true ensemble error. You can also obtain out-of-bag estimates of feature
importance by randomly permuting out-of-bag data across one variable or
column at a time and estimating the increase in the out-of-bag error due to
this permutation. The larger the increase, the more important the feature.
Thus, you do not need to supply test data for bagged ensembles because you
obtain reliable estimates of the predictive power and feature importance in
the process of training, which is an attractive feature of bagging.

Another attractive feature of bagged decision trees is the proximity matrix.
Every time two observations land on the same leaf of a tree, their proximity
increases by one. For normalization, sum these proximities over all trees
in the ensemble and divided by the number of trees. The resulting matrix
is symmetric with diagonal elements equal to 1 and off-diagonal elements
ranging from 0 to 1. You can use this matrix for finding outlier observations
and discovering clusters in the data through multidimensional scaling.

The following examples showcase the Statistics Toolbox TreeBagger class
and CompactTreeBagger class functionalities.

Examples
The following examples show how to use ensembles of decision trees for
regression and classification.

Regression of Insurance Risk Rating for Car Imports
In this example, use a database of 1985 car imports with 205 observations,
25 input variables, and one response variable, insurance risk rating, or
"symboling". The first 15 variables are numeric and the last 10 are categorical.
The symboling index takes integer values from -3 to 3.
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First, load the dataset and split it into predictor and response arrays:

load imports-85;
Y = X(:,1);
X = X(:,2:end);

Because bagging uses randomized data drawings, its exact outcome depends
on the initial random seed. To reproduce the exact results in this example,
use the random stream settings

s = RandStream('mt19937ar','seed',1945);
RandStream.setDefaultStream(s);

Finding the Optimal Leaf Size
For regression, the general rule is to set leaf size to 5 and select one third of
input features for decision splits at random. In the following step, verify the
optimal leaf size by comparing mean squared errors obtained by regression for
various leaf sizes. oobError computes MSE versus the number of grown trees.
It is necessary to set oobpred to 'on' to obtain out-of-bag predictions later.

leaf = [1 5 10 20 50 100];
col = 'rgbcmy';
figure(1);
for i=1:length(leaf)

b = TreeBagger(50,X,Y,'method','r','oobpred','on',...
'cat',16:25,'minleaf',leaf(i));
plot(oobError(b),col(i));
hold on;

end
xlabel('Number of Grown Trees');
ylabel('Mean Squared Error');
legend({'1' '5' '10' '20' '50' '100'},'Location','NorthEast');
hold off;
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The red (leaf size 1) curve gives the lowest MSE values.

Estimating Feature Importance
In practical applications, you typically grow ensembles with hundreds of
trees. Only 50 trees were used in the previous exercise for faster processing.
Now that you have estimated the optimal leaf size, grow a larger ensemble
with 100 trees and use it for estimation of feature importance:

b = TreeBagger(100,X,Y,'method','r','oobvarimp','on',...
'cat',16:25,'minleaf',1);

Inspect the error curve again to make sure nothing went wrong during
training:

figure(2);
plot(oobError(b));
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Mean Squared Error');
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Prediction ability should depend more on important features and less on
unimportant features. You can use this idea to measure feature importance.

For each feature, you can permute the values of this feature across all of
the observations in the data set and measure how much worse the mean
squared error (MSE) becomes after the permutation. You can repeat this
for each feature.

Using the following code, plot the increase in MSE due to permuting out-of-bag
observations across each input variable. The OOBPermutedVarDeltaError
array stores the increase in MSE averaged over all trees in the ensemble and
divided by the standard deviation taken over the trees, for each variable. The
larger this value, the more important the variable. Imposing an arbitrary
cutoff at 0.65, you can select the five most important features.

figure(3);
bar(b.OOBPermutedVarDeltaError);
xlabel('Feature Number');
ylabel('Out-Of-Bag Feature Importance');
idxvar = find(b.OOBPermutedVarDeltaError>0.65)

idxvar =

2 4 8 16 19
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The OOBIndices property of TreeBagger keeps track of which observations
are out of bag for what trees. Using this property, you can monitor the
fraction of observations in the training data that are in bag for all trees. The
curve starts at approximately 2/3, the fraction of unique observations selected
by one bootstrap replica, and goes down to zero at approximately 10 trees.

finbag = zeros(1,b.NTrees);
for t=1:b.NTrees

finbag(t) = sum(all(~b.OOBIndices(:,1:t),2));
end
finbag = finbag / size(X,1);
figure(4);
plot(finbag);
xlabel('Number of Grown Trees');
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ylabel('Fraction of in-Bag Observations');

Growing Trees on a Reduced Set of Features
Using just the five most powerful features selected in “Estimating Feature
Importance” on page 12-17, find out if it is possible to obtain a similar
predictive power. To begin, grow 100 trees on these features only. The first
three of the five selected features are numeric and the last two are categorical.

b5v = TreeBagger(100,X(:,idxvar),Y,'method','r',...
'oobvarimp','on','cat',4:5,'minleaf',1);
figure(5);
plot(oobError(b5v));
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xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Mean Squared Error');
figure(6);
bar(b5v.OOBPermutedVarDeltaError);
xlabel('Feature Index');
ylabel('Out-of-Bag Feature Importance');
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These five most powerful features give the same MSE as the full set, and
the ensemble trained on the reduced set ranks these features similarly to
each other. Features 1 and 2 from the reduced set perhaps could be removed
without a significant loss in the predictive power.

Finding Outliers
To find outliers in the training data, compute the proximity matrix using
fillProximities:

b5v = fillProximities(b5v);

The method normalizes this measure by subtracting the mean outlier measure
for the entire sample, taking the magnitude of this difference and dividing the
result by the median absolute deviation for the entire sample.

figure(7);
hist(b5v.OutlierMeasure);
xlabel('Outlier Measure');
ylabel('Number of Observations');
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Discovering Clusters in the Data
By applying multidimensional scaling to the computed matrix of proximities,
you can inspect the structure of the input data and look for possible clusters of
observations. The mdsProxmethod returns scaled coordinates and eigenvalues
for the computed proximity matrix. If run with the colors option, this method
makes a scatter plot of two scaled coordinates, first and second by default.

figure(8);
[~,e] = mdsProx(b5v,'colors','k');
xlabel('1st Scaled Coordinate');
ylabel('2nd Scaled Coordinate');

Assess the relative importance of the scaled axes by plotting the first 20
eigenvalues:

figure(9);
bar(e(1:20));
xlabel('Scaled Coordinate Index');
ylabel('Eigenvalue');
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Saving the Ensemble Configuration for Future Use
To use the trained ensemble for predicting the response on unseen data, store
the ensemble to disk and retrieve it later. If you do not want to compute
predictions for out-of-bag data or reuse training data in any other way, there
is no need to store the ensemble object itself. Saving the compact version of
the ensemble would be enough in this case. Extract the compact object from
the ensemble:

c = compact(b5v)

c =

Ensemble with 100 decision trees:
Method: regression
Nvars: 5

This object can be now saved into a *.mat file as usual.

Classifying Radar Returns for Ionosphere Data
You can also use ensembles of decision trees for classification. For this
example, use ionosphere data with 351 observations and 34 real-valued
predictors. The response variable is categorical with two levels:
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• 'g' for good radar returns

• 'b' for bad radar returns

The goal is to predict good or bad using a set of 34 measurements.

The workflow is similar to the one for “Regression of Insurance Risk Rating
for Car Imports” on page 12-15. Again, fix the initial random seed, grow 50
trees, inspect how the ensemble error changes with accumulation of trees, and
estimate feature importance. For classification, it is best to set the minimal
leaf size to 1 and select the square root of the total number of features for
each decision split at random. These are the default settings for a TreeBagger
used for classification.

load ionosphere;
s = RandStream('mt19937ar','seed',1945);
RandStream.setDefaultStream(s);
b = TreeBagger(50,X,Y,'oobvarimp','on');
figure(10);
plot(oobError(b));
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Classification Error');

The method trains ensembles with few trees on observations that are in bag
for all trees. For such observations, it is not possible to compute the true
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out-of-bag prediction and TreeBagger returns the most probable class for
classification and the sample mean for regression. You can change the default
value returned for in-bag observations using the DefaultYfit property. If
you set the default value to an empty string for classification, the method
excludes in-bag observations from computation of the out-of-bag error. In this
case, the curve is more variable when the number of trees is small, either
because some observations are never out of bag (and are therefore excluded)
or because their predictions are based on few trees.

b.DefaultYfit = '';
figure(11);
plot(oobError(b));
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Error Excluding in-Bag Observations');

The OOBIndices property of TreeBagger keeps track of which observations
are out of bag for what trees. Using this property, you can monitor the
fraction of observations in the training data that are in bag for all trees. The
curve starts at approximately 2/3, the fraction of unique observations selected
by one bootstrap replica, and goes down to zero at approximately 10 trees.

finbag = zeros(1,b.NTrees);
for t=1:b.NTrees

finbag(t) = sum(all(~b.OOBIndices(:,1:t),2));
end
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finbag = finbag / size(X,1);
figure(12);
plot(finbag);
xlabel('Number of Grown Trees');
ylabel('Fraction of in-Bag Observations');

Now estimate feature importance:

figure(13);
bar(b.OOBPermutedVarDeltaError);
xlabel('Feature Index');
ylabel('Out-of-Bag Feature Importance');
idxvar = find(b.OOBPermutedVarDeltaError>0.8)

idxvar =

3 4 5 7 8
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Having selected the five most important features, grow a larger ensemble on
the reduced feature set. Save time by not permuting out-of-bag observations
to obtain new estimates of feature importance for the reduced feature set (set
oobvarimp to 'off'). You would still be interested in obtaining out-of-bag
estimates of classification error (set oobpred to 'on').

b5v = TreeBagger(100,X(:,idxvar),Y,'oobpred','on');
figure(14);
plot(oobError(b5v));
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Classification Error');
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For classification ensembles, in addition to classification error (fraction of
misclassified observations), you can also monitor the average classification
margin. For each observation, the margin is defined as the difference between
the score for the true class and the maximal score for other classes predicted
by this tree. The cumulative classification margin uses the scores averaged
over all trees and the mean cumulative classification margin is the cumulative
margin averaged over all observations. The oobMeanMargin method with
the 'mode' argument set to 'cumulative' (default) shows how the mean
cumulative margin changes as the ensemble grows: every new element in the
returned array represents the cumulative margin obtained by including a
new tree in the ensemble. If training is successful, you would expect to see a
gradual increase in the mean classification margin.

For decision trees, a classification score is the probability of observing an
instance of this class in this tree leaf. For example, if the leaf of a grown
decision tree has five 'good' and three 'bad' training observations in it, the
scores returned by this decision tree for any observation fallen on this leaf are
5/8 for the 'good' class and 3/8 for the 'bad' class. These probabilities are
referred to as 'scores' for consistency with other classifiers that may not
have an obvious interpretation for numeric values of returned predictions.

figure(15);
plot(oobMeanMargin(b5v));
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xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Mean Classification Margin');

Again, compute the matrix of proximities and look at the distribution of
outlier measures. Unlike regression, outlier measures for classification
ensembles are computed within each class separately.

b5v = fillProximities(b5v);
figure(16);
hist(b5v.OutlierMeasure);
xlabel('Outlier Measure');
ylabel('Number of Observations');
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All extreme outliers for this dataset come from the 'good' class:

b5v.Y(b5v.OutlierMeasure>40)

ans =

'g'
'g'
'g'
'g'
'g''

Just like for regression, you can plot scaled coordinates, displaying the two
classes in different colors using the colors argument of mdsProx. This
argument takes a string in which every character represents a color. To find
out the order of classes used by the ensemble, look at the ClassNames property:

b5v.ClassNames

ans =

'g'
'b'
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The 'good' class is first and the 'bad' class is second. Display scaled
coordinates using red for 'good' and blue for 'bad' observations.

figure(17);
[s,e] = mdsProx(b5v,'colors','rb');
xlabel('1st Scaled Coordinate');
ylabel('2nd Scaled Coordinate');
legend({'good' 'bad'},'Location','NorthWest');

Again, plot the first 20 eigenvalues obtained by scaling. The first eigenvalue in
this case clearly dominates and the first scaled coordinate is most important.

figure(18);
bar(e(1:20));
xlabel('Scaled Coordinate Index');
ylabel('Eigenvalue');
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Plotting a Performance Curve
Another way of exploring the performance of a classification ensemble
is to plot its Receiver Operating Characteristic (ROC) curve or another
performance curve suitable for the current problem. First, you need to obtain
predictions for out-of-bag observations. For a classification ensemble, the
oobPredict method returns a cell array of classification labels ('g' or 'b'
for ionosphere data) as the first output argument and a numeric array of
scores as the second output argument. The returned array of scores has two
columns, one for each class. In this case, the first column is for the 'good'
class and the second column is for the 'bad' class. One of the columns in the
score matrix is redundant because the scores represent class probabilities in
tree leaves and by definition add up to 1.

[Yfit,Sfit] = oobPredict(b5v);

You can now use the perfcurve utility (described in more detail in
“Performance Curves” on page 12-37) to compute a performance curve. By
default, perfcurve returns the standard ROC curve, which is the true positive
rate versus false positive rate. perfcurve requires true class labels, scores,
and the positive class label for input. In this case, choose the 'good' class as
positive. The scores for this class are in the first column of Sfit.

[fpr,tpr] = perfcurve(b5v.Y,Sfit(:,1),'g');
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figure(19);
plot(fpr,tpr);
xlabel('False Positive Rate');
ylabel('True Positive Rate');

Instead of the standard ROC curve, you might want to plot, for example,
ensemble accuracy versus threshold on the score for the 'good' class. The
ycrit input argument of perfcurve lets you specify the criterion for the
y-axis, and the third output argument of perfcurve returns an array of
thresholds for the positive class score. Accuracy is the fraction of correctly
classified observations, or equivalently, one minus classification error.

[fpr,accu,thre] = perfcurve(b5v.Y,Sfit(:,1),'g','ycrit','accu');
figure(20);
plot(thre,accu);
xlabel('Threshold for ''good'' Returns');
ylabel('Classification Accuracy');
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The curve shows a flat region indicating that any threshold from 0.2 to 0.6
is a reasonable choice. By default, the function assigns classification labels
using 0.5 as the boundary between the two classes. You can find exactly
what accuracy this corresponds to:

i50 = find(accu>=0.50,1,'first')
accu(abs(thre-0.5)<eps)

returns

i50 =

2

ans =

0.9430

The maximal accuracy is a little higher than the default one.

[maxaccu,iaccu] = max(accu)

returns
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maxaccu =

0.9459

iaccu =

92

The optimal threshold is therefore:

thre(iaccu)

ans =

0.5056

See Also
bootstrp, classify, ClassNames, CompactTreeBagger, fillProximities,
perfcurve, randstream, TreeBagger, oobError, OOBPermutedVarDeltaError,
perfcurve
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Performance Curves

In this section...

“Introduction” on page 12-37

“What are ROC Curves?” on page 12-37

“Evaluating Classifier Performance Using perfcurve” on page 12-37

“References” on page 12-42

Introduction
After a classification algorithm such as NaiveBayes or TreeBagger has
trained on data, you may want to examine the performance of this algorithm
on a specific test dataset. One common way of doing this would be to compute
a gross measure of performance such as quadratic loss, accuracy, such as
quadratic loss or accuracy, averaged over the entire test dataset.

What are ROC Curves?
You may want to inspect the classifier performance more closely, for
example, by plotting a Receiver Operating Characteristic (ROC) curve. By
definition, a ROC curve [1,2] shows true positive rate versus false positive
rate (equivalently, sensitivity versus 1–specificity) for different thresholds of
the classifier output. You can use it, for example, to find the threshold that
maximizes the classification accuracy or to assess, in more broad terms, how
the classifier performs in the regions of high sensitivity and high specificity.

Evaluating Classifier Performance Using perfcurve
perfcurve computes measures for a plot of classifier performance. You can
use this utility to evaluate classifier performance on test data after you train
the classifier. Various measures such as mean squared error, classification
error, or exponential loss can summarize the predictive power of a classifier
in a single number. However, a performance curve offers more information
as it lets you explore the classifier performance across a range of thresholds
on its output.
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You can use perfcurve with any classifier or, more broadly, with any method
that returns a numeric score for an instance of input data. By convention
adopted here,

• A high score returned by a classifier for any given instance signifies that
the instance is likely from the positive class.

• A low score signifies that the instance is likely from the negative classes.

For some classifiers, you can interpret the score as the posterior probability
of observing an instance of the positive class at point X. An example of such
a score is the fraction of positive observations in a leaf of a decision tree. In
this case, scores fall into the range from 0 to 1 and scores from positive and
negative classes add up to unity. Other methods can return scores ranging
between minus and plus infinity, without any obvious mapping from the
score to the posterior class probability.

perfcurve does not impose any requirements on the input score range.
Because of this lack of normalization, you can use perfcurve to process scores
returned by any classification, regression, or fit method. perfcurve does
not make any assumptions about the nature of input scores or relationships
between the scores for different classes. As an example, consider a problem
with three classes, A, B, and C, and assume that the scores returned by some
classifier for two instances are as follows:

A B C

instance 1 0.4 0.5 0.1

instance 2 0.4 0.1 0.5

If you want to compute a performance curve for separation of classes A and B,
with C ignored, you need to address the ambiguity in selecting A over B. You
could opt to use the score ratio, s(A)/s(B), or score difference, s(A)-s(B);
this choice could depend on the nature of these scores and their normalization.
perfcurve always takes one score per instance. If you only supply scores for
class A, perfcurve does not distinguish between observations 1 and 2. The
performance curve in this case may not be optimal.

perfcurve is intended for use with classifiers that return scores, not those
that return only predicted classes. As a counter-example, consider a decision
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tree that returns only hard classification labels, 0 or 1, for data with two
classes. In this case, the performance curve reduces to a single point because
classified instances can be split into positive and negative categories in one
way only.

For input, perfcurve takes true class labels for some data and scores assigned
by a classifier to these data. By default, this utility computes a Receiver
Operating Characteristic (ROC) curve and returns values of 1–specificity,
or false positive rate, for X and sensitivity, or true positive rate, for Y. You
can choose other criteria for X and Y by selecting one out of several provided
criteria or specifying an arbitrary criterion through an anonymous function.
You can display the computed performance curve using plot(X,Y).

perfcurve can compute values for various criteria to plot either on the x- or
the y-axis. All such criteria are described by a 2-by-2 confusion matrix, a
2-by-2 cost matrix, and a 2-by-1 vector of scales applied to class counts.

The confusion matrix, C, is defined as

TP FN
FP TN

⎛

⎝
⎜

⎞

⎠
⎟ ,

where

• P stands for "positive".

• N stands for "negative".

• T stands for "true".

• F stands for "false".

For example, the first row of the confusion matrix defines how the classifier
identifies instances of the positive class: C(1,1) is the count of correctly
identified positive instances and C(1,2) is the count of positive instances
misidentified as negative.

The cost matrix defines the cost of misclassification for each category:
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Cost P P Cost N P
Cost P N Cost N N

( | ) ( | )
( | ) ( | )

⎛

⎝
⎜

⎞

⎠
⎟ ,

where Cost(I|J) is the cost of assigning an instance of class J to class I.
Usually Cost(I|J)=0 for I=J. For flexibility, perfcurve allows you to specify
nonzero costs for correct classification as well.

The two scales include prior information about class probabilities.
perfcurve computes these scales by taking scale(P)=prior(P)*N and
scale(N)=prioer(N)*P and normalizing the sum scale(P)+scale(N)
to 1. P=TP+FN and N=TN+FP are the total instance counts in the positive
and negative class, respectively. The function then applies the scales as
multiplicative factors to the counts from the corresponding class: perfcurve
multiplies counts from the positive class by scale(P) and counts from the
negative class by scale(N). Consider, for example, computation of positive
predictive value, PPV = TP/(TP+FP). TP counts come from the positive class
and FP counts come from the negative class. Therefore, you need to scale TP
by scale(P) and FP by scale(N), and the modified formula for PPV with prior
probabilities taken into account is now:

PPV
scale P TP

scale P TP scale N FP
=

+
( ) *

( ) * ( ) *

If all scores in the data are above a certain threshold, perfcurve classifies all
instances as 'positive'. This means that TP is the total number of instances
in the positive class and FP is the total number of instances in the negative
class. In this case, PPV is simply given by the prior:

PPV
prior P

prior P prior N
=

+
( )

( ) ( )

The perfcurve function returns two vectors, X and Y, of performance
measures. Each measure is some function of confusion, cost, and scale
values. You can request specific measures by name or provide a function
handle to compute a custom measure. The function you provide should take
confusion, cost, and scale as its three inputs and return a vector of output
values.
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The criterion for X must be a monotone function of the positive classification
count, or equivalently, threshold for the supplied scores. If perfcurve cannot
perform a one-to-one mapping between values of the X criterion and score
thresholds, it exits with an error message.

By default, perfcurve computes values of the X and Y criteria for all possible
score thresholds. Alternatively, it can compute a reduced number of specific X
values supplied as an input argument. In either case, for M requested values,
perfcurve computes M+1 values for X and Y. The first value out of these M+1
values is special. perfcurve computes it by setting the TP instance count
to zero and setting TN to the total count in the negative class. This value
corresponds to the 'reject all' threshold. On a standard ROC curve, this
translates into an extra point placed at (0,0).

If there are NaN values among input scores, perfcurve can process them
in either of two ways:

• It can discard rows with NaN scores.

• It can add them to false classification counts in the respective class.

That is, for any threshold, instances with NaN scores from the positive class
are counted as false negative (FN), and instances with NaN scores from the
negative class are counted as false positive (FP). In this case, the first value
of X or Y is computed by setting TP to zero and setting TN to the total count
minus the NaN count in the negative class. For illustration, consider an
example with two rows in the positive and two rows in the negative class,
each pair having a NaN score:

Class Score

Negative 0.2

Negative NaN

Positive 0.7

Positive NaN

If you discard rows with NaN scores, then as the score cutoff varies, perfcurve
computes performance measures as in the following table. For example, a
cutoff of 0.5 corresponds to the middle row where rows 1 and 3 are classified
correctly, and rows 2 and 4 are omitted.
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TP FN FP TN

0 1 0 1

1 0 0 1

1 0 1 0

If you add rows with NaN scores to the false category in their respective
classes, perfcurve computes performance measures as in the following table.
For example, a cutoff of 0.5 corresponds to the middle row where now rows
2 and 4 are counted as incorrectly classified. Notice that only the FN and FP
columns differ between these two tables.

TP FN FP TN

0 2 1 1

1 1 1 1

1 1 2 0

By default perfcurve does not return the 'reject all' values for X and Y. It
can optionally do so upon request.

For data with three or more classes, perfcurve takes one positive class and a
list of negative classes for input. The function computes the X and Y values
using counts in the positive class to estimate TP and FN, and using counts in
all negative classes to estimate TN and FP. perfcurve can optionally compute
Y values for each negative class separately and, in addition to Y, return a
matrix of size M-by-C, where M is the number of elements in X or Y and C is
the number of negative classes. You can use this functionality to monitor
components of the negative class contribution. For example, you can plot TP
counts on the X-axis and FP counts on the Y-axis. In this case, the returned
matrix shows how the FP component is split across negative classes.
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13 Markov Models

Introduction
Markov processes are examples of stochastic processes—processes that
generate random sequences of outcomes or states according to certain
probabilities. Markov processes are distinguished by being memoryless—their
next state depends only on their current state, not on the history that led them
there. Models of Markov processes are used in a wide variety of applications,
from daily stock prices to the positions of genes in a chromosome.
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Markov Chains
A Markov model is given visual representation with a state diagram, such
as the one below.

State Diagram for a Markov Model

The rectangles in the diagram represent the possible states of the process you
are trying to model, and the arrows represent transitions between states.
The label on each arrow represents the probability of that transition. At
each step of the process, the model may generate an output, or emission,
depending on which state it is in, and then make a transition to another
state. An important characteristic of Markov models is that the next state
depends only on the current state, and not on the history of transitions that
lead to the current state.

For example, for a sequence of coin tosses the two states are heads and tails.
The most recent coin toss determines the current state of the model and each
subsequent toss determines the transition to the next state. If the coin is fair,
the transition probabilities are all 1/2. The emission might simply be the
current state. In more complicated models, random processes at each state
will generate emissions. You could, for example, roll a die to determine the
emission at any step.
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Markov chains are mathematical descriptions of Markov models with a
discrete set of states. Markov chains are characterized by:

• A set of states {1, 2, ..., M}

• An M-by-M transition matrix T whose i, j entry is the probability of a
transition from state i to state j. The sum of the entries in each row of
T must be 1, because this is the sum of the probabilities of making a
transition from a given state to each of the other states.

• A set of possible outputs, or emissions, {s1, s2, ... , sN}. By default, the set of
emissions is {1, 2, ... , N}, where N is the number of possible emissions, but
you can choose a different set of numbers or symbols.

• An M-by-N emission matrix E whose i,k entry gives the probability of
emitting symbol sk given that the model is in state i.

Markov chains begin in an initial state i0 at step 0. The chain then transitions
to state i1 with probability , and emits an output with probability .
Consequently, the probability of observing the sequence of states and
the sequence of emissions in the first r steps, is
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Hidden Markov Models

In this section...

“Introduction” on page 13-5

“Analyzing Hidden Markov Models” on page 13-7

Introduction
A hidden Markov model is one in which you observe a sequence of emissions,
but do not know the sequence of states the model went through to generate
the emissions. Analyses of hidden Markov models seek to recover the
sequence of states from the observed data.

As an example, consider a Markov model with two states and six possible
emissions. The model uses:

• A red die, having six sides, labeled 1 through 6.

• A green die, having twelve sides, five of which are labeled 2 through 6,
while the remaining seven sides are labeled 1.

• A weighted red coin, for which the probability of heads is .9 and the
probability of tails is .1.

• A weighted green coin, for which the probability of heads is .95 and the
probability of tails is .05.

The model creates a sequence of numbers from the set {1, 2, 3, 4, 5, 6} with the
following rules:

• Begin by rolling the red die and writing down the number that comes up,
which is the emission.

• Toss the red coin and do one of the following:

- If the result is heads, roll the red die and write down the result.

- If the result is tails, roll the green die and write down the result.

• At each subsequent step, you flip the coin that has the same color as the die
you rolled in the previous step. If the coin comes up heads, roll the same die
as in the previous step. If the coin comes up tails, switch to the other die.
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The state diagram for this model has two states, red and green, as shown in
the following figure.

You determine the emission from a state by rolling the die with the same color
as the state. You determine the transition to the next state by flipping the
coin with the same color as the state.

The transition matrix is:

The emissions matrix is:

The model is not hidden because you know the sequence of states from the
colors of the coins and dice. Suppose, however, that someone else is generating
the emissions without showing you the dice or the coins. All you see is the
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sequence of emissions. If you start seeing more 1s than other numbers, you
might suspect that the model is in the green state, but you cannot be sure
because you cannot see the color of the die being rolled.

Hidden Markov models raise the following questions:

• Given a sequence of emissions, what is the most likely state path?

• Given a sequence of emissions, how can you estimate transition and
emission probabilities of the model?

• What is the forward probability that the model generates a given sequence?

• What is the posterior probability that the model is in a particular state at
any point in the sequence?

Analyzing Hidden Markov Models

• “Generating a Test Sequence” on page 13-8

• “Estimating the State Sequence” on page 13-8

• “Estimating Transition and Emission Matrices” on page 13-9

• “Estimating Posterior State Probabilities” on page 13-11

• “Changing the Initial State Distribution” on page 13-12

Statistics Toolbox functions related to hidden Markov models are:

• hmmgenerate — Generates a sequence of states and emissions from a
Markov model

• hmmestimate — Calculates maximum likelihood estimates of transition
and emission probabilities from a sequence of emissions and a known
sequence of states

• hmmtrain — Calculates maximum likelihood estimates of transition and
emission probabilities from a sequence of emissions

• hmmviterbi — Calculates the most probable state path for a hidden
Markov model

• hmmdecode — Calculates the posterior state probabilities of a sequence
of emissions
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This section shows how to use these functions to analyze hidden Markov
models.

Generating a Test Sequence
The following commands create the transition and emission matrices for the
model described in the “Introduction” on page 13-5:

TRANS = [.9 .1; .05 .95;];

EMIS = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;...
7/12, 1/12, 1/12, 1/12, 1/12, 1/12];

To generate a random sequence of states and emissions from the model, use
hmmgenerate:

[seq,states] = hmmgenerate(1000,TRANS,EMIS);

The output seq is the sequence of emissions and the output states is the
sequence of states.

hmmgenerate begins in state 1 at step 0, makes the transition to state i1 at
step 1, and returns i1 as the first entry in states. To change the initial state,
see “Changing the Initial State Distribution” on page 13-12.

Estimating the State Sequence
Given the transition and emission matrices TRANS and EMIS, the function
hmmviterbi uses the Viterbi algorithm to compute the most likely sequence
of states the model would go through to generate a given sequence seq of
emissions:

likelystates = hmmviterbi(seq, TRANS, EMIS);

likelystates is a sequence the same length as seq.

To test the accuracy of hmmviterbi, compute the percentage of the actual
sequence states that agrees with the sequence likelystates.

sum(states==likelystates)/1000
ans =

0.8200
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In this case, the most likely sequence of states agrees with the random
sequence 82% of the time.

Estimating Transition and Emission Matrices

• “Using hmmestimate” on page 13-9

• “Using hmmtrain” on page 13-10

The functions hmmestimate and hmmtrain estimate the transition and
emission matrices TRANS and EMIS given a sequence seq of emissions.

Using hmmestimate. To function hmmestimate requires that you know the
sequence of states states that the model went through to generate seq.

The following takes the emission and state sequences and returns estimates
of the transition and emission matrices:

[TRANS_EST, EMIS_EST] = hmmestimate(seq, states)

TRANS_EST =
0.8989 0.1011
0.0585 0.9415

EMIS_EST =
0.1721 0.1721 0.1749 0.1612 0.1803 0.1393
0.5836 0.0741 0.0804 0.0789 0.0726 0.1104

You can compare the outputs with the original transition and emission
matrices, TRANS and EMIS:

TRANS
TRANS =
0.9000 0.1000
0.0500 0.9500

EMIS
EMIS =
0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
0.5833 0.0833 0.0833 0.0833 0.0833 0.0833
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Using hmmtrain. If you do not know the sequence of states states, but you
have initial guesses for TRANS and EMIS, you can still estimate TRANS and
EMIS using hmmtrain.

Suppose you have the following initial guesses for TRANS and EMIS.

TRANS_GUESS = [.85 .15; .1 .9];
EMIS_GUESS = [.17 .16 .17 .16 .17 .17;.6 .08 .08 .08 .08 08];

You estimate TRANS and EMIS as follows:

[TRANS_EST2, EMIS_EST2] = hmmtrain(seq, TRANS_GUESS, EMIS_GUESS)

TRANS_EST2 =
0.2286 0.7714
0.0032 0.9968

EMIS_EST2 =
0.1436 0.2348 0.1837 0.1963 0.2350 0.0066
0.4355 0.1089 0.1144 0.1082 0.1109 0.1220

hmmtrain uses an iterative algorithm that alters the matrices TRANS_GUESS
and EMIS_GUESS so that at each step the adjusted matrices are more likely to
generate the observed sequence, seq. The algorithm halts when the matrices
in two successive iterations are within a small tolerance of each other.

If the algorithm fails to reach this tolerance within a maximum number of
iterations, whose default value is 100, the algorithm halts. In this case,
hmmtrain returns the last values of TRANS_EST and EMIS_EST and issues a
warning that the tolerance was not reached.

If the algorithm fails to reach the desired tolerance, increase the default value
of the maximum number of iterations with the command:

hmmtrain(seq,TRANS_GUESS,EMIS_GUESS,'maxiterations',maxiter)

where maxiter is the maximum number of steps the algorithm executes.

Change the default value of the tolerance with the command:

hmmtrain(seq, TRANS_GUESS, EMIS_GUESS, 'tolerance', tol)
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where tol is the desired value of the tolerance. Increasing the value of tol
makes the algorithm halt sooner, but the results are less accurate.

Two factors reduce the reliability of the output matrices of hmmtrain:

• The algorithm converges to a local maximum that does not represent the
true transition and emission matrices. If you suspect this, use different
initial guesses for the matrices TRANS_EST and EMIS_EST.

• The sequence seq may be too short to properly train the matrices. If you
suspect this, use a longer sequence for seq.

Estimating Posterior State Probabilities
The posterior state probabilities of an emission sequence seq are the
conditional probabilities that the model is in a particular state when it
generates a symbol in seq, given that seq is emitted. You compute the
posterior state probabilities with hmmdecode:

PSTATES = hmmdecode(seq,TRANS,EMIS)

The output PSTATES is an M-by-L matrix, where M is the number of states
and L is the length of seq. PSTATES(i,j) is the conditional probability that
the model is in state i when it generates the jth symbol of seq, given that
seq is emitted.

hmmdecode begins with the model in state 1 at step 0, prior to the first
emission. PSTATES(i,1) is the probability that the model is in state i at the
following step 1. To change the initial state, see “Changing the Initial State
Distribution” on page 13-12.

To return the logarithm of the probability of the sequence seq, use the second
output argument of hmmdecode:

[PSTATES,logpseq] = hmmdecode(seq,TRANS,EMIS)

The probability of a sequence tends to 0 as the length of the sequence
increases, and the probability of a sufficiently long sequence becomes less
than the smallest positive number your computer can represent. hmmdecode
returns the logarithm of the probability to avoid this problem.
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Changing the Initial State Distribution
By default, Statistics Toolbox hidden Markov model functions begin in state 1.
In other words, the distribution of initial states has all of its probability mass
concentrated at state 1. To assign a different distribution of probabilities, p =
[p1, p2, ..., pM], to the M initial states, do the following:

1 Create an M+1-by-M+1 augmented transition matrix, of the following
form:

where T is the true transition matrix. The first column of contains M+1
zeros. p must sum to 1.

2 Create an M+1-by-N augmented emission matrix, , that has the following
form:

If the transition and emission matrices are TRANS and EMIS, respectively, you
create the augmented matrices with the following commands:

TRANS_HAT = [0 p; zeros(size(TRANS,1),1) TRANS];

EMIS_HAT = [zeros(1,size(EMIS,2)); EMIS];
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14 Design of Experiments

Introduction
Passive data collection leads to a number of problems in statistical modeling.
Observed changes in a response variable may be correlated with, but
not caused by, observed changes in individual factors (process variables).
Simultaneous changes in multiple factors may produce interactions that are
difficult to separate into individual effects. Observations may be dependent,
while a model of the data considers them to be independent.

Designed experiments address these problems. In a designed experiment,
the data-producing process is actively manipulated to improve the quality
of information and to eliminate redundant data. A common goal of all
experimental designs is to collect data as parsimoniously as possible while
providing sufficient information to accurately estimate model parameters.

For example, a simple model of a response y in an experiment with two
controlled factors x1 and x2 might look like this:

y x x x x= + + + +    0 1 1 2 2 3 1 2

Here ε includes both experimental error and the effects of any uncontrolled
factors in the experiment. The terms β1x1 and β2x2 are main effects and the
term β3x1x2 is a two-way interaction effect. A designed experiment would
systematically manipulate x1 and x2 while measuring y, with the objective of
accurately estimating β0, β1, β2, and β3.
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Full Factorial Designs

In this section...

“Multilevel Designs” on page 14-3

“Two-Level Designs” on page 14-4

Multilevel Designs
To systematically vary experimental factors, assign each factor a discrete
set of levels. Full factorial designs measure response variables using every
treatment (combination of the factor levels). A full factorial design for n
factors with N1, ..., Nn levels requires N1 × ... × Nn experimental runs—one for
each treatment. While advantageous for separating individual effects, full
factorial designs can make large demands on data collection.

As an example, suppose a machine shop has three machines and four
operators. If the same operator always uses the same machine, it is
impossible to determine if a machine or an operator is the cause of variation
in production. By allowing every operator to use every machine, effects are
separated. A full factorial list of treatments is generated by the Statistics
Toolbox function fullfact:

dFF = fullfact([3,4])
dFF =

1 1
2 1
3 1
1 2
2 2
3 2
1 3
2 3
3 3
1 4
2 4
3 4

Each of the 3·4 = 12 rows of dFF represent one machine/operator combination.
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Two-Level Designs
Many experiments can be conducted with two-level factors, using two-level
designs. For example, suppose the machine shop in the previous example
always keeps the same operator on the same machine, but wants to measure
production effects that depend on the composition of the day and night
shifts. The Statistics Toolbox function ff2n generates a full factorial list of
treatments:

dFF2 = ff2n(4)
dFF2 =

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Each of the 24 = 16 rows of dFF2 represent one schedule of operators for the
day (0) and night (1) shifts.
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Fractional Factorial Designs

In this section...

“Introduction” on page 14-5

“Plackett-Burman Designs” on page 14-5

“General Fractional Designs” on page 14-6

Introduction
Two-level designs are sufficient for evaluating many production processes.
Factor levels of ±1 can indicate categorical factors, normalized factor extremes,
or simply “up” and “down” from current factor settings. Experimenters
evaluating process changes are interested primarily in the factor directions
that lead to process improvement.

For experiments with many factors, two-level full factorial designs can lead to
large amounts of data. For example, a two-level full factorial design with 10
factors requires 210 = 1024 runs. Often, however, individual factors or their
interactions have no distinguishable effects on a response. This is especially
true of higher order interactions. As a result, a well-designed experiment can
use fewer runs for estimating model parameters.

Fractional factorial designs use a fraction of the runs required by full
factorial designs. A subset of experimental treatments is selected based on
an evaluation (or assumption) of which factors and interactions have the
most significant effects. Once this selection is made, the experimental design
must separate these effects. In particular, significant effects should not
be confounded, that is, the measurement of one should not depend on the
measurement of another.

Plackett-Burman Designs
Plackett-Burman designs are used when only main effects are considered
significant. Two-level Plackett-Burman designs require a number of
experimental runs that are a multiple of 4 rather than a power of 2. The
MATLAB function hadamard generates these designs:

dPB = hadamard(8)
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dPB =
1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

Binary factor levels are indicated by ±1. The design is for eight runs (the rows
of dPB) manipulating seven two-level factors (the last seven columns of dPB).
The number of runs is a fraction 8/27 = 0.0625 of the runs required by a full
factorial design. Economy is achieved at the expense of confounding main
effects with any two-way interactions.

General Fractional Designs
At the cost of a larger fractional design, you can specify which interactions
you wish to consider significant. A design of resolution R is one in which no
n-factor interaction is confounded with any other effect containing less than
R – n factors. Thus, a resolution III design does not confound main effects
with one another but may confound them with two-way interactions (as in
“Plackett-Burman Designs” on page 14-5), while a resolution IV design does
not confound either main effects or two-way interactions but may confound
two-way interactions with each other.

Specify general fractional factorial designs using a full factorial design for
a selected subset of basic factors and generators for the remaining factors.
Generators are products of the basic factors, giving the levels for the
remaining factors. Use the Statistics Toolbox function fracfact to generate
these designs:

dfF = fracfact('a b c d bcd acd')
dfF =

-1 -1 -1 -1 -1 -1
-1 -1 -1 1 1 1
-1 -1 1 -1 1 1
-1 -1 1 1 -1 -1
-1 1 -1 -1 1 -1
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-1 1 -1 1 -1 1
-1 1 1 -1 -1 1
-1 1 1 1 1 -1
1 -1 -1 -1 -1 1
1 -1 -1 1 1 -1
1 -1 1 -1 1 -1
1 -1 1 1 -1 1
1 1 -1 -1 1 1
1 1 -1 1 -1 -1
1 1 1 -1 -1 -1
1 1 1 1 1 1

This is a six-factor design in which four two-level basic factors (a, b, c, and
d in the first four columns of dfF) are measured in every combination of
levels, while the two remaining factors (in the last three columns of dfF) are
measured only at levels defined by the generators bcd and acd, respectively.
Levels in the generated columns are products of corresponding levels in the
columns that make up the generator.

The challenge of creating a fractional factorial design is to choose basic factors
and generators so that the design achieves a specified resolution in a specified
number of runs. Use the Statistics Toolbox function fracfactgen to find
appropriate generators:

generators = fracfactgen('a b c d e f',4,4)
generators =

'a'
'b'
'c'
'd'
'bcd'
'acd'

These are generators for a six-factor design with factors a through f, using 24

= 16 runs to achieve resolution IV. The fracfactgen function uses an efficient
search algorithm to find generators that meet the requirements.

An optional output from fracfact displays the confounding pattern of the
design:

[dfF,confounding] = fracfact(generators);
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confounding
confounding =

'Term' 'Generator' 'Confounding'
'X1' 'a' 'X1'
'X2' 'b' 'X2'
'X3' 'c' 'X3'
'X4' 'd' 'X4'
'X5' 'bcd' 'X5'
'X6' 'acd' 'X6'
'X1*X2' 'ab' 'X1*X2 + X5*X6'
'X1*X3' 'ac' 'X1*X3 + X4*X6'
'X1*X4' 'ad' 'X1*X4 + X3*X6'
'X1*X5' 'abcd' 'X1*X5 + X2*X6'
'X1*X6' 'cd' 'X1*X6 + X2*X5 + X3*X4'
'X2*X3' 'bc' 'X2*X3 + X4*X5'
'X2*X4' 'bd' 'X2*X4 + X3*X5'
'X2*X5' 'cd' 'X1*X6 + X2*X5 + X3*X4'
'X2*X6' 'abcd' 'X1*X5 + X2*X6'
'X3*X4' 'cd' 'X1*X6 + X2*X5 + X3*X4'
'X3*X5' 'bd' 'X2*X4 + X3*X5'
'X3*X6' 'ad' 'X1*X4 + X3*X6'
'X4*X5' 'bc' 'X2*X3 + X4*X5'
'X4*X6' 'ac' 'X1*X3 + X4*X6'
'X5*X6' 'ab' 'X1*X2 + X5*X6'

The confounding pattern shows that main effects are effectively separated
by the design, but two-way interactions are confounded with various other
two-way interactions.

14-8



Response Surface Designs

Response Surface Designs

In this section...

“Introduction” on page 14-9

“Central Composite Designs” on page 14-9

“Box-Behnken Designs” on page 14-13

Introduction
As discussed in “Response Surface Models” on page 9-45, quadratic response
surfaces are simple models that provide a maximum or minimum without
making additional assumptions about the form of the response. Quadratic
models can be calibrated using full factorial designs with three or more levels
for each factor, but these designs generally require more runs than necessary
to accurately estimate model parameters. This section discusses designs for
calibrating quadratic models that are much more efficient, using three or five
levels for each factor, but not using all combinations of levels.

Central Composite Designs
Central composite designs (CCDs), also known as Box-Wilson designs, are
appropriate for calibrating the full quadratic models described in “Response
Surface Models” on page 9-45. There are three types of CCDs—circumscribed,
inscribed, and faced—pictured below:
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Each design consists of a factorial design (the corners of a cube) together with
center and star points that allow for estimation of second-order effects. For a
full quadratic model with n factors, CCDs specify 2n + 2n + 1 design points
while estimating (n + 2)(n + 1)/2 coefficients.

The type of CCD used (the position of the factorial and star points) is
determined by the number of factors and by the desired properties of the
design. The following table summarizes some important properties. A design
is rotatable if the prediction variance depends only on the distance of the
design point from the center of the design.

Design Rotatable Factor
Levels

Uses Points
Outside ±1

Accuracy of
Estimates

Circumscribed
(CCC)

Yes 5 Yes Good over entire
design space
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Design Rotatable Factor
Levels

Uses Points
Outside ±1

Accuracy of
Estimates

Inscribed
(CCI)

Yes 5 No Good over central
subset of design space

Faced (CCF) No 3 No Fair over entire
design space; poor
for pure quadratic
coefficients

Generate CCDs with the Statistics Toolbox function ccdesign:

dCC = ccdesign(3,'type','circumscribed')
dCC =

-1.0000 -1.0000 -1.0000
-1.0000 -1.0000 1.0000
-1.0000 1.0000 -1.0000
-1.0000 1.0000 1.0000
1.0000 -1.0000 -1.0000
1.0000 -1.0000 1.0000
1.0000 1.0000 -1.0000
1.0000 1.0000 1.0000

-1.6818 0 0
1.6818 0 0

0 -1.6818 0
0 1.6818 0
0 0 -1.6818
0 0 1.6818
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
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The repeated center point runs allow for a more uniform estimate of the
prediction variance over the entire design space.

Box-Behnken Designs
Like the designs described in “Central Composite Designs” on page
14-9, Box-Behnken designs are used to calibrate full quadratic models.
Box-Behnken designs are rotatable and, for a small number of factors (four or
less), require fewer runs than CCDs. By avoiding the corners of the design
space, they allow experimenters to work around extreme factor combinations.
Like an inscribed CCD, however, extremes are then poorly estimated.

The geometry of a Box-Behnken design is pictured in the following figure.

Design points are at the midpoints of edges of the design space and at the
center, and do not contain an embedded factorial design.

Generate Box-Behnken designs with the Statistics Toolbox function bbdesign:
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dBB = bbdesign(3)
dBB =

-1 -1 0
-1 1 0
1 -1 0
1 1 0

-1 0 -1
-1 0 1
1 0 -1
1 0 1
0 -1 -1
0 -1 1
0 1 -1
0 1 1
0 0 0
0 0 0
0 0 0

Again, the repeated center point runs allow for a more uniform estimate of
the prediction variance over the entire design space.
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D-Optimal Designs

In this section...

“Introduction” on page 14-15

“Generating D-Optimal Designs” on page 14-16

“Augmenting D-Optimal Designs” on page 14-19

“Specifying Fixed Covariate Factors” on page 14-20

“Specifying Categorical Factors” on page 14-21

“Specifying Candidate Sets” on page 14-21

Introduction
Traditional experimental designs (“Full Factorial Designs” on page 14-3,
“Fractional Factorial Designs” on page 14-5, and “Response Surface Designs”
on page 14-9) are appropriate for calibrating linear models in experimental
settings where factors are relatively unconstrained in the region of interest.
In some cases, however, models are necessarily nonlinear. In other cases,
certain treatments (combinations of factor levels) may be expensive or
infeasible to measure. D-optimal designs are model-specific designs that
address these limitations of traditional designs.

A D-optimal design is generated by an iterative search algorithm and seeks
to minimize the covariance of the parameter estimates for a specified model.
This is equivalent to maximizing the determinant D = |XTX|, where X is the
design matrix of model terms (the columns) evaluated at specific treatments
in the design space (the rows). Unlike traditional designs, D-optimal designs
do not require orthogonal design matrices, and as a result, parameter
estimates may be correlated. Parameter estimates may also be locally, but
not globally, D-optimal.

There are several Statistics Toolbox functions for generating D-optimal
designs:
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Function Description

candexch Uses a row-exchange algorithm to generate a D-optimal design
with a specified number of runs for a specified model and a
specified candidate set. This is the second component of the
algorithm used by rowexch.

candgen Generates a candidate set for a specified model. This is the
first component of the algorithm used by rowexch.

cordexch Uses a coordinate-exchange algorithm to generate a D-optimal
design with a specified number of runs for a specified model.

daugment Uses a coordinate-exchange algorithm to augment an existing
D-optimal design with additional runs to estimate additional
model terms.

dcovary Uses a coordinate-exchange algorithm to generate a D-optimal
design with fixed covariate factors.

rowexch Uses a row-exchange algorithm to generate a D-optimal design
with a specified number of runs for a specified model. The
algorithm calls candgen and then candexch. (Call candexch
separately to specify a candidate set.)

The following sections explain how to use these functions to generate
D-optimal designs.

Note The Statistics Toolbox function rsmdemo generates simulated data for
experimental settings specified by either the user or by a D-optimal design
generated by cordexch. It uses the rstool interface to visualize response
surface models fit to the data, and it uses the nlintool interface to visualize
a nonlinear model fit to the data.

Generating D-Optimal Designs
Two Statistics Toolbox algorithms generate D-optimal designs:

• The cordexch function uses a coordinate-exchange algorithm

• The rowexch function uses a row-exchange algorithm
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Both cordexch and rowexch use iterative search algorithms. They operate by
incrementally changing an initial design matrix X to increase D = |XTX| at
each step. In both algorithms, there is randomness built into the selection of
the initial design and into the choice of the incremental changes. As a result,
both algorithms may return locally, but not globally, D-optimal designs. Run
each algorithm multiple times and select the best result for your final design.
Both functions have a 'tries' parameter that automates this repetition
and comparison.

At each step, the row-exchange algorithm exchanges an entire row of X with a
row from a design matrix C evaluated at a candidate set of feasible treatments.
The rowexch function automatically generates a C appropriate for a specified
model, operating in two steps by calling the candgen and candexch functions
in sequence. Provide your own C by calling candexch directly. In either case,
if C is large, its static presence in memory can affect computation.

The coordinate-exchange algorithm, by contrast, does not use a candidate
set. (Or rather, the candidate set is the entire design space.) At each step,
the coordinate-exchange algorithm exchanges a single element of X with a
new element evaluated at a neighboring point in design space. The absence
of a candidate set reduces demands on memory, but the smaller scale of the
search means that the coordinate-exchange algorithm is more likely to become
trapped in a local minimum than the row-exchange algorithm.

For example, suppose you want a design to estimate the parameters in the
following three-factor, seven-term interaction model:

y x x x x x x x x x= + + + + + + +       0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3

Use cordexch to generate a D-optimal design with seven runs:

nfactors = 3;
nruns = 7;
[dCE,X] = cordexch(nfactors,nruns,'interaction','tries',10)
dCE =

-1 1 1
-1 -1 -1
1 1 1

-1 1 -1
1 -1 1
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1 -1 -1
-1 -1 1

X =
1 -1 1 1 -1 -1 1
1 -1 -1 -1 1 1 1
1 1 1 1 1 1 1
1 -1 1 -1 -1 1 -1
1 1 -1 1 -1 1 -1
1 1 -1 -1 -1 -1 1
1 -1 -1 1 1 -1 -1

Columns of the design matrix X are the model terms evaluated at each row of
the design dCE. The terms appear in order from left to right:

1 Constant term

2 Linear terms (1, 2, 3)

3 Interaction terms (12, 13, 23)

Use X to fit the model, as described in “Linear Regression” on page 9-3, to
response data measured at the design points in dCE.

Use rowexch in a similar fashion to generate an equivalent design:

[dRE,X] = rowexch(nfactors,nruns,'interaction','tries',10)
dRE =

-1 -1 1
1 -1 1
1 -1 -1
1 1 1

-1 -1 -1
-1 1 -1
-1 1 1

X =
1 -1 -1 1 1 -1 -1
1 1 -1 1 -1 1 -1
1 1 -1 -1 -1 -1 1
1 1 1 1 1 1 1
1 -1 -1 -1 1 1 1
1 -1 1 -1 -1 1 -1
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1 -1 1 1 -1 -1 1

Augmenting D-Optimal Designs
In practice, you may want to add runs to a completed experiment to learn
more about a process and estimate additional model coefficients. The
daugment function uses a coordinate-exchange algorithm to augment an
existing D-optimal design.

For example, the following eight-run design is adequate for estimating main
effects in a four-factor model:

dCEmain = cordexch(4,8)
dCEmain =

1 -1 -1 1
-1 -1 1 1
-1 1 -1 1
1 1 1 -1
1 1 1 1

-1 1 -1 -1
1 -1 -1 -1

-1 -1 1 -1

To estimate the six interaction terms in the model, augment the design with
eight additional runs:

dCEinteraction = daugment(dCEmain,8,'interaction')
dCEinteraction =

1 -1 -1 1
-1 -1 1 1
-1 1 -1 1
1 1 1 -1
1 1 1 1

-1 1 -1 -1
1 -1 -1 -1

-1 -1 1 -1
-1 1 1 1
-1 -1 -1 -1
1 -1 1 -1
1 1 -1 1

-1 1 1 -1
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1 1 -1 -1
1 -1 1 1
1 1 1 -1

The augmented design is full factorial, with the original eight runs in the
first eight rows.

The 'start' parameter of the candexch function provides the same
functionality as daugment, but uses a row exchange algorithm rather than a
coordinate-exchange algorithm.

Specifying Fixed Covariate Factors
In many experimental settings, certain factors and their covariates are
constrained to a fixed set of levels or combinations of levels. These cannot be
varied when searching for an optimal design. The dcovary function allows
you to specify fixed covariate factors in the coordinate exchange algorithm.

For example, suppose you want a design to estimate the parameters in a
three-factor linear additive model, with eight runs that necessarily occur at
different times. If the process experiences temporal linear drift, you may
want to include the run time as a variable in the model. Produce the design as
follows:

time = linspace(-1,1,8)';
[dCV,X] = dcovary(3,time,'linear')
dCV =

-1.0000 1.0000 1.0000 -1.0000
1.0000 -1.0000 -1.0000 -0.7143

-1.0000 -1.0000 -1.0000 -0.4286
1.0000 -1.0000 1.0000 -0.1429
1.0000 1.0000 -1.0000 0.1429

-1.0000 1.0000 -1.0000 0.4286
1.0000 1.0000 1.0000 0.7143

-1.0000 -1.0000 1.0000 1.0000
X =

1.0000 -1.0000 1.0000 1.0000 -1.0000
1.0000 1.0000 -1.0000 -1.0000 -0.7143
1.0000 -1.0000 -1.0000 -1.0000 -0.4286
1.0000 1.0000 -1.0000 1.0000 -0.1429
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1.0000 1.0000 1.0000 -1.0000 0.1429
1.0000 -1.0000 1.0000 -1.0000 0.4286
1.0000 1.0000 1.0000 1.0000 0.7143
1.0000 -1.0000 -1.0000 1.0000 1.0000

The column vector time is a fixed factor, normalized to values between ±1.
The number of rows in the fixed factor specifies the number of runs in the
design. The resulting design dCV gives factor settings for the three controlled
model factors at each time.

Specifying Categorical Factors
Categorical factors take values in a discrete set of levels. Both cordexch and
rowexch have a 'categorical' parameter that allows you to specify the
indices of categorical factors and a 'levels' parameter that allows you to
specify a number of levels for each factor.

For example, the following eight-run design is for a linear additive model with
five factors in which the final factor is categorical with three levels:

dCEcat = cordexch(5,8,'linear','categorical',5,'levels',3)
dCEcat =

-1 -1 1 1 2
-1 -1 -1 -1 3
1 1 1 1 3
1 1 -1 -1 2
1 -1 -1 1 3

-1 1 -1 1 1
-1 1 1 -1 3
1 -1 1 -1 1

Specifying Candidate Sets
The row-exchange algorithm exchanges rows of an initial design matrix X
with rows from a design matrix C evaluated at a candidate set of feasible
treatments. The rowexch function automatically generates a C appropriate for
a specified model, operating in two steps by calling the candgen and candexch
functions in sequence. Provide your own C by calling candexch directly.
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For example, the following uses rowexch to generate a five-run design for
a two-factor pure quadratic model using a candidate set that is produced
internally:

dRE1 = rowexch(2,5,'purequadratic','tries',10)
dRE1 =

-1 1
0 0
1 -1
1 0
1 1

The same thing can be done using candgen and candexch in sequence:

[dC,C] = candgen(2,'purequadratic') % Candidate set, C
dC =

-1 -1
0 -1
1 -1

-1 0
0 0
1 0

-1 1
0 1
1 1

C =
1 -1 -1 1 1
1 0 -1 0 1
1 1 -1 1 1
1 -1 0 1 0
1 0 0 0 0
1 1 0 1 0
1 -1 1 1 1
1 0 1 0 1
1 1 1 1 1

treatments = candexch(C,5,'tries',10) % D-opt subset
treatments =

2
1
7
3
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4
dRE2 = dC(treatments,:) % Display design
dRE2 =

0 -1
-1 -1
-1 1
1 -1

-1 0

You can replace C in this example with a design matrix evaluated at your own
candidate set. For example, suppose your experiment is constrained so that
the two factors cannot have extreme settings simultaneously. The following
produces a restricted candidate set:

constraint = sum(abs(dC),2) < 2; % Feasible treatments
my_dC = dC(constraint,:)
my_dC =

0 -1
-1 0
0 0
1 0
0 1

Use the x2fx function to convert the candidate set to a design matrix:

my_C = x2fx(my_dC,'purequadratic')
my_C =

1 0 -1 0 1
1 -1 0 1 0
1 0 0 0 0
1 1 0 1 0
1 0 1 0 1

Find the required design in the same manner:

my_treatments = candexch(my_C,5,'tries',10) % D-opt subset
my_treatments =

2
4
5
1
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3
my_dRE = my_dC(my_treatments,:) % Display design
my_dRE =

-1 0
1 0
0 1
0 -1
0 0
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15 Statistical Process Control

Introduction
Statistical process control (SPC) refers to a number of different methods for
monitoring and assessing the quality of manufactured goods. Combined
with methods from the Chapter 14, “Design of Experiments”, SPC is used in
programs that define, measure, analyze, improve, and control development
and production processes. These programs are often implemented using
“Design for Six Sigma” methodologies.
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Control Charts
A control chart displays measurements of process samples over time. The
measurements are plotted together with user-defined specification limits and
process-defined control limits. The process can then be compared with its
specifications—to see if it is in control or out of control.

The chart is just a monitoring tool. Control activity might occur if the chart
indicates an undesirable, systematic change in the process. The control
chart is used to discover the variation, so that the process can be adjusted
to reduce it.

Control charts are created with the controlchart function. Any of the
following chart types may be specified:

• Xbar or mean

• Standard deviation

• Range

• Exponentially weighted moving average

• Individual observation

• Moving range of individual observations

• Moving average of individual observations

• Proportion defective

• Number of defectives

• Defects per unit

• Count of defects

Control rules are specified with the controlrules function.

For example, the following commands create an xbar chart, using the
“Western Electric 2” rule (2 of 3 points at least 2 standard errors above the
center line) to mark out of control measurements:

load parts;
st = controlchart(runout,'rules','we2');
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x = st.mean;
cl = st.mu;
se = st.sigma./sqrt(st.n);
hold on
plot(cl+2*se,'m')

Measurements that violate the control rule can then be identified:

R = controlrules('we2',x,cl,se);
I = find(R)
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I =
21
23
24
25
26
27
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Capability Studies
Before going into production, many manufacturers run a capability study to
determine if their process will run within specifications enough of the time.
Capability indices produced by such a study are used to estimate expected
percentages of defective parts.

Capability studies are conducted with the capability function. The following
capability indices are produced:

• mu — Sample mean

• sigma — Sample standard deviation

• P — Estimated probability of being within the lower (L) and upper (U)
specification limits

• Pl — Estimated probability of being below L

• Pu — Estimated probability of being above U

• Cp — (U-L)/(6*sigma)

• Cpl — (mu-L)./(3.*sigma)

• Cpu — (U-mu)./(3.*sigma)

• Cpk — min(Cpl,Cpu)

As an example, simulate a sample from a process with a mean of 3 and a
standard deviation of 0.005:

data = normrnd(3,0.005,100,1);

Compute capability indices if the process has an upper specification limit of
3.01 and a lower specification limit of 2.99:

S = capability(data,[2.99 3.01])
S =

mu: 3.0006
sigma: 0.0047

P: 0.9669
Pl: 0.0116
Pu: 0.0215
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Cp: 0.7156
Cpl: 0.7567
Cpu: 0.6744
Cpk: 0.6744

Visualize the specification and process widths:

capaplot(data,[2.99 3.01]);
grid on
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Function Reference

File I/O (p. 16-2) Data file input/output

Data Organization (p. 16-3) Data arrays and groups

Descriptive Statistics (p. 16-8) Data summaries

Statistical Visualization (p. 16-11) Data patterns and trends

Probability Distributions (p. 16-15) Modeling data frequency

Hypothesis Tests (p. 16-31) Inferences from data

Analysis of Variance (p. 16-32) Modeling data variance

Regression Analysis (p. 16-33) Continuous data models

Multivariate Methods (p. 16-38) Visualization and reduction

Cluster Analysis (p. 16-40) Identifying data categories

Model Assessment (p. 16-41) Identifying data categories

Classification (p. 16-42) Categorical data models

Hidden Markov Models (p. 16-46) Stochastic data models

Design of Experiments (p. 16-47) Systematic data collection

Statistical Process Control (p. 16-51) Production monitoring

GUIs (p. 16-52) Interactive tools

Utilities (p. 16-53) General purpose



16 Function Reference

File I/O
caseread Read case names from file

casewrite Write case names to file

tblread Read tabular data from file

tblwrite Write tabular data to file

tdfread Read tab-delimited file

xptread Create dataset array from data
stored in a SAS XPORT format file
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Data Organization

Categorical Arrays (p. 16-3)

Dataset Arrays (p. 16-6)

Grouped Data (p. 16-7)

Categorical Arrays

addlevels (categorical) Add levels to categorical array

cat (categorical) Concatenate categorical arrays

categorical Create categorical array

cellstr (categorical) Convert categorical array to cell
array of strings

char (categorical) Convert categorical array to
character array

circshift (categorical) Shift categorical array circularly

ctranspose (categorical) Transpose categorical matrix

double (categorical) Convert categorical array to double
array

droplevels (categorical) Drop levels

end (categorical) Last index in indexing expression for
categorical array

flipdim (categorical) Flip categorical array along specified
dimension

fliplr (categorical) Flip categorical matrix in left/right
direction

flipud (categorical) Flip categorical matrix in up/down
direction

getlabels (categorical) Access categorical array labels

getlevels (categorical) Get categorical array levels
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horzcat (categorical) Horizontal concatenation for
categorical arrays

int16 (categorical) Convert categorical array to signed
16-bit integer array

int32 (categorical) Convert categorical array to signed
32-bit integer array

int64 (categorical) Convert categorical array to signed
64-bit integer array

int8 (categorical) Convert categorical array to signed
8-bit integer array

intersect (categorical) Set intersection for categorical
arrays

ipermute (categorical) Inverse permute dimensions of
categorical array

isempty (categorical) True for empty categorical array

isequal (categorical) True if categorical arrays are equal

islevel (categorical) Test for levels

ismember (categorical) True for elements of categorical
array in set

ismember (ordinal) Test for membership

isscalar (categorical) True if categorical array is scalar

isundefined (categorical) Test for undefined elements

isvector (categorical) True if categorical array is vector

length (categorical) Length of categorical array

levelcounts (categorical) Element counts by level

mergelevels (ordinal) Merge levels

ndims (categorical) Number of dimensions of categorical
array

nominal Construct nominal categorical array
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numel (categorical) Number of elements in categorical
array

ordinal Construct ordinal categorical array

permute (categorical) Permute dimensions of categorical
array

reorderlevels (categorical) Reorder levels

repmat (categorical) Replicate and tile categorical array

reshape (categorical) Resize categorical array

rot90 (categorical) Rotate categorical matrix 90 degrees

setdiff (categorical) Set difference for categorical arrays

setlabels (categorical) Label levels

setxor (categorical) Set exclusive-or for categorical
arrays

shiftdim (categorical) Shift dimensions of categorical array

single (categorical) Convert categorical array to single
array

size (categorical) Size of categorical array

sort (ordinal) Sort elements of ordinal array

sortrows (ordinal) Sort rows

squeeze (categorical) Squeeze singleton dimensions from
categorical array

summary (categorical) Summary statistics for categorical
array

times (categorical) Product of categorical arrays

transpose (categorical) Transpose categorical matrix

uint16 (categorical) Convert categorical array to
unsigned 16-bit integers

uint32 (categorical) Convert categorical array to
unsigned 32-bit integers
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uint64 (categorical) Convert categorical array to
unsigned 64-bit integers

uint8 (categorical) Convert categorical array to
unsigned 8-bit integers

union (categorical) Set union for categorical arrays

unique (categorical) Unique values in categorical array

vertcat (categorical) Vertical concatenation for categorical
arrays

Dataset Arrays

cat (dataset) Concatenate dataset arrays

dataset Construct dataset array

datasetfun (dataset) Apply function to dataset array
variables

double (dataset) Convert dataset variables to double
array

end (dataset) Last index in indexing expression for
dataset array

export (dataset) Write dataset array to file

get (dataset) Access dataset array properties

grpstats (dataset) Summary statistics by group for
dataset arrays

horzcat (dataset) Horizontal concatenation for dataset
arrays

isempty (dataset) True for empty dataset array

join (dataset) Merge observations

length (dataset) Length of dataset array

ndims (dataset) Number of dimensions of dataset
array
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numel (dataset) Number of elements in dataset array

replacedata (dataset) Replace dataset variables

set (dataset) Set and display properties

single (dataset) Convert dataset variables to single
array

size (dataset) Size of dataset array

sortrows (dataset) Sort rows of dataset array

stack (dataset) Stack data from multiple variables
into single variable

summary (dataset) Print summary of dataset array

unique (dataset) Unique observations in dataset
array

unstack (dataset) Unstack data from single variable
into multiple variables

vertcat (dataset) Vertical concatenation for dataset
arrays

Grouped Data

gplotmatrix Matrix of scatter plots by group

grp2idx Create index vector from grouping
variable

grpstats Summary statistics by group

gscatter Scatter plot by group
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Descriptive Statistics

Summaries (p. 16-8)

Measures of Central Tendency
(p. 16-8)

Measures of Dispersion (p. 16-8)

Measures of Shape (p. 16-9)

Statistics Resampling (p. 16-9)

Data with Missing Values (p. 16-9)

Data Correlation (p. 16-10)

Summaries

crosstab Cross-tabulation

grpstats Summary statistics by group

summary (categorical) Summary statistics for categorical
array

tabulate Frequency table

Measures of Central Tendency

geomean Geometric mean

harmmean Harmonic mean

trimmean Mean excluding outliers

Measures of Dispersion

iqr Interquartile range

mad Mean or median absolute deviation

16-8



Descriptive Statistics

moment Central moments

range Range of values

Measures of Shape

kurtosis Kurtosis

moment Central moments

prctile Percentiles

quantile Quantiles

skewness Skewness

zscore Standardized z-scores

Statistics Resampling

bootci Bootstrap confidence interval

bootstrp Bootstrap sampling

jackknife Jackknife sampling

Data with Missing Values

nancov Covariance ignoring NaN values

nanmax Maximum ignoring NaN values

nanmean Mean ignoring NaN values

nanmedian Median ignoring NaN values

nanmin Minimum ignoring NaN values

nanstd Standard deviation ignoring NaN
values

nansum Sum ignoring NaN values

nanvar Variance, ignoring NaN values
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Data Correlation

canoncorr Canonical correlation

cholcov Cholesky-like covariance
decomposition

cophenet Cophenetic correlation coefficient

corr Linear or rank correlation

corrcov Convert covariance matrix to
correlation matrix

partialcorr Linear or rank partial correlation
coefficients

tiedrank Rank adjusted for ties
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Statistical Visualization

Distribution Plots (p. 16-11)

Scatter Plots (p. 16-12)

ANOVA Plots (p. 16-12)

Regression Plots (p. 16-13)

Multivariate Plots (p. 16-13)

Cluster Plots (p. 16-13)

Classification Plots (p. 16-14)

DOE Plots (p. 16-14)

SPC Plots (p. 16-14)

Distribution Plots

boxplot Box plot

cdfplot Empirical cumulative distribution
function plot

dfittool Interactive distribution fitting

disttool Interactive density and distribution
plots

ecdfhist Empirical cumulative distribution
function histogram

fsurfht Interactive contour plot

hist3 Bivariate histogram

histfit Histogram with normal fit

normplot Normal probability plot

normspec Normal density plot between
specifications

pareto Pareto chart

probplot Probability plots
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qqplot Quantile-quantile plot

randtool Interactive random number
generation

scatterhist Scatter plot with marginal
histograms

surfht Interactive contour plot

wblplot Weibull probability plot

Scatter Plots

gline Interactively add line to plot

gname Add case names to plot

gplotmatrix Matrix of scatter plots by group

gscatter Scatter plot by group

lsline Add least-squares line to scatter plot

refcurve Add reference curve to plot

refline Add reference line to plot

scatterhist Scatter plot with marginal
histograms

ANOVA Plots

anova1 One-way analysis of variance

aoctool Interactive analysis of covariance

manovacluster Dendrogram of group mean clusters
following MANOVA

multcompare Multiple comparison test
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Regression Plots

addedvarplot Added-variable plot

gline Interactively add line to plot

lsline Add least-squares line to scatter plot

polytool Interactive polynomial fitting

rcoplot Residual case order plot

refcurve Add reference curve to plot

refline Add reference line to plot

robustdemo Interactive robust regression

rsmdemo Interactive response surface
demonstration

rstool Interactive response surface
modeling

view (classregtree) Plot tree

Multivariate Plots

andrewsplot Andrews plot

biplot Biplot

glyphplot Glyph plot

parallelcoords Parallel coordinates plot

Cluster Plots

dendrogram Dendrogram plot

manovacluster Dendrogram of group mean clusters
following MANOVA

silhouette Silhouette plot
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Classification Plots

perfcurve Compute Receiver Operating
Characteristic (ROC) curve or other
performance curve for classifier
output

view (classregtree) Plot tree

DOE Plots

interactionplot Interaction plot for grouped data

maineffectsplot Main effects plot for grouped data

multivarichart Multivari chart for grouped data

rsmdemo Interactive response surface
demonstration

rstool Interactive response surface
modeling

SPC Plots

capaplot Process capability plot

controlchart Shewhart control charts

histfit Histogram with normal fit

normspec Normal density plot between
specifications
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Probability Distributions

Distribution Objects (p. 16-15)

Distribution Plots (p. 16-16)

Probability Density (p. 16-17)

Cumulative Distribution (p. 16-19)

Inverse Cumulative Distribution
(p. 16-21)

Distribution Statistics (p. 16-23)

Distribution Fitting (p. 16-24)

Negative Log-Likelihood (p. 16-26)

Random Number Generators
(p. 16-26)

Quasi-Random Numbers (p. 16-28)

Piecewise Distributions (p. 16-29)

Distribution Objects

cdf (ProbDist) Return cumulative distribution
function (CDF) for ProbDist object

fitdist Fit probability distribution to data

icdf (ProbDistUnivKernel) Return inverse cumulative
distribution function (ICDF) for
ProbDistUnivKernel object

icdf (ProbDistUnivParam) Return inverse cumulative
distribution function (ICDF) for
ProbDistUnivParam object

iqr (ProbDistUnivKernel) Return interquartile range (IQR) for
ProbDistUnivKernel object

iqr (ProbDistUnivParam) Return interquartile range (IQR) for
ProbDistUnivParam object
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mean (ProbDistUnivParam) Return mean of ProbDistUnivParam
object

median (ProbDistUnivKernel) Return median of
ProbDistUnivKernel object

median (ProbDistUnivParam) Return median of
ProbDistUnivParam object

paramci (ProbDistUnivParam) Return parameter confidence
intervals of ProbDistUnivParam
object

pdf (ProbDist) Return probability density function
(PDF) for ProbDist object

ProbDistUnivKernel Construct ProbDistUnivKernel
object

ProbDistUnivParam Construct ProbDistUnivParam
object

random (ProbDist) Generate random number drawn
from ProbDist object

std (ProbDistUnivParam) Return standard deviation of
ProbDistUnivParam object

var (ProbDistUnivParam) Return variance of
ProbDistUnivParam object

Distribution Plots

boxplot Box plot

cdfplot Empirical cumulative distribution
function plot

dfittool Interactive distribution fitting

disttool Interactive density and distribution
plots

ecdfhist Empirical cumulative distribution
function histogram
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fsurfht Interactive contour plot

hist3 Bivariate histogram

histfit Histogram with normal fit

normplot Normal probability plot

normspec Normal density plot between
specifications

pareto Pareto chart

probplot Probability plots

qqplot Quantile-quantile plot

randtool Interactive random number
generation

scatterhist Scatter plot with marginal
histograms

surfht Interactive contour plot

wblplot Weibull probability plot

Probability Density

betapdf Beta probability density function

binopdf Binomial probability density
function

chi2pdf Chi-square probability density
function

copulapdf Copula probability density function

disttool Interactive density and distribution
plots

evpdf Extreme value probability density
function

exppdf Exponential probability density
function
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fpdf F probability density function

gampdf Gamma probability density function

geopdf Geometric probability density
function

gevpdf Generalized extreme value
probability density function

gppdf Generalized Pareto probability
density function

hygepdf Hypergeometric probability density
function

ksdensity Kernel smoothing density estimate

lognpdf Lognormal probability density
function

mnpdf Multinomial probability density
function

mvnpdf Multivariate normal probability
density function

mvtpdf Multivariate t probability density
function

nbinpdf Negative binomial probability
density function

ncfpdf Noncentral F probability density
function

nctpdf Noncentral t probability density
function

ncx2pdf Noncentral chi-square probability
density function

normpdf Normal probability density function

pdf Probability density functions

pdf (gmdistribution) Probability density function for
Gaussian mixture distribution
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Probability Distributions

pdf (piecewisedistribution) Probability density function for
piecewise distribution

poisspdf Poisson probability density function

random (piecewisedistribution) Random numbers from piecewise
distribution

raylpdf Rayleigh probability density function

tpdf Student’s t probability density
function

unidpdf Discrete uniform probability density
function

unifpdf Continuous uniform probability
density function

wblpdf Weibull probability density function

Cumulative Distribution

betacdf Beta cumulative distribution
function

binocdf Binomial cumulative distribution
function

cdf Cumulative distribution functions

cdf (gmdistribution) Cumulative distribution function for
Gaussian mixture distribution

cdf (piecewisedistribution) Cumulative distribution function for
piecewise distribution

cdfplot Empirical cumulative distribution
function plot

chi2cdf Chi-square cumulative distribution
function

copulacdf Copula cumulative distribution
function
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disttool Interactive density and distribution
plots

ecdf Empirical cumulative distribution
function

ecdfhist Empirical cumulative distribution
function histogram

evcdf Extreme value cumulative
distribution function

expcdf Exponential cumulative distribution
function

fcdf F cumulative distribution function

gamcdf Gamma cumulative distribution
function

geocdf Geometric cumulative distribution
function

gevcdf Generalized extreme value
cumulative distribution function

gpcdf Generalized Pareto cumulative
distribution function

hygecdf Hypergeometric cumulative
distribution function

logncdf Lognormal cumulative distribution
function

mvncdf Multivariate normal cumulative
distribution function

mvtcdf Multivariate t cumulative
distribution function

ncfcdf Noncentral F cumulative
distribution function

nctcdf Noncentral t cumulative distribution
function
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Probability Distributions

ncx2cdf Noncentral chi-square cumulative
distribution function

normcdf Normal cumulative distribution
function

poisscdf Poisson cumulative distribution
function

raylcdf Rayleigh cumulative distribution
function

tcdf Student’s t cumulative distribution
function

unidcdf Discrete uniform cumulative
distribution function

unifcdf Continuous uniform cumulative
distribution function

wblcdf Weibull cumulative distribution
function

Inverse Cumulative Distribution

betainv Beta inverse cumulative distribution
function

binoinv Binomial inverse cumulative
distribution function

chi2inv Chi-square inverse cumulative
distribution function

evinv Extreme value inverse cumulative
distribution function

expinv Exponential inverse cumulative
distribution function

finv F inverse cumulative distribution
function
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gaminv Gamma inverse cumulative
distribution function

geoinv Geometric inverse cumulative
distribution function

gevinv Generalized extreme value inverse
cumulative distribution function

gpinv Generalized Pareto inverse
cumulative distribution function

hygeinv Hypergeometric inverse cumulative
distribution function

icdf Inverse cumulative distribution
functions

icdf (piecewisedistribution) Inverse cumulative distribution
function for piecewise distribution

logninv Lognormal inverse cumulative
distribution function

nbininv Negative binomial inverse
cumulative distribution function

ncfinv Noncentral F inverse cumulative
distribution function

nctinv Noncentral t inverse cumulative
distribution function

ncx2inv Noncentral chi-square inverse
cumulative distribution function

norminv Normal inverse cumulative
distribution function

poissinv Poisson inverse cumulative
distribution function

raylinv Rayleigh inverse cumulative
distribution function

tinv Student’s t inverse cumulative
distribution function
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Probability Distributions

unidinv Discrete uniform inverse cumulative
distribution function

unifinv Continuous uniform inverse
cumulative distribution function

wblinv Weibull inverse cumulative
distribution function

Distribution Statistics

betastat Beta mean and variance

binostat Binomial mean and variance

chi2stat Chi-square mean and variance

copulastat Copula rank correlation

evstat Extreme value mean and variance

expstat Exponential mean and variance

fstat F mean and variance

gamstat Gamma mean and variance

geostat Geometric mean and variance

gevstat Generalized extreme value mean
and variance

gpstat Generalized Pareto mean and
variance

hygestat Hypergeometric mean and variance

lognstat Lognormal mean and variance

nbinstat Negative binomial mean and
variance

ncfstat Noncentral F mean and variance

nctstat Noncentral t mean and variance

ncx2stat Noncentral chi-square mean and
variance
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normstat Normal mean and variance

poisstat Poisson mean and variance

raylstat Rayleigh mean and variance

tstat Student’s t mean and variance

unidstat Discrete uniform mean of and
variance

unifstat Continuous uniform mean and
variance

wblstat Weibull mean and variance

Distribution Fitting

Supported Distributions (p. 16-24)

Piecewise Distributions (p. 16-25)

Supported Distributions

betafit Beta parameter estimates

binofit Binomial parameter estimates

copulafit Fit copula to data

copulaparam Copula parameters as function of
rank correlation

dfittool Interactive distribution fitting

evfit Extreme value parameter estimates

expfit Exponential parameter estimates

fit (gmdistribution) Gaussian mixture parameter
estimates

gamfit Gamma parameter estimates

gevfit Generalized extreme value
parameter estimates
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Probability Distributions

gpfit Generalized Pareto parameter
estimates

histfit Histogram with normal fit

johnsrnd Johnson system random numbers

lognfit Lognormal parameter estimates

mle Maximum likelihood estimates

mlecov Asymptotic covariance of maximum
likelihood estimators

nbinfit Negative binomial parameter
estimates

normfit Normal parameter estimates

normplot Normal probability plot

pearsrnd Pearson system random numbers

poissfit Poisson parameter estimates

raylfit Rayleigh parameter estimates

unifit Continuous uniform parameter
estimates

wblfit Weibull parameter estimates

wblplot Weibull probability plot

Piecewise Distributions

boundary (piecewisedistribution) Piecewise distribution boundaries

lowerparams (paretotails) Lower Pareto tails parameters

nsegments (piecewisedistribution) Number of segments

paretotails Construct Pareto tails object

piecewisedistribution Create piecewise distribution object

segment (piecewisedistribution) Segments containing values

upperparams (paretotails) Upper Pareto tails parameters
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Negative Log-Likelihood

betalike Beta negative log-likelihood

evlike Extreme value negative
log-likelihood

explike Exponential negative log-likelihood

gamlike Gamma negative log-likelihood

gevlike Generalized extreme value negative
log-likelihood

gplike Generalized Pareto negative
log-likelihood

lognlike Lognormal negative log-likelihood

mvregresslike Negative log-likelihood for
multivariate regression

normlike Normal negative log-likelihood

wbllike Weibull negative log-likelihood

Random Number Generators

betarnd Beta random numbers

binornd Binomial random numbers

chi2rnd Chi-square random numbers

copularnd Copula random numbers

evrnd Extreme value random numbers

exprnd Exponential random numbers

frnd F random numbers

gamrnd Gamma random numbers

geornd Geometric random numbers

gevrnd Generalized extreme value random
numbers
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Probability Distributions

gprnd Generalized Pareto random numbers

hygernd Hypergeometric random numbers

iwishrnd Inverse Wishart random numbers

johnsrnd Johnson system random numbers

lhsdesign Latin hypercube sample

lhsnorm Latin hypercube sample from normal
distribution

lognrnd Lognormal random numbers

mhsample Metropolis-Hastings sample

mnrnd Multinomial random numbers

mvnrnd Multivariate normal random
numbers

mvtrnd Multivariate t random numbers

nbinrnd Negative binomial random numbers

ncfrnd Noncentral F random numbers

nctrnd Noncentral t random numbers

ncx2rnd Noncentral chi-square random
numbers

normrnd Normal random numbers

pearsrnd Pearson system random numbers

poissrnd Poisson random numbers

randg Gamma random numbers

random Random numbers

random (gmdistribution) Random numbers from Gaussian
mixture distribution

random (piecewisedistribution) Random numbers from piecewise
distribution

randsample Random sample
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randtool Interactive random number
generation

raylrnd Rayleigh random numbers

slicesample Slice sampler

trnd Student’s t random numbers

unidrnd Discrete uniform random numbers

unifrnd Continuous uniform random
numbers

wblrnd Weibull random numbers

wishrnd Wishart random numbers

Quasi-Random Numbers

addlistener (qrandstream) Add listener for event

delete (qrandstream) Delete handle object

end (qrandset) Last index in indexing expression for
point set

eq (qrandstream) Test handle equality

findobj (qrandstream) Find objects matching specified
conditions

findprop (qrandstream) Find property of MATLAB handle
object

ge (qrandstream) Greater than or equal relation for
handles

gt (qrandstream) Greater than relation for handles

haltonset Construct Halton quasi-random
point set

isvalid (qrandstream) Test handle validity

le (qrandstream) Less than or equal relation for
handles
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Probability Distributions

length (qrandset) Length of point set

lt (qrandstream) Less than relation for handles

ndims (qrandset) Number of dimensions in matrix

ne (qrandstream) Not equal relation for handles

net (qrandset) Generate quasi-random point set

notify (qrandstream) Notify listeners of event

qrand (qrandstream) Generate quasi-random points from
stream

qrandset Abstract quasi-random point set
class

qrandstream Construct quasi-random number
stream

rand (qrandstream) Generate quasi-random points from
stream

reset (qrandstream) Reset state

scramble (qrandset) Scramble quasi-random point set

size (qrandset) Number of dimensions in matrix

sobolset Construct Sobol quasi-random point
set

Piecewise Distributions

boundary (piecewisedistribution) Piecewise distribution boundaries

cdf (piecewisedistribution) Cumulative distribution function for
piecewise distribution

icdf (piecewisedistribution) Inverse cumulative distribution
function for piecewise distribution

lowerparams (paretotails) Lower Pareto tails parameters

nsegments (piecewisedistribution) Number of segments

paretotails Construct Pareto tails object
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pdf (piecewisedistribution) Probability density function for
piecewise distribution

piecewisedistribution Create piecewise distribution object

random (piecewisedistribution) Random numbers from piecewise
distribution

segment (piecewisedistribution) Segments containing values

upperparams (paretotails) Upper Pareto tails parameters
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Hypothesis Tests

Hypothesis Tests
ansaribradley Ansari-Bradley test

barttest Bartlett’s test

canoncorr Canonical correlation

chi2gof Chi-square goodness-of-fit test

dwtest Durbin-Watson test

friedman Friedman’s test

jbtest Jarque-Bera test

kruskalwallis Kruskal-Wallis test

kstest One-sample Kolmogorov-Smirnov
test

kstest2 Two-sample Kolmogorov-Smirnov
test

lillietest Lilliefors test

linhyptest Linear hypothesis test

ranksum Wilcoxon rank sum test

runstest Run test for randomness

sampsizepwr Sample size and power of test

signrank Wilcoxon signed rank test

signtest Sign test

ttest One-sample and paired-sample t-test

ttest2 Two-sample t-test

vartest Chi-square variance test

vartest2 Two-sample F-test for equal
variances

vartestn Bartlett multiple-sample test for
equal variances
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zscore Standardized z-scores

ztest z-test

Analysis of Variance

ANOVA Plots (p. 16-32)

ANOVA Operations (p. 16-32)

ANOVA Plots

anova1 One-way analysis of variance

aoctool Interactive analysis of covariance

manovacluster Dendrogram of group mean clusters
following MANOVA

multcompare Multiple comparison test

ANOVA Operations

anova1 One-way analysis of variance

anova2 Two-way analysis of variance

anovan N-way analysis of variance

aoctool Interactive analysis of covariance

dummyvar Create dummy variables

friedman Friedman’s test

kruskalwallis Kruskal-Wallis test

manova1 One-way multivariate analysis of
variance
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Regression Analysis

manovacluster Dendrogram of group mean clusters
following MANOVA

multcompare Multiple comparison test

Regression Analysis

Regression Plots (p. 16-33)

Linear Regression (p. 16-34)

Nonlinear Regression (p. 16-35)

Regression Trees (p. 16-35)

Ensemble Methods (p. 16-36)

Regression Plots

addedvarplot Added-variable plot

gline Interactively add line to plot

lsline Add least-squares line to scatter plot

polytool Interactive polynomial fitting

rcoplot Residual case order plot

refcurve Add reference curve to plot

refline Add reference line to plot

robustdemo Interactive robust regression

rsmdemo Interactive response surface
demonstration

rstool Interactive response surface
modeling

view (classregtree) Plot tree
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Linear Regression

coxphfit Cox proportional hazards regression

dummyvar Create dummy variables

glmfit Generalized linear model regression

glmval Generalized linear model values

invpred Inverse prediction

leverage Leverage

mnrfit Multinomial logistic regression

mnrval Multinomial logistic regression
values

mvregress Multivariate linear regression

mvregresslike Negative log-likelihood for
multivariate regression

plsregress Partial least-squares regression

polyconf Polynomial confidence intervals

polytool Interactive polynomial fitting

regress Multiple linear regression

regstats Regression diagnostics

ridge Ridge regression

robustdemo Interactive robust regression

robustfit Robust regression

rsmdemo Interactive response surface
demonstration

rstool Interactive response surface
modeling

stepwise Interactive stepwise regression

stepwisefit Stepwise regression

x2fx Convert predictor matrix to design
matrix
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Regression Analysis

Nonlinear Regression

dummyvar Create dummy variables

hougen Hougen-Watson model

nlinfit Nonlinear regression

nlintool Interactive nonlinear regression

nlmefit Nonlinear mixed-effects estimation

nlparci Nonlinear regression parameter
confidence intervals

nlpredci Nonlinear regression prediction
confidence intervals

Regression Trees

catsplit (classregtree) Categorical splits used for branches
in decision tree

children (classregtree) Child nodes

classcount (classregtree) Class counts

classprob (classregtree) Class probabilities

classregtree Construct classification and
regression trees

cutcategories (classregtree) Cut categories

cutpoint (classregtree) Returns decision tree cut point
values

cuttype (classregtree) Cut types

cutvar (classregtree) Cut variable names

eval (classregtree) Predicted responses

isbranch (classregtree) Test node for branch

nodeerr (classregtree) Return vector of node errors

nodeprob (classregtree) Node probabilities
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nodesize (classregtree) Return node size

numnodes (classregtree) Number of nodes

parent (classregtree) Parent node

prune (classregtree) Prune tree

risk (classregtree) Node risks

test (classregtree) Error rate

type (classregtree) Tree type

varimportance (classregtree) Compute embedded estimates of
input feature importance

view (classregtree) Plot tree

Ensemble Methods

append (TreeBagger) Append new trees to ensemble

combine (CompactTreeBagger) Combine two ensembles

compact (TreeBagger) Compact ensemble of decision trees

CompactTreeBagger Create CompactTreeBagger object

error (CompactTreeBagger) Error (misclassification probability
or MSE)

error (TreeBagger) Error (misclassification probability
or MSE)

fillProximities (TreeBagger) Proximity matrix for training data

growTrees (TreeBagger) Train additional trees and add to
ensemble

margin (CompactTreeBagger) Classification margin

margin (TreeBagger) Classification margin

mdsProx (CompactTreeBagger) Multidimensional scaling of
proximity matrix

mdsProx (TreeBagger) Multidimensional scaling of
proximity matrix
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Regression Analysis

meanMargin (CompactTreeBagger) Mean classification margin

meanMargin (TreeBagger) Mean classification margin

oobError (TreeBagger) Out-of-bag error

oobMargin (TreeBagger) Out-of-bag margins

oobMeanMargin (TreeBagger) Out-of-bag mean margins

oobPredict (TreeBagger) Ensemble predictions for out-of-bag
observations

outlierMeasure
(CompactTreeBagger)

Outlier measure for data

predict (CompactTreeBagger) Predict response

predict (TreeBagger) Predict response

proximity (CompactTreeBagger) Proximity matrix for data

SetDefaultYfit
(CompactTreeBagger)

Set default value for predict

TreeBagger Create ensemble of bagged decision
trees
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Multivariate Methods

Multivariate Plots (p. 16-38)

Multidimensional Scaling (p. 16-38)

Procrustes Analysis (p. 16-38)

Feature Selection (p. 16-39)

Feature Transformation (p. 16-39)

Multivariate Plots

andrewsplot Andrews plot

biplot Biplot

glyphplot Glyph plot

parallelcoords Parallel coordinates plot

Multidimensional Scaling

cmdscale Classical multidimensional scaling

mahal Mahalanobis distance

mdscale Nonclassical multidimensional
scaling

pdist Pairwise distance between pairs of
objects

squareform Format distance matrix

Procrustes Analysis

procrustes Procrustes analysis
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Multivariate Methods

Feature Selection

sequentialfs Sequential feature selection

Feature Transformation

Nonnegative Matrix Factorization
(p. 16-39)

Principal Component Analysis
(p. 16-39)

Factor Analysis (p. 16-39)

Nonnegative Matrix Factorization

nnmf Nonnegative matrix factorization

Principal Component Analysis

barttest Bartlett’s test

pareto Pareto chart

pcacov Principal component analysis on
covariance matrix

pcares Residuals from principal component
analysis

princomp Principal component analysis on
data

Factor Analysis

factoran Factor analysis
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Cluster Analysis

Cluster Plots (p. 16-40)

Hierarchical Clustering (p. 16-40)

K-Means Clustering (p. 16-41)

Gaussian Mixture Models (p. 16-41)

Cluster Plots

dendrogram Dendrogram plot

manovacluster Dendrogram of group mean clusters
following MANOVA

silhouette Silhouette plot

Hierarchical Clustering

cluster Construct agglomerative clusters
from linkages

clusterdata Construct agglomerative clusters
from data

cophenet Cophenetic correlation coefficient

inconsistent Inconsistency coefficient

linkage Create agglomerative hierarchical
cluster tree

pdist Pairwise distance between pairs of
objects

squareform Format distance matrix
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Model Assessment

K-Means Clustering

kmeans K-means clustering

mahal Mahalanobis distance

Gaussian Mixture Models

cdf (gmdistribution) Cumulative distribution function for
Gaussian mixture distribution

cluster (gmdistribution) Construct clusters from Gaussian
mixture distribution

gmdistribution Construct Gaussian mixture
distribution

mahal (gmdistribution) Mahalanobis distance to component
means

pdf (gmdistribution) Probability density function for
Gaussian mixture distribution

posterior (gmdistribution) Posterior probabilities of components

random (gmdistribution) Random numbers from Gaussian
mixture distribution

Model Assessment

confusionmat Confusion matrix

crossval Loss estimate using cross-validation

cvpartition Create cross-validation partition for
data

repartition (cvpartition) Repartition data for cross-validation

test (cvpartition) Test indices for cross-validation

training (cvpartition) Training indices for cross-validation
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Classification

Classification Plots (p. 16-42)

Discriminant Analysis (p. 16-42)

Classification Trees (p. 16-42)

Naive Bayes Classification (p. 16-43)

Ensemble Methods (p. 16-44)

Classification Plots

perfcurve Compute Receiver Operating
Characteristic (ROC) curve or other
performance curve for classifier
output

view (classregtree) Plot tree

Discriminant Analysis

classify Discriminant analysis

mahal Mahalanobis distance

Classification Trees

catsplit (classregtree) Categorical splits used for branches
in decision tree

children (classregtree) Child nodes

classcount (classregtree) Class counts

classprob (classregtree) Class probabilities

classregtree Construct classification and
regression trees

cutcategories (classregtree) Cut categories
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Classification

cutpoint (classregtree) Returns decision tree cut point
values

cuttype (classregtree) Cut types

cutvar (classregtree) Cut variable names

eval (classregtree) Predicted responses

isbranch (classregtree) Test node for branch

nodeerr (classregtree) Return vector of node errors

nodeprob (classregtree) Node probabilities

nodesize (classregtree) Return node size

numnodes (classregtree) Number of nodes

parent (classregtree) Parent node

prune (classregtree) Prune tree

risk (classregtree) Node risks

test (classregtree) Error rate

type (classregtree) Tree type

varimportance (classregtree) Compute embedded estimates of
input feature importance

view (classregtree) Plot tree

Naive Bayes Classification

fit (NaiveBayes) Create Naive Bayes classifier object
by fitting training data

NaiveBayes Create NaiveBayes object

posterior (NaiveBayes) Compute posterior probability of
each class for test data

predict (NaiveBayes) Predict class label for test data
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Ensemble Methods

append (TreeBagger) Append new trees to ensemble

combine (CompactTreeBagger) Combine two ensembles

compact (TreeBagger) Compact ensemble of decision trees

CompactTreeBagger Create CompactTreeBagger object

error (CompactTreeBagger) Error (misclassification probability
or MSE)

error (TreeBagger) Error (misclassification probability
or MSE)

fillProximities (TreeBagger) Proximity matrix for training data

growTrees (TreeBagger) Train additional trees and add to
ensemble

margin (CompactTreeBagger) Classification margin

margin (TreeBagger) Classification margin

mdsProx (CompactTreeBagger) Multidimensional scaling of
proximity matrix

mdsProx (TreeBagger) Multidimensional scaling of
proximity matrix

meanMargin (CompactTreeBagger) Mean classification margin

meanMargin (TreeBagger) Mean classification margin

oobError (TreeBagger) Out-of-bag error

oobMargin (TreeBagger) Out-of-bag margins

oobMeanMargin (TreeBagger) Out-of-bag mean margins

oobPredict (TreeBagger) Ensemble predictions for out-of-bag
observations

outlierMeasure
(CompactTreeBagger)

Outlier measure for data

predict (CompactTreeBagger) Predict response

predict (TreeBagger) Predict response
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proximity (CompactTreeBagger) Proximity matrix for data

SetDefaultYfit
(CompactTreeBagger)

Set default value for predict

TreeBagger Create ensemble of bagged decision
trees
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Hidden Markov Models
hmmdecode Hidden Markov model posterior

state probabilities

hmmestimate Hidden Markov model parameter
estimates from emissions and states

hmmgenerate Hidden Markov model states and
emissions

hmmtrain Hidden Markov model parameter
estimates from emissions

hmmviterbi Hidden Markov model most probable
state path
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Design of Experiments

Design of Experiments

DOE Plots (p. 16-47)

Full Factorial Designs (p. 16-47)

Fractional Factorial Designs
(p. 16-48)

Response Surface Designs (p. 16-48)

D-Optimal Designs (p. 16-48)

Latin Hypercube Designs (p. 16-48)

Quasi-Random Designs (p. 16-49)

DOE Plots

interactionplot Interaction plot for grouped data

maineffectsplot Main effects plot for grouped data

multivarichart Multivari chart for grouped data

rsmdemo Interactive response surface
demonstration

rstool Interactive response surface
modeling

Full Factorial Designs

ff2n Two-level full factorial design

fullfact Full factorial design
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Fractional Factorial Designs

fracfact Fractional factorial design

fracfactgen Fractional factorial design
generators

Response Surface Designs

bbdesign Box-Behnken design

ccdesign Central composite design

D-Optimal Designs

candexch Candidate set row exchange

candgen Candidate set generation

cordexch Coordinate exchange

daugment D-optimal augmentation

dcovary D-optimal design with fixed
covariates

rowexch Row exchange

rsmdemo Interactive response surface
demonstration

Latin Hypercube Designs

lhsdesign Latin hypercube sample

lhsnorm Latin hypercube sample from normal
distribution
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Quasi-Random Designs

addlistener (qrandstream) Add listener for event

delete (qrandstream) Delete handle object

end (qrandset) Last index in indexing expression for
point set

eq (qrandstream) Test handle equality

findobj (qrandstream) Find objects matching specified
conditions

findprop (qrandstream) Find property of MATLAB handle
object

ge (qrandstream) Greater than or equal relation for
handles

gt (qrandstream) Greater than relation for handles

haltonset Construct Halton quasi-random
point set

isvalid (qrandstream) Test handle validity

le (qrandstream) Less than or equal relation for
handles

length (qrandset) Length of point set

lt (qrandstream) Less than relation for handles

ndims (qrandset) Number of dimensions in matrix

ne (qrandstream) Not equal relation for handles

net (qrandset) Generate quasi-random point set

notify (qrandstream) Notify listeners of event

qrand (qrandstream) Generate quasi-random points from
stream

qrandset Abstract quasi-random point set
class

qrandstream Construct quasi-random number
stream
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rand (qrandstream) Generate quasi-random points from
stream

reset (qrandstream) Reset state

scramble (qrandset) Scramble quasi-random point set

size (qrandset) Number of dimensions in matrix

sobolset Construct Sobol quasi-random point
set
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Statistical Process Control

Statistical Process Control

SPC Plots (p. 16-51)

SPC Functions (p. 16-51)

SPC Plots

capaplot Process capability plot

controlchart Shewhart control charts

histfit Histogram with normal fit

normspec Normal density plot between
specifications

SPC Functions

capability Process capability indices

controlrules Western Electric and Nelson control
rules

gagerr Gage repeatability and
reproducibility study
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GUIs
aoctool Interactive analysis of covariance

dfittool Interactive distribution fitting

disttool Interactive density and distribution
plots

fsurfht Interactive contour plot

polytool Interactive polynomial fitting

randtool Interactive random number
generation

regstats Regression diagnostics

robustdemo Interactive robust regression

rsmdemo Interactive response surface
demonstration

rstool Interactive response surface
modeling

surfht Interactive contour plot
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Utilities

Utilities
combnk Enumeration of combinations

perms Enumeration of permutations

statget Access values in statistics options
structure

statset Create statistics options structure

zscore Standardized z-scores
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Class Reference

• “Data Organization” on page 17-2

• “Probability Distributions” on page 17-3

• “Regression Analysis” on page 17-4

• “Gaussian Mixture Models” on page 17-4

• “Model Assessment” on page 17-5

• “Classification” on page 17-5

• “Quasi-Random Design of Experiments” on page 17-6



17 Class Reference

Data Organization

In this section...

“Categorical Arrays” on page 17-2

“Dataset Arrays” on page 17-2

Categorical Arrays

categorical Arrays for categorical data

nominal Arrays for nominal categorical data

ordinal Arrays for ordinal categorical data

Dataset Arrays

dataset Arrays for statistical data
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Probability Distributions

Probability Distributions

In this section...

“Distribution Objects” on page 17-3

“Quasi-Random Numbers” on page 17-3

“Piecewise Distributions” on page 17-4

Distribution Objects

ProbDist Object representing probability
distribution

ProbDistKernel Object representing nonparametric
probability distribution defined by
kernel smoothing

ProbDistParametric Object representing parametric
probability distribution

ProbDistUnivKernel Object representing univariate
kernel probability distribution

ProbDistUnivParam Object representing univariate
parametric probability distribution

Quasi-Random Numbers

haltonset Halton quasi-random point sets

qrandset Quasi-random point sets

qrandstream Quasi-random number streams

sobolset Sobol quasi-random point sets
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Piecewise Distributions

paretotails Empirical distributions with Pareto
tails

piecewisedistribution Piecewise-defined distributions

Regression Analysis

In this section...

“Regression Trees” on page 17-4

“Ensemble Method Classes” on page 17-4

Regression Trees

classregtree Classification and regression trees

Ensemble Method Classes

CompactTreeBagger Compact ensemble of decision trees
grown by bootstrap aggregation

TreeBagger Bootstrap aggregation for ensemble
of decision trees

Gaussian Mixture Models

gmdistribution Gaussian mixture models
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Model Assessment

Model Assessment
cvpartition Data partitions for cross-validation

Classification

In this section...

“Classification Trees” on page 17-5

“Naive Bayes Classification ” on page 17-5

“Ensemble Method Classes” on page 17-5

Classification Trees

classregtree Classification and regression trees

Naive Bayes Classification

NaiveBayes Naive Bayes classifier

Ensemble Method Classes

CompactTreeBagger Compact ensemble of decision trees
grown by bootstrap aggregation

TreeBagger Bootstrap aggregation for ensemble
of decision trees
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17 Class Reference

Quasi-Random Design of Experiments
haltonset Halton quasi-random point sets

qrandset Quasi-random point sets

qrandstream Quasi-random number streams

sobolset Sobol quasi-random point sets
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addedvarplot

Purpose Added-variable plot

Syntax addedvarplot(X,y,num,inmodel)
addedvarplot(X,y,num,inmodel,stats)

Description addedvarplot(X,y,num,inmodel) displays an added variable plot
using the predictive terms in X, the response values in y, the added
term in column num of X, and the model with current terms specified by
inmodel. X is an n-by-p matrix of n observations of p predictive terms.
y is vector of n response values. num is a scalar index specifying the
column of X with the term to be added. inmodel is a logical vector of p
elements specifying the columns of X in the current model. By default,
all elements of inmodel are false.

Note addedvarplot automatically includes a constant term in all
models. Do not enter a column of 1s directly into X.

addedvarplot(X,y,num,inmodel,stats) uses the stats output from
the stepwisefit function to improve the efficiency of repeated calls to
addedvarplot. Otherwise, this syntax is equivalent to the previous
syntax.

Added variable plots are used to determine the unique effect of adding
a new term to a multilinear model. The plot shows the relationship
between the part of the response unexplained by terms already in the
model and the part of the new term unexplained by terms already in
the model. The “unexplained” parts are measured by the residuals of
the respective regressions. A scatter of the residuals from the two
regressions forms the added variable plot.

In addition to the scatter of residuals, the plot produced by
addedvarplot shows 95% confidence intervals on predictions from the
fitted line. The fitted line has intercept zero because, under typical
linear model assumptions, both of the plotted variables have mean zero.
The slope of the fitted line is the coefficient that the new term would
have if it were added to the model with terms inmodel.
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Added variable plots are sometimes known as partial regression
leverage plots.

Examples Load the data in hald.mat, which contains observations of the heat of
reaction of various cement mixtures:

load hald
whos

Name Size Bytes Class Attributes

Description 22x58 2552 char
hald 13x5 520 double
heat 13x1 104 double
ingredients 13x4 416 double

Create an added variable plot to investigate the addition of the third
column of ingredients to a model consisting of the first two columns:

inmodel = [true true false false];
addedvarplot(ingredients,heat,3,inmodel)
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The wide scatter and the low slope of the fitted line are evidence against
the statistical significance of adding the third column to the model.

See Also stepwisefit, stepwise
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categorical.addlevels

Purpose Add levels to categorical array

Syntax B = addlevels(A,newlevels)

Description B = addlevels(A,newlevels) adds new levels to the categorical array
A. newlevels is a cell array of strings or a 2-D character matrix that
specifies the levels to add. addlevels adds the new levels at the end of
the list of possible categorical levels in A, but does not modify the value
of any element. B does not contain elements at the new levels.

Examples Example 1

Add levels for additional species in Fisher’s iris data:

load fisheriris
species = nominal(species,...

{'Species1','Species2','Species3'},...
{'setosa','versicolor','virginica'});

species = addlevels(species,{'Species4','Species5'});
getlabels(species)
ans =
'Species1' 'Species2' 'Species3' 'Species4' 'Species5'

Example 2

1 Load patient data from the CSV file hospital.dat and store the
information in a dataset array with observation names given by the
first column in the data (patient identification):

patients = dataset('file','hospital.dat',...
'delimiter',',',...
'ReadObsNames',true);

2 Make the {0,1}-valued variable smoke nominal, and change the labels
to 'No' and 'Yes':

patients.smoke = nominal(patients.smoke,{'No','Yes'});
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3 Add new levels to smoke as placeholders for more detailed histories
of smokers:

patients.smoke = addlevels(patients.smoke,...
{'0-5 Years','5-10 Years','LongTerm'});

4 Assuming the nonsmokers have never smoked, relabel the 'No' level:

patients.smoke = setlabels(patients.smoke,'Never','No');

5 Drop the undifferentiated 'Yes' level from smoke:

patients.smoke = droplevels(patients.smoke,'Yes');

Warning: OLDLEVELS contains categorical levels that
were present in A, caused some array elements to have
undefined levels.

Note that smokers now have an undefined level.

6 Set each smoker to one of the new levels, by observation name:

patients.smoke('YPL-320') = '5-10 Years';

See Also droplevels, getlabels, islevel, mergelevels, reorderlevels
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qrandstream.addlistener

Purpose Add listener for event

Syntax el = addlistener(hsource, 'eventname', callback)
el = addlistener(hsource, property, 'eventname', callback)

Description el = addlistener(hsource, 'eventname', callback) creates a
listener for the event named eventname, the source of which is handle
object hsource. If hsource is an array of source handles, the listener
responds to the named event on any handle in the array. callback is a
function handle that is invoked when the event is triggered.

el = addlistener(hsource, property, 'eventname', callback)
adds a listener for a property event. eventname must be one of the
strings 'PreGet', 'PostGet', 'PreSet', and 'PostSet'. property
must be either a property name or cell array of property names, or a
meta.property or array of meta.property. The properties must belong
to the class of hsource. If hsource is scalar, property can include
dynamic properties.

For all forms, addlistener returns an event.listener. To remove
a listener, delete the object returned by addlistener. For example,
delete(el) calls the handle class delete method to remove the listener
and delete it from the workspace.

See Also delete, dynamicprops, event.listener, events, meta.property,
notify, qrandstream, reset
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gmdistribution.AIC property

Purpose Akaike Information Criterion

Description The Akaike Information Criterion: 2*NlogL+2*m, where m is the number
of estimated parameters.

Note This property applies only to gmdistribution objects constructed
with fit.
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Purpose Andrews plot

Syntax andrewsplot(X)
andrewsplot(X,...,'Standardize','on')
andrewsplot(X,...,'Standardize','PCA')
andrewsplot(X,...,'Standardize','PCAStd')
andrewsplot(X,...,'Quantile',alpha)
andrewsplot(X,...,'Group',group)
andrewsplot(X,...,PropName,PropVal,...)
h = andrewsplot(X,...)

Description andrewsplot(X) creates an Andrews plot of the multivariate data in
the matrix X. The rows of X correspond to observations, the columns to
variables. Andrews plots represent each observation by a function f(t) of
a continuous dummy variable t over the interval [0,1]. f(t) is defined for
the i th observation in X as

f t X i X i t X i t( ) ( , ) / ( , )sin( ) ( , )cos( )= + + +1 2 2 2 3 2  …

andrewsplot treats NaN values in X as missing values and ignores the
corresponding rows.

andrewsplot(X,...,'Standardize','on') scales each column of X
to have

mean 0 and standard deviation 1 before making the plot.

andrewsplot(X,...,'Standardize','PCA') creates an Andrews
plot from the principal component scores of X, in order of decreasing
eigenvalue. (See princomp.)

andrewsplot(X,...,'Standardize','PCAStd') creates an Andrews
plot using the standardized principal component scores. (See princomp.)

andrewsplot(X,...,'Quantile',alpha) plots only the median and
the alpha and (1 – alpha) quantiles of f(t) at each value of t. This is
useful if X contains many observations.

andrewsplot(X,...,'Group',group) plots the data in different groups
with different colors. Groups are defined by group, a numeric array
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containing a group index for each observation. group can also be a
categorical array, character matrix, or cell array of strings containing a
group name for each observation. (See “Grouped Data” on page 2-33.)

andrewsplot(X,...,PropName,PropVal,...) sets lineseries object
properties to the specified values for all lineseries objects created by
andrewsplot. (See Lineseries Properties.)

h = andrewsplot(X,...) returns a column vector of handles to the
lineseries objects created by andrewsplot, one handle per row of X. If
you use the 'Quantile' input parameter, h contains one handle for each
of the three lineseries objects created. If you use both the 'Quantile'
and the 'Group' input parameters, h contains three handles for each
group.

Examples Make a grouped plot of the Fisher iris data:

load fisheriris
andrewsplot(meas,'group',species)
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Plot only the median and quartiles of each group:

andrewsplot(meas,'group',species,'quantile',.25)
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See Also “Grouped Data” on page 2-33

parallelcoords, glyphplot
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Purpose One-way analysis of variance

Syntax p = anova1(X)
p = anova1(X,group)
p = anova1(X,group,displayopt)
[p,table] = anova1(...)
[p,table,stats] = anova1(...)

Description p = anova1(X) performs balanced one-way ANOVA for comparing
the means of two or more columns of data in the matrix X, where
each column represents an independent sample containing mutually
independent observations. The function returns the p-value under the
null hypothesis that all samples in X are drawn from populations with
the same mean.

If p is near zero, it casts doubt on the null hypothesis and suggests
that at least one sample mean is significantly different than the other
sample means. Common significance levels are 0.05 or 0.01.

The anova1 function displays two figures, the standard ANOVA table
and a box plot of the columns of X.

The standard ANOVA table divides the variability of the data into two
parts:

• Variability due to the differences among the column means
(variability between groups)

• Variability due to the differences between the data in each column
and the column mean (variability within groups)

The standard ANOVA table has six columns:

1 The source of the variability.

2 The sum of squares (SS) due to each source.

3 The degrees of freedom (df) associated with each source.
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4 The mean squares (MS) for each source, which is the ratio SS/df.

5 The F-statistic, which is the ratio of the mean squares.

6 The p-value, which is derived from the cdf of F.

The box plot of the columns of X suggests the size of the F-statistic and
the p-value. Large differences in the center lines of the boxes correspond
to large values of F and correspondingly small values of p.

Columns of X with NaN values are disregarded.

p = anova1(X,group) performs ANOVA by group.

If X is a matrix, anova1 treats each column as a separate group, and
evaluates whether the population means of the columns are equal. This
form of anova1 is appropriate when each group has the same number of
elements (balanced ANOVA). group can be a character array or a cell
array of strings, with one row per column of X, containing group names.
Enter an empty array ([]) or omit this argument if you do not want to
specify group names.

If X is a vector, group must be a categorical variable, vector, string
array, or cell array of strings with one name for each element of X. X
values corresponding to the same value of group are placed in the same
group. This form of anova1 is appropriate when groups have different
numbers of elements (unbalanced ANOVA).

If group contains empty or NaN-valued cells or strings, the corresponding
observations in X are disregarded.

p = anova1(X,group,displayopt) enables the ANOVA table and box
plot displays when displayopt is 'on' (default) and suppresses the
displays when displayopt is 'off'. Notches in the boxplot provide a
test of group medians (see boxplot) different from the F test for means
in the ANOVA table.

[p,table] = anova1(...) returns the ANOVA table (including
column and row labels) in the cell array table. Copy a text version of
the ANOVA table to the clipboard using the Copy Text item on the
Edit menu.
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[p,table,stats] = anova1(...) returns a structure stats used
to perform a follow-up multiple comparison test. anova1 evaluates
the hypothesis that the samples all have the same mean against the
alternative that the means are not all the same. Sometimes it is
preferable to perform a test to determine which pairs of means are
significantly different, and which are not. Use the multcompare function
to perform such tests by supplying the stats structure as input.

Assumptions

The ANOVA test makes the following assumptions about the data in X:

• All sample populations are normally distributed.

• All sample populations have equal variance.

• All observations are mutually independent.

The ANOVA test is known to be robust with respect to modest violations
of the first two assumptions.

Examples Example 1

Create X with columns that are constants plus random normal
disturbances with mean zero and standard deviation one:

X = meshgrid(1:5)
X =

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

X = X + normrnd(0,1,5,5)
X =

1.3550 2.0662 2.4688 5.9447 5.4897
2.0693 1.7611 1.4864 4.8826 6.3222
2.1919 0.7276 3.1905 4.8768 4.6841
2.7620 1.8179 3.9506 4.4678 4.9291
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-0.3626 1.1685 3.5742 2.1945 5.9465

Perform one-way ANOVA:

p = anova1(X)
p =

7.9370e-006
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The very small p-value indicates that differences between column
means are highly significant. The probability of this outcome under the
null hypothesis (that samples drawn from the same population would
have means differing by the amounts seen in X) is equal to the p-value.

Example 2

The following example is from a study of the strength of structural
beams in Hogg. The vector strength measures deflections of beams in
thousandths of an inch under 3,000 pounds of force. The vector alloy
identifies each beam as steel ('st'), alloy 1 ('al1'), or alloy 2 ('al2').
(Although alloy is sorted in this example, grouping variables do not
need to be sorted.) The null hypothesis is that steel beams are equal in
strength to beams made of the two more expensive alloys.

strength = [82 86 79 83 84 85 86 87 74 82 ...
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78 75 76 77 79 79 77 78 82 79];

alloy = {'st','st','st','st','st','st','st','st',...
'al1','al1','al1','al1','al1','al1',...
'al2','al2','al2','al2','al2','al2'};

p = anova1(strength,alloy)
p =

1.5264e-004
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The p-value suggests rejection of the null hypothesis. The box plot
shows that steel beams deflect more than beams made of the more
expensive alloys.

References [1] Hogg, R. V., and J. Ledolter. Engineering Statistics. New York:
MacMillan, 1987.

See Also “Grouped Data” on page 2-33

anova2, anovan, boxplot, manova1, multcompare

18-19



anova2

Purpose Two-way analysis of variance

Syntax p = anova2(X,reps)
p = anova2(X,reps,displayopt)
[p,table] = anova2(...)
[p,table,stats] = anova2(...)

Description p = anova2(X,reps) performs a balanced two-way ANOVA for
comparing the means of two or more columns and two or more rows of
the observations in X. The data in different columns represent changes
in factor A. The data in different rows represent changes in factor B.
If there is more than one observation for each combination of factors,
input reps indicates the number of replicates in each position, which
must be constant. (For unbalanced designs, use anovan.)

The matrix below shows the format for a set-up where column factor
A has two levels, row factor B has three levels, and there are two
replications (reps = 2). The subscripts indicate row, column, and
replicate, respectively.

When reps is 1 (default), anova2 returns two p-values in vector p:

1 The p-value for the null hypothesis, H0A, that all samples from
factor A (i.e., all column-samples in X) are drawn from the same
population
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2 The p-value for the null hypothesis, H0B, that all samples from
factor B (i.e., all row-samples in X) are drawn from the same
population

When reps is greater than 1, anova2 returns a third p-value in
vector p:

3 The p-value for the null hypothesis, H0AB, that the effects due to
factors A and B are additive (i.e., that there is no interaction between
factors A and B)

If any p-value is near zero, this casts doubt on the associated null
hypothesis. A sufficiently small p-value for H0A suggests that at least
one column-sample mean is significantly different that the other
column-sample means; i.e., there is a main effect due to factor A. A
sufficiently small p-value for H0B suggests that at least one row-sample
mean is significantly different than the other row-sample means;
i.e., there is a main effect due to factor B. A sufficiently small p-value
for H0AB suggests that there is an interaction between factors A and
B. The choice of a limit for the p-value to determine whether a result
is “statistically significant” is left to the researcher. It is common to
declare a result significant if the p-value is less than 0.05 or 0.01.

anova2 also displays a figure showing the standard ANOVA table,
which divides the variability of the data in X into three or four parts
depending on the value of reps:

• The variability due to the differences among the column means

• The variability due to the differences among the row means

• The variability due to the interaction between rows and columns (if
reps is greater than its default value of one)

• The remaining variability not explained by any systematic source

The ANOVA table has five columns:

• The first shows the source of the variability.

18-21



anova2

• The second shows the Sum of Squares (SS) due to each source.

• The third shows the degrees of freedom (df) associated with each
source.

• The fourth shows the Mean Squares (MS), which is the ratio SS/df.

• The fifth shows the F statistics, which is the ratio of the mean
squares.

p = anova2(X,reps,displayopt) enables the ANOVA table display
when displayopt is 'on' (default) and suppresses the display when
displayopt is 'off'.

[p,table] = anova2(...) returns the ANOVA table (including
column and row labels) in cell array table. (Copy a text version of the
ANOVA table to the clipboard by using the Copy Text item on the Edit
menu.)

[p,table,stats] = anova2(...) returns a stats structure that you
can use to perform a follow-up multiple comparison test.

The anova2 test evaluates the hypothesis that the row, column, and
interaction effects are all the same, against the alternative that they
are not all the same. Sometimes it is preferable to perform a test
to determine which pairs of effects are significantly different, and
which are not. Use the multcompare function to perform such tests by
supplying the stats structure as input.

Examples The data below come from a study of popcorn brands and popper type
(Hogg 1987). The columns of the matrix popcorn are brands (Gourmet,
National, and Generic). The rows are popper type (Oil and Air.) The
study popped a batch of each brand three times with each popper. The
values are the yield in cups of popped popcorn.

load popcorn

popcorn
popcorn =

5.5000 4.5000 3.5000
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5.5000 4.5000 4.0000
6.0000 4.0000 3.0000
6.5000 5.0000 4.0000
7.0000 5.5000 5.0000
7.0000 5.0000 4.5000

p = anova2(popcorn,3)
p =

0.0000 0.0001 0.7462

The vector p shows the p-values for the three brands of popcorn, 0.0000,
the two popper types, 0.0001, and the interaction between brand and
popper type, 0.7462. These values indicate that both popcorn brand and
popper type affect the yield of popcorn, but there is no evidence of a
synergistic (interaction) effect of the two.

The conclusion is that you can get the greatest yield using the Gourmet
brand and an Air popper (the three values popcorn(4:6,1)).

References [1] Hogg, R. V., and J. Ledolter. Engineering Statistics. New York:
MacMillan, 1987.

See Also anova1, anovan
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Purpose N-way analysis of variance

Syntax p = anovan(y,group)
p = anovan(y,group,param1,val1,param2,val2,...)
[p,table] = anovan(...)
[p,table,stats] = anovan(...)
[p,table,stats,terms] = anovan(...)

Description p = anovan(y,group) performs multiway (n-way) analysis of variance
(ANOVA) for testing the effects of multiple factors (grouping variables)
on the mean of the vector y. This test compares the variance explained
by factors to the left over variance that cannot be explained. The factors
and factor levels of the observations in y are assigned by the cell array
group. Each of the cells in the cell array group contains a list of factor
levels identifying the observations in y with respect to one of the factors.
The list within each cell can be a categorical array, numeric vector,
character matrix, or single-column cell array of strings, and must have
the same number of elements as y. The fitted ANOVA model includes
the main effects of each grouping variable. All grouping variables are
treated as fixed effects by default. The result p is a vector of p-values,
one per term. For an example, see “Example of Three-Way ANOVA” on
page 18-28Example of Three-Way ANOVA.

p = anovan(y,group,param1,val1,param2,val2,...) specifies one
or more of the parameter name/value pairs described in the following
table.

Parameter Value

'alpha' A number between 0 and 1 requesting 100(1 -
alpha)% confidence bounds (default 0.05 for 95%
confidence)

'continuous' A vector of indices indicating which grouping
variables should be treated as continuous predictors
rather than as categorical predictors.
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Parameter Value

'display' 'on' displays an ANOVA table (the default)
'off' omits the display

'model' The type of model used. See “Model Type” on page
18-26 for a description of this parameter.

'nested' A matrix M of 0’s and 1’s specifying the nesting
relationships among the grouping variables. M(i,j) is
1 if variable i is nested in variable j.

'random' A vector of indices indicating which grouping
variables are random effects (all are fixed by default).
See “ANOVA with Random Effects” on page 8-19 for
an example of how to use 'random'.

'sstype' 1, 2, 3 (default), or h specifies the type of sum of
squares. See “Sum of Squares” on page 18-27 for a
description of this parameter.

'varnames' A character matrix or a cell array of strings specifying
names of grouping variables, one per grouping
variable. When you do not specify 'varnames', the
default labels 'X1', 'X2', 'X3', ..., 'XN' are used.
See “ANOVA with Random Effects” on page 8-19 for
an example of how to use 'varnames'.

[p,table] = anovan(...) returns the ANOVA table (including factor
labels) in cell array table. (Copy a text version of the ANOVA table to
the clipboard by using the Copy Text item on the Edit menu.)

[p,table,stats] = anovan(...) returns a stats structure that
you can use to perform a follow-up multiple comparison test with the
multcompare function. See “The Stats Structure” on page 18-31The
Stats Structure for more information.

[p,table,stats,terms] = anovan(...) returns the main and
interaction terms used in the ANOVA computations. The terms are
encoded in the output matrix terms using the same format described
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above for input 'model'. When you specify 'model' itself in this matrix
format, the matrix returned in terms is identical.

Model Type

This section explains how to use the argument 'model' with the syntax:

[...] = anovan(y,group,'model',modeltype)

The argument modeltype, which specifies the type of model the function
uses, can be any one of the following:

• 'linear'— The default 'linear' model computes only the p-values
for the null hypotheses on the N main effects.

• 'interaction'— The 'interaction' model computes the p-values

for null hypotheses on the N main effects and the two-factor
interactions.

• 'full' — The 'full' model computes the p-values for null
hypotheses on the N main effects and interactions at all levels.

• An integer — For an integer value of modeltype, k (k ≤ N),
anovan computes all interaction levels through the kth level. For
example, the value 3 means main effects plus two- and three-factor
interactions. The values k = 1 and k = 2 are equivalent to the
'linear' and 'interaction' specifications, respectively, while the
value k = N is equivalent to the 'full' specification.

• A matrix of term definitions having the same form as the input to the
x2fx function. All entries must be 0 or 1 (no higher powers).

For more precise control over the main and interaction terms that
anovan computes, modeltype can specify a matrix containing one row
for each main or interaction term to include in the ANOVA model. Each
row defines one term using a vector of N zeros and ones. The table
below illustrates the coding for a 3-factor ANOVA.

Matrix Row ANOVA Term

[1 0 0] Main term A
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Matrix Row ANOVA Term

[0 1 0] Main term B

[0 0 1] Main term C

[1 1 0] Interaction term AB

[1 0 1] Interaction term AC

[0 1 1] Interaction term BC

[1 1 1] Interaction term ABC

For example, if modeltype is the matrix [0 1 0;0 0 1;0 1 1], the
output vector p contains the p-values for the null hypotheses on the
main effects B and C and the interaction effect BC, in that order. A
simple way to generate the modeltype matrix is to modify the terms
output, which codes the terms in the current model using the format
described above. If anovan returns [0 1 0;0 0 1;0 1 1] for terms, for
example, and there is no significant result for interaction BC, you can
recompute the ANOVA on just the main effects B and C by specifying
[0 1 0;0 0 1] for modeltype.

Sum of Squares

This section explains how to use the argument 'sstype' with the
syntax:

[...] = anovan(y,group,'sstype',type)

This syntax computes the ANOVA using the type of sum of squares
specified by type, which can be 1, 2, 3, or h. While the numbers 1 – 3
designate Type 1, Type 2, or Type 3 sum of squares, respectively, h
represents a hierarchical model similar to type 2, but with continuous
as well as categorical factors used to determine the hierarchy of
terms. The default value is 3. For a model containing main effects
but no interactions, the value of type only influences computations
on unbalanced data.

The sum of squares for any term is determined by comparing two
models. The Type 1 sum of squares for a term is the reduction in
residual sum of squares obtained by adding that term to a fit that
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already includes the terms listed before it. The Type 2 sum of squares is
the reduction in residual sum of squares obtained by adding that term
to a model consisting of all other terms that do not contain the term
in question. The Type 3 sum of squares is the reduction in residual
sum of squares obtained by adding that term to a model containing all
other terms, but with their effects constrained to obey the usual “sigma
restrictions” that make models estimable.

Suppose you are fitting a model with two factors and their interaction,
and that the terms appear in the order A, B, AB. Let R(·) represent the
residual sum of squares for a model, so for example R(A, B, AB) is the
residual sum of squares fitting the whole model, R(A) is the residual
sum of squares fitting just the main effect of A, and R(1) is the residual
sum of squares fitting just the mean. The three types of sums of squares
are as follows:

Term
Type 1 Sum of
Squares

Type 2 Sum of
Squares

Type 3 Sum of
Squares

A R(1) – R(A) R(B) – R(A, B) R(B, AB) – R(A, B,
AB)

B R(A) – R(A, B) R(A) – R(A, B) R(A, AB) – R(A, B,
AB)

AB R(A, B) – R(A, B,
AB)

R(A, B) – R(A, B,
AB)

R(A, B) – R(A, B,
AB)

The models for Type 3 sum of squares have sigma restrictions imposed.
This means, for example, that in fitting R(B, AB), the array of AB
effects is constrained to sum to 0 over A for each value of B, and over B
for each value of A.

Example of Three-Way ANOVA

As an example of three-way ANOVA, consider the vector y and group
inputs below.

y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';

g1 = [1 2 1 2 1 2 1 2];
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g2 = {'hi';'hi';'lo';'lo';'hi';'hi';'lo';'lo'};

g3 = {'may';'may';'may';'may';'june';'june';'june';'june'};

This defines a three-way ANOVA with two levels of each factor. Every
observation in y is identified by a combination of factor levels. If the
factors are A, B, and C, then observation y(1) is associated with

• Level 1 of factor A

• Level 'hi' of factor B

• Level 'may' of factor C

Similarly, observation y(6) is associated with

• Level 2 of factor A

• Level 'hi' of factor B

• Level 'june' of factor C

To compute the ANOVA, enter

p = anovan(y,{g1 g2 g3})
p =

0.4174
0.0028
0.9140

Output vector p contains p-values for the null hypotheses on the N main
effects. Element p(1) contains the p-value for the null hypotheses,
H0A, that samples at all levels of factor A are drawn from the same
population; element p(2) contains the p-value for the null hypotheses,
H0B, that samples at all levels of factor B are drawn from the same
population; and so on.

If any p-value is near zero, this casts doubt on the associated null
hypothesis. For example, a sufficiently small p-value for H0A suggests
that at least one A-sample mean is significantly different from the other
A-sample means; that is, there is a main effect due to factor A. You

18-29



anovan

need to choose a bound for the p-value to determine whether a result is
statistically significant. It is common to declare a result significant if
the p-value is less than 0.05 or 0.01.

anovan also displays a figure showing the standard ANOVA table,
which by default divides the variability of the data in x into

• The variability due to differences between the levels of each factor
accounted for in the model (one row for each factor)

• The remaining variability not explained by any systematic source

The ANOVA table has six columns:

• The first shows the source of the variability.

• The second shows the sum of squares (SS) due to each source.

• The third shows the degrees of freedom (df) associated with each
source.

• The fourth shows the mean squares (MS), which is the ratio SS/df.

• The fifth shows the F statistics, which are the ratios of the mean
squares.

• The sixth shows the p-values for the F statistics.

The table is shown in the following figure:
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Two-Factor Interactions

By default, anovan computes p-values just for the three main effects.
To also compute p-values for the two-factor interactions, X1*X2, X1*X3,
and X2*X3, add the name/value pair 'model', 'interaction' as input
arguments.

p = anovan(y,{g1 g2 g3},'model','interaction')
p =

0.0347
0.0048
0.2578
0.0158
0.1444
0.5000

The first three entries of p are the p-values for the main effects. The
last three entries are the p-values for the two-factor interactions. You
can determine the order in which the two-factor interactions occur from
the ANOVAN table shown in the following figure.

The Stats Structure

The anovan test evaluates the hypothesis that the different levels of a
factor (or more generally, a term) have the same effect, against the
alternative that they do not all have the same effect. Sometimes it is
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preferable to perform a test to determine which pairs of levels are
significantly different, and which are not. Use the multcompare function
to perform such tests by supplying the stats structure as input.

The stats structure contains the fields listed below, in addition to a
number of other fields required for doing multiple comparisons using
the multcompare function:

Field Description

coeffs Estimated coefficients

coeffnames Name of term for each coefficient

vars Matrix of grouping variable values for each term

resid Residuals from the fitted model

The stats structure also contains the following fields if there are
random effects:

Field Description

ems Expected mean squares

denom Denominator definition

rtnames Names of random terms

varest Variance component estimates (one per random term)

varci Confidence intervals for variance components

Examples “Example: Two-Way ANOVA” on page 8-10 shows how to use anova2 to
analyze the effects of two factors on a response in a balanced design.
For a design that is not balanced, use anovan instead.

The data in carbig.mat gives measurements on 406 cars. Use anonvan
to study how the mileage depends on where and when the cars were
made:

load carbig
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p = anovan(MPG,{org when},'model',2,'sstype',3,...
'varnames',{'Origin';'Mfg date'})

p =
0
0

0.3059

The p-value for the interaction term is not small, indicating little
evidence that the effect of the year or manufacture (when) depends on
where the car was made (org). The linear effects of those two factors,
however, are significant.

References [1] Hogg, R. V., and J. Ledolter. Engineering Statistics. New York:
MacMillan, 1987.

See Also “Grouped Data” on page 2-33

anova1, anova2, multcompare
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Purpose Ansari-Bradley test

Syntax h = ansaribradley(x,y)
h = ansaribradley(x,y,alpha)
h = ansaribradley(x,y,alpha,tail)
[h,p] = ansaribradley(...)
[h,p,stats] = ansaribradley(...)
[...] = ansaribradley(x,y,alpha,tail,exact)
[...] = ansaribradley(x,y,alpha,tail,exact,dim)

Description h = ansaribradley(x,y) performs an Ansari-Bradley test of the
hypothesis that two independent samples, in the vectors x and y, come
from the same distribution, against the alternative that they come
from distributions that have the same median and shape but different
dispersions (e.g. variances). The result is h = 0 if the null hypothesis of
identical distributions cannot be rejected at the 5% significance level,
or h = 1 if the null hypothesis can be rejected at the 5% level. x and y
can have different lengths.

x and y can also be matrices or N-dimensional arrays. For matrices,
ansaribradley performs separate tests along each column, and returns
a vector of results. x and y must have the same number of columns.
For N-dimensional arrays, ansaribradley works along the first
nonsingleton dimension. x and y must have the same size along all
the remaining dimensions.

h = ansaribradley(x,y,alpha) performs the test at the significance
level (100*alpha), where alpha is a scalar.

h = ansaribradley(x,y,alpha,tail) performs the test against the
alternative hypothesis specified by the string tail. tail is one of:

• 'both'— Two-tailed test (dispersion parameters are not equal)

• 'right' — Right-tailed test (dispersion of X is greater than
dispersion of Y)

• 'left'— Left-tailed test (dispersion of X is less than dispersion of Y)
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[h,p] = ansaribradley(...) returns the p-value, i.e., the probability
of observing the given result, or one more extreme, by chance if the
null hypothesis is true. Small values of p cast doubt on the validity of
the null hypothesis.

[h,p,stats] = ansaribradley(...) returns a structure stats with
the following fields:

• 'W' — Value of the test statistic W, which is the sum of the
Ansari-Bradley ranks for the X sample

• 'Wstar' — Approximate normal statistic W*

[...] = ansaribradley(x,y,alpha,tail,exact) computes p using
an exact calculation of the distribution of W with exact = 'on'. This
can be time-consuming for large samples. exact = 'off' computes p
using a normal approximation for the distribution of W*. The default if
exact is empty is to use the exact calculation if N, the total number of
rows in x and y, is 25 or less, and to use the normal approximation if N
> 25. Pass in [] for alpha and tail to use their default values while
specifying a value for exact. Note that N is computed before any NaN
values (representing missing data) are removed.

[...] = ansaribradley(x,y,alpha,tail,exact,dim) works along
dimension dim of x and y.

The Ansari-Bradley test is a nonparametric alternative to the
two-sample F test of equal variances. It does not require the assumption
that x and y come from normal distributions. The dispersion of a
distribution is generally measured by its variance or standard deviation,
but the Ansari-Bradley test can be used with samples from distributions
that do not have finite variances.

The theory behind the Ansari-Bradley test requires that the groups
have equal medians. Under that assumption and if the distributions
in each group are continuous and identical, the test does not depend
on the distributions in each group. If the groups do not have the
same medians, the results may be misleading. Ansari and Bradley
recommend subtracting the median in that case, but the distribution of
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the resulting test, under the null hypothesis, is no longer independent
of the common distribution of x and y. If you want to perform the tests
with medians subtracted, you should subtract the medians from x and
y before calling ansaribradley.

Examples Is the dispersion significantly different for two model years?

load carsmall

[h,p,stats] = ansaribradley(MPG(Model_Year==82),MPG(Model_Year==76))

h =

0

p =

0.8426

stats =

W: 526.9000

Wstar: 0.1986

See Also vartest, vartestn, ttest2
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Purpose Interactive analysis of covariance

Syntax aoctool(x,y,group)
aoctool(x,y,group,alpha)
aoctool(x,y,group,alpha,xname,yname,gname)
aoctool(x,y,group,alpha,xname,yname,gname,displayopt)
aoctool(x,y,group,alpha,xname,yname,gname,displayopt,model)
h = aoctool(...)
[h,atab,ctab] = aoctool(...)
[h,atab,ctab,stats] = aoctool(...)

Description aoctool(x,y,group) fits a separate line to the column vectors, x and y,
for each group defined by the values in the array group. group may be
a categorical variable, vector, character array, or cell array of strings.
(See “Grouped Data” on page 2-33.) These types of models are known
as one-way analysis of covariance (ANOCOVA) models. The output
consists of three figures:

• An interactive graph of the data and prediction curves

• An ANOVA table

• A table of parameter estimates

You can use the figures to change models and to test different parts
of the model. More information about interactive use of the aoctool
function appears in “Analysis of Covariance Tool” on page 8-27.

aoctool(x,y,group,alpha) determines the confidence levels of the
prediction intervals. The confidence level is 100(1-alpha)%. The
default value of alpha is 0.05.

aoctool(x,y,group,alpha,xname,yname,gname) specifies the name
to use for the x, y, and g variables in the graph and tables. If you
enter simple variable names for the x, y, and g arguments, the aoctool
function uses those names. If you enter an expression for one of these
arguments, you can specify a name to use in place of that expression by
supplying these arguments. For example, if you enter m(:,2) as the x
argument, you might choose to enter 'Col 2' as the xname argument.
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aoctool(x,y,group,alpha,xname,yname,gname,displayopt) enables
the graph and table displays when displayopt is 'on' (default) and
suppresses those displays when displayopt is 'off'.

aoctool(x,y,group,alpha,xname,yname,gname,displayopt,model)
specifies the initial model to fit. The value of model can be any of the
following:

• 'same mean'— Fit a single mean, ignoring grouping

• 'separate means'— Fit a separate mean to each group

• 'same line'— Fit a single line, ignoring grouping

• 'parallel lines'— Fit a separate line to each group, but constrain
the lines to be parallel

• 'separate lines' — Fit a separate line to each group, with no
constraints

h = aoctool(...) returns a vector of handles to the line objects in
the plot.

[h,atab,ctab] = aoctool(...) returns cell arrays containing the
entries in ANOVA table (atab) and the table of coefficient estimates
(ctab). (You can copy a text version of either table to the clipboard by
using the Copy Text item on the Edit menu.)

[h,atab,ctab,stats] = aoctool(...) returns a stats structure
that you can use to perform a follow-up multiple comparison test. The
ANOVA table output includes tests of the hypotheses that the slopes
or intercepts are all the same, against a general alternative that they
are not all the same. Sometimes it is preferable to perform a test to
determine which pairs of values are significantly different, and which
are not. You can use the multcompare function to perform such tests by
supplying the stats structure as input. You can test either the slopes,
the intercepts, or population marginal means (the heights of the curves
at the mean x value).
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Examples This example illustrates how to fit different models non-interactively.
After loading the smaller car data set and fitting a separate-slopes
model, you can examine the coefficient estimates.

load carsmall
[h,a,c,s] = aoctool(Weight,MPG,Model_Year,0.05,...

'','','','off','separate lines');
c(:,1:2)
ans =

'Term' 'Estimate'
'Intercept' [45.97983716833132]
' 70' [-8.58050531454973]
' 76' [-3.89017396094922]
' 82' [12.47067927549897]
'Slope' [-0.00780212907455]
' 70' [ 0.00195840368824]
' 76' [ 0.00113831038418]
' 82' [-0.00309671407243]

Roughly speaking, the lines relating MPG to Weight have an intercept
close to 45.98 and a slope close to -0.0078. Each group’s coefficients are
offset from these values somewhat. For instance, the intercept for the
cars made in 1970 is 45.98-8.58 = 37.40.

Next, try a fit using parallel lines. (The ANOVA table shows that the
parallel-lines fit is significantly worse than the separate-lines fit.)

[h,a,c,s] = aoctool(Weight,MPG,Model_Year,0.05,...
'','','','off','parallel lines');

c(:,1:2)

ans =

'Term' 'Estimate'
'Intercept' [43.38984085130596]
' 70' [-3.27948192983761]
' 76' [-1.35036234809006]
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' 82' [ 4.62984427792768]
'Slope' [-0.00664751826198]

Again, there are different intercepts for each group, but this time the
slopes are constrained to be the same.

See Also “Grouped Data” on page 2-33

anova1, multcompare, polytool
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Purpose Append new trees to ensemble

Syntax B = append(B,other)

Description B = append(B,other) appends the trees from the other ensemble to
those in B. This method checks for consistency of the X and Y properties
of the two ensembles, as well as consistency of their compact objects and
out-of-bag indices, before appending the trees. The output ensemble B
takes training parameters such as FBoot, Prior, Cost, and other from
the B input. There is no attempt to check if these training parameters
are consistent between the two objects.

See Also CompactTreeBagger.combine
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Purpose Read-only value specifying bandwidth of kernel smoothing function
for ProbDistKernel object

Description BandWidth is a read-only property of the ProbDistKernel class.
BandWidth is a value specifying the width of the kernel smoothing
function used to compute a nonparametric estimate of the probability
distribution when creating a ProbDistKernel object.

Values For a distribution specified to cover only the positive numbers or only
a finite interval, the data are transformed before the kernel density is
applied, and the bandwidth is on the scale of the transformed data.

Use this information to view and compare the width of the kernel
smoothing function used to create distributions.

See Also ksdensity
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Purpose Bartlett’s test

Syntax ndim = barttest(X,alpha)
[ndim,prob,chisquare] = barttest(X,alpha)

Description ndim = barttest(X,alpha) returns the number of dimensions
necessary to explain the nonrandom variation in the data matrix X,
using the significance probability alpha. The dimension is determined
by a series of hypothesis tests. The test for ndim=1 tests the hypothesis
that the variances of the data values along each principal component
are equal, the test for ndim=2 tests the hypothesis that the variances
along the second through last components are equal, and so on.

[ndim,prob,chisquare] = barttest(X,alpha) returns the number of
dimensions, the significance values for the hypothesis tests, and the χ2

values associated with the tests.

Examples X = mvnrnd([0 0],[1 0.99; 0.99 1],20);
X(:,3:4) = mvnrnd([0 0],[1 0.99; 0.99 1],20);
X(:,5:6) = mvnrnd([0 0],[1 0.99; 0.99 1],20);
[ndim, prob] = barttest(X,0.05)
ndim =

3
prob =

0
0
0

0.5081
0.6618

See Also princomp, pcacov, pcares
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Purpose Box-Behnken design

Syntax dBB = bbdesign(n)
[dBB,blocks] = bbdesign(n)
[...] = bbdesign(n,param1,val1,param2,val2,...)

Description dBB = bbdesign(n) generates a Box-Behnken design for n factors. n
must be an integer 3 or larger. The output matrix dBB is m-by-n, where
m is the number of runs in the design. Each row represents one run,
with settings for all factors represented in the columns. Factor values
are normalized so that the cube points take values between -1 and 1.

[dBB,blocks] = bbdesign(n) requests a blocked design. The output
blocks is an m-by-1 vector of block numbers for each run. Blocks
indicate runs that are to be measured under similar conditions
to minimize the effect of inter-block differences on the parameter
estimates.

[...] = bbdesign(n,param1,val1,param2,val2,...) specifies
additional parameter/value pairs for the design. Valid parameters and
their values are listed in the following table.

Parameter Description Values

'center' Number of
center points.

Integer. The default depends on
n.

'blocksize' Maximum
number of
points per block.

Integer. The default is Inf.

Examples The following creates a 3-factor Box-Behnken design:

dBB = bbdesign(3)
dBB =

-1 -1 0
-1 1 0
1 -1 0
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1 1 0
-1 0 -1
-1 0 1
1 0 -1
1 0 1
0 -1 -1
0 -1 1
0 1 -1
0 1 1
0 0 0
0 0 0
0 0 0

The center point is run 3 times to allow for a more uniform estimate of
the prediction variance over the entire design space.

Visualize the design as follows:

plot3(dBB(:,1),dBB(:,2),dBB(:,3),'ro',...
'MarkerFaceColor','b')

X = [1 -1 -1 -1 1 -1 -1 -1 1 1 -1 -1; ...
1 1 1 -1 1 1 1 -1 1 1 -1 -1];

Y = [-1 -1 1 -1 -1 -1 1 -1 1 -1 1 -1; ...
1 -1 1 1 1 -1 1 1 1 -1 1 -1];

Z = [1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1; ...
1 1 1 1 -1 -1 -1 -1 1 1 1 1];

line(X,Y,Z,'Color','b')
axis square equal
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See Also ccdesign
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Purpose Beta cumulative distribution function

Syntax p = betacdf(X,A,B)

Description p = betacdf(X,A,B) computes the beta cdf at each of the values in
X using the corresponding parameters in A and B. X, A, and B can be
vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array with the same
dimensions as the other inputs. The parameters in A and B must all be
positive, and the values in X must lie on the interval [0,1].

The beta cdf for a given value x and given pair of parameters a and b is

where B( · ) is the Beta function.

Examples x = 0.1:0.2:0.9;
a = 2;
b = 2;
p = betacdf(x,a,b)
p =

0.0280 0.2160 0.5000 0.7840 0.9720

a = [1 2 3];
p = betacdf(0.5,a,a)
p =

0.5000 0.5000 0.5000

See Also cdf | betapdf | betainv | betastat | betalike | betarnd | betafit

How To • “Beta Distribution” on page B-4
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Purpose Beta parameter estimates

Syntax phat = betafit(data)
[phat,pci] = betafit(data,alpha)

Description phat = betafit(data) computes the maximum likelihood estimates
of the beta distribution parameters a and b from the data in the
vector data and returns a column vector containing the a and b
estimates, where the beta cdf is given by

and B( · ) is the Beta function. The elements of data must lie in the
interval (0 1).

[phat,pci] = betafit(data,alpha) returns confidence intervals on
the a and b parameters in the 2-by-2 matrix pci. The first column of the
matrix contains the lower and upper confidence bounds for parameter a,
and the second column contains the confidence bounds for parameter b.
The optional input argument alpha is a value in the range [0 1]
specifying the width of the confidence intervals. By default, alpha is
0.05, which corresponds to 95% confidence intervals.

Examples This example generates 100 beta distributed observations. The true
a and b parameters are 4 and 3, respectively. Compare these to the
values returned in p by the beta fit. Note that the columns of ci both
bracket the true parameters.

data = betarnd(4,3,100,1);
[p,ci] = betafit(data,0.01)
p =

3.9010 2.6193
ci =

2.5244 1.7488
5.2776 3.4898
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References [1] Hahn, Gerald J., and S. S. Shapiro. Statistical Models in
Engineering. Hoboken, NJ: John Wiley & Sons, Inc., 1994, p. 95.

See Also mle | betapdf | betainv | betastat | betalike | betarnd | betacdf

How To • “Beta Distribution” on page B-4
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Purpose Beta inverse cumulative distribution function

Syntax X = betainv(P,A,B)

Description X = betainv(P,A,B) computes the inverse of the beta cdf with
parameters specified by A and B for the corresponding probabilities in P.
P, A, and B can be vectors, matrices, or multidimensional arrays that are
all the same size. A scalar input is expanded to a constant array with
the same dimensions as the other inputs. The parameters in A and B
must all be positive, and the values in P must lie on the interval [0, 1].

The inverse beta cdf for a given probability p and a given pair of
parameters a and b is

where

and B( · ) is the Beta function. Each element of output X is the value
whose cumulative probability under the beta cdf defined by the
corresponding parameters in A and B is specified by the corresponding
value in P.

Algorithm The betainv function uses Newton’s method with modifications to
constrain steps to the allowable range for x, i.e., [0 1].

Examples p = [0.01 0.5 0.99];
x = betainv(p,10,5)
x =

0.3726 0.6742 0.8981

According to this result, for a beta cdf with a = 10 and b = 5, a value
less than or equal to 0.3726 occurs with probability 0.01. Similarly,
values less than or equal to 0.6742 and 0.8981 occur with respective
probabilities 0.5 and 0.99.
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See Also icdf | betapdf | betafit | betainv | betastat | betalike | betarnd
| betacdf

How To • “Beta Distribution” on page B-4
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Purpose Beta negative log-likelihood

Syntax nlogL = betalike(params,data)
[nlogL,AVAR] = betalike(params,data)

Description nlogL = betalike(params,data) returns the negative of the beta
log-likelihood function for the beta parameters a and b specified in
vector params and the observations specified in the column vector data.
The length of nlogL is the length of data.

[nlogL,AVAR] = betalike(params,data) also returns AVAR, which is
the asymptotic variance-covariance matrix of the parameter estimates
if the values in params are the maximum likelihood estimates. AVAR is
the inverse of Fisher’s information matrix. The diagonal elements of
AVAR are the asymptotic variances of their respective parameters.

betalike is a utility function for maximum likelihood estimation of
the beta distribution. The likelihood assumes that all the elements in
the data sample are mutually independent. Since betalike returns
the negative beta log-likelihood function, minimizing betalike using
fminsearch is the same as maximizing the likelihood.

Examples This example continues the betafit example, which calculates
estimates of the beta parameters for some randomly generated beta
distributed data.

r = betarnd(4,3,100,1);
[nlogl,AVAR] = betalike(betafit(r),r)
nlogl =
-39.1615

AVAR =
0.3717 0.2644
0.2644 0.2414

See Also betapdf | betafit | betainv | betastat | betarnd | betacdf

How To • “Beta Distribution” on page B-4
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Purpose Beta probability density function

Syntax Y = betapdf(X,A,B)

Description Y = betapdf(X,A,B) computes the beta pdf at each of the values in
X using the corresponding parameters in A and B. X, A, and B can be
vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array with the same
dimensions of the other inputs. The parameters in A and B must all be
positive, and the values in X must lie on the interval [0, 1].

The beta probability density function for a given value x and given pair
of parameters a and b is

where B( · ) is the Beta function. The indicator function
ensures that only values of x in the range (0 1) have nonzero probability.
The uniform distribution on (0 1) is a degenerate case of the beta pdf
where a = 1 and b = 1.

A likelihood function is the pdf viewed as a function of the parameters.
Maximum likelihood estimators (MLEs) are the values of the
parameters that maximize the likelihood function for a fixed value of x.

Examples a = [0.5 1; 2 4]
a =

0.5000 1.0000
2.0000 4.0000

y = betapdf(0.5,a,a)
y =

0.6366 1.0000
1.5000 2.1875

See Also pdf | betafit | betainv | betastat | betalike | betarnd | betacdf

How To • “Beta Distribution” on page B-4
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Purpose Beta random numbers

Syntax R = betarnd(A,B)
R = betarnd(A,B,v)
R = betarnd(A,B,m,n)
R = betarnd(A,B,m,n,o,...)

Description R = betarnd(A,B) generates random numbers from the beta
distribution with parameters specified by A and B. A and B can be
vectors, matrices, or multidimensional arrays that have the same size,
which is also the size of R. A scalar input for A or B is expanded to a
constant array with the same dimensions as the other input.

R = betarnd(A,B,v) generates an array R of size v containing random
numbers from the beta distribution with parameters A and B, where v is
a row vector. If v is a 1-by-2 vector, R is a matrix with v(1) rows and
v(2) columns. If v is 1-by-n, R is an n-dimensional array.

R = betarnd(A,B,m,n) generates an m-by-n matrix containing random
numbers from the beta distribution with parameters A and B.

R = betarnd(A,B,m,n,o,...) generates an m-by-n-by-o-by-...
multidimensional array containing random numbers from the beta
distribution with parameters A and B.

Examples a = [1 1;2 2];
b = [1 2;1 2];

r = betarnd(a,b)
r =

0.6987 0.6139
0.9102 0.8067

r = betarnd(10,10,[1 5])
r =

0.5974 0.4777 0.5538 0.5465 0.6327

r = betarnd(4,2,2,3)
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r =
0.3943 0.6101 0.5768
0.5990 0.2760 0.5474

See Also random | betapdf | betafit | betainv | betastat | betalike |
betacdf

How To • “Beta Distribution” on page B-4
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Purpose Beta mean and variance

Syntax [M,V] = betastat(A,B)

Description [M,V] = betastat(A,B), with A>0 and B>0, returns the mean of and
variance for the beta distribution with parameters specified by A and B.
A and B can be vectors, matrices, or multidimensional arrays that have
the same size, which is also the size of M and V. A scalar input for A or B
is expanded to a constant array with the same dimensions as the other
input.

The mean of the beta distribution with parameters a and b is
and the variance is

Examples If parameters a and b are equal, the mean is 1/2.

a = 1:6;
[m,v] = betastat(a,a)
m =

0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
v =

0.0833 0.0500 0.0357 0.0278 0.0227 0.0192

See Also betapdf | betafit | betainv | betalike | betarnd | betacdf

How To • “Beta Distribution” on page B-4
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Purpose Bayes Information Criterion

Description The Bayes Information Criterion: 2*NlogL+m*log(n), where n is the
number of observations and m is the number of estimated parameters.
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Purpose Binomial cumulative distribution function

Syntax Y = binocdf(X,N,P)

Description Y = binocdf(X,N,P) computes a binomial cdf at each of the values
in X using the corresponding number of trials in N and probability of
success for each trial in P. X, N, and P can be vectors, matrices, or
multidimensional arrays that are all the same size. A scalar input is
expanded to a constant array with the same dimensions of the other
inputs. The values in N must all be positive integers, the values in X
must lie on the interval [0,N], and the values in P must lie on the
interval [0, 1].

The binomial cdf for a given value and a given pair of parameters
and is

The result, , is the probability of observing up to successes in
independent trials, where the probability of success in any given trial
is . The indicator function ensures that only adopts
values of .

Examples If a baseball team plays 162 games in a season and has a 50-50 chance
of winning any game, then the probability of that team winning more
than 100 games in a season is:

1 - binocdf(100,162,0.5)

The result is 0.001 (i.e., 1-0.999). If a team wins 100 or more games
in a season, this result suggests that it is likely that the team’s true
probability of winning any game is greater than 0.5.

See Also cdf | binopdf | binoinv | binostat | binofit | binornd

How To • “Binomial Distribution” on page B-7
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Purpose Binomial parameter estimates

Syntax phat = binofit(x,n)
[phat,pci] = binofit(x,n)
[phat,pci] = binofit(x,n,alpha)

Description phat = binofit(x,n) returns a maximum likelihood estimate
of the probability of success in a given binomial trial based on
the number of successes, x, observed in n independent trials. If
x = (x(1), x(2), ... x(k)) is a vector, binofit returns a
vector of the same size as x whose ith entry is the parameter
estimate for x(i). All k estimates are independent of each other. If
n = (n(1), n(2), ..., n(k)) is a vector of the same size as x, the
binomial fit, binofit, returns a vector whose ith entry is the parameter
estimate based on the number of successes x(i) in n(i) independent
trials. A scalar value for x or n is expanded to the same size as the
other input.

[phat,pci] = binofit(x,n) returns the probability estimate,
phat, and the 95% confidence intervals, pci. binofit uses the
Clopper-Pearson method to calculate confidence intervals.

[phat,pci] = binofit(x,n,alpha) returns the 100(1 - alpha)%
confidence intervals. For example, alpha = 0.01 yields 99% confidence
intervals.

Note binofit behaves differently than other Statistics Toolbox
functions that compute parameter estimates, in that it returns
independent estimates for each entry of x. By comparison, expfit
returns a single parameter estimate based on all the entries of x.

Unlike most other distribution fitting functions, the binofit function
treats its input x vector as a collection of measurements from separate
samples. If you want to treat x as a single sample and compute a single
parameter estimate for it, you can use binofit(sum(x),sum(n)) when
n is a vector, and binofit(sum(X),N*length(X)) when n is a scalar.
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Examples This example generates a binomial sample of 100 elements, where the
probability of success in a given trial is 0.6, and then estimates this
probability from the outcomes in the sample.

r = binornd(100,0.6);
[phat,pci] = binofit(r,100)
phat =

0.5800
pci =

0.4771 0.6780

The 95% confidence interval, pci, contains the true value, 0.6.

References [1] Johnson, N. L., S. Kotz, and A. W. Kemp. Univariate Discrete
Distributions. Hoboken, NJ: Wiley-Interscience, 1993.

See Also mle | binopdf | binocdf | binoinv | binostat | binornd

How To • “Binomial Distribution” on page B-7
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Purpose Binomial inverse cumulative distribution function

Syntax X = binoinv(Y,N,P)

Description X = binoinv(Y,N,P) returns the smallest integer X such that the
binomial cdf evaluated at X is equal to or exceeds Y. You can think of
Y as the probability of observing X successes in N independent trials
where P is the probability of success in each trial. Each X is a positive
integer less than or equal to N.

Y, N, and P can be vectors, matrices, or multidimensional arrays that
all have the same size. A scalar input is expanded to a constant array
with the same dimensions as the other inputs. The parameters in N
must be positive integers, and the values in both P and Y must lie on
the interval [0 1].

Examples If a baseball team has a 50-50 chance of winning any game, what is a
reasonable range of games this team might win over a season of 162
games?

binoinv([0.05 0.95],162,0.5)
ans =

71 91

This result means that in 90% of baseball seasons, a .500 team should
win between 71 and 91 games.

See Also icdf | binopdf | binocdf | binofit | binostat | binornd

How To • “Binomial Distribution” on page B-7
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Purpose Binomial probability density function

Syntax Y = binopdf(X,N,P)

Description Y = binopdf(X,N,P) computes the binomial pdf at each of the values
in X using the corresponding number of trials in N and probability of
success for each trial in P. Y, N, and P can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array with the same dimensions of the other
inputs.

The parameters in N must be positive integers, and the values in P must
lie on the interval [0, 1].

The binomial probability density function for a given value x and given
pair of parameters n and p is

where q = 1 – p. The result, y, is the probability of observing x successes
in n independent trials, where the probability of success in any given
trial is p. The indicator function I(0,1,...,n)(x) ensures that x only adopts
values of 0, 1, ..., n.

Examples A Quality Assurance inspector tests 200 circuit boards a day. If 2% of
the boards have defects, what is the probability that the inspector will
find no defective boards on any given day?

binopdf(0,200,0.02)
ans =

0.0176

What is the most likely number of defective boards the inspector will
find?

defects=0:200;
y = binopdf(defects,200,.02);
[x,i]=max(y);
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defects(i)
ans =

4

See Also pdf | binoinv | binocdf | binofit | binostat | binornd

How To • “Binomial Distribution” on page B-7
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Purpose Binomial random numbers

Syntax R = binornd(N,P)
R = binornd(N,P,v)
R = binornd(N,p,m,n)

Description R = binornd(N,P) generates random numbers from the binomial
distribution with parameters specified by the number of trials, N, and
probability of success for each trial, P. N and P can be vectors, matrices,
or multidimensional arrays that have the same size, which is also the
size of R. A scalar input for N or P is expanded to a constant array with
the same dimensions as the other input.

R = binornd(N,P,v) generates an array R of size v containing random
numbers from the binomial distribution with parameters N and P, where
v is a row vector. If v is a 1-by-2 vector, R is a matrix with v(1) rows
and v(2) columns. If v is 1-by-n, R is an n-dimensional array.

R = binornd(N,p,m,n) generates an m-by-n matrix containing random
numbers from the binomial distribution with parameters N and P.

Algorithm The binornd function uses the direct method using the definition of the
binomial distribution as a sum of Bernoulli random variables.

Examples n = 10:10:60;

r1 = binornd(n,1./n)
r1 =

2 1 0 1 1 2

r2 = binornd(n,1./n,[1 6])
r2 =

0 1 2 1 3 1

r3 = binornd(n,1./n,1,6)
r3 =

0 1 1 1 0 3
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See Also random | binoinv | binocdf | binofit | binostat | binopdf

How To • “Binomial Distribution” on page B-7
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Purpose Binomial mean and variance

Syntax [M,V] = binostat(N,P)

Description [M,V] = binostat(N,P) returns the mean of and variance for the
binomial distribution with parameters specified by the number of trials,
N, and probability of success for each trial, P. N and P can be vectors,
matrices, or multidimensional arrays that have the same size, which
is also the size of M and V. A scalar input for N or P is expanded to a
constant array with the same dimensions as the other input.

The mean of the binomial distribution with parameters n and p is np.
The variance is npq, where q = 1-p.

Examples n = logspace(1,5,5)
n =

10 100 1000 10000 100000

[m,v] = binostat(n,1./n)
m =

1 1 1 1 1
v =

0.9000 0.9900 0.9990 0.9999 1.0000

[m,v] = binostat(n,1/2)
m =

5 50 500 5000 50000
v =

1.0e+04 *
0.0003 0.0025 0.0250 0.2500 2.5000

See Also binoinv | binocdf | binofit | binornd | binopdf

How To • “Binomial Distribution” on page B-7
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Purpose Biplot

Syntax biplot(coefs)
biplot(coefs,...,'Scores',scores)
biplot(coefs,...,'VarLabels',varlabels)
biplot(coefs,...,'Scores',scores,'ObsLabels',obslabels)
biplot(coefs,...,'Positive',true)
biplot(coeffs,...,PropertyName,PropertyValue,...)
h = biplot(coefs,...)

Description biplot(coefs) creates a biplot of the coefficients in the matrix coefs.
The biplot is 2-D if coefs has two columns or 3-D if it has three
columns. coefs usually contains principal component coefficients
created with princomp, pcacov, or factor loadings estimated with
factoran. The axes in the biplot represent the principal components or
latent factors (columns of coefs), and the observed variables (rows of
coefs) are represented as vectors.

biplot(coefs,...,'Scores',scores) plots both coefs and the
scores in the matrix scores in the biplot. scores usually contains
principal component scores created with princomp or factor scores
estimated with factoran. Each observation (row of scores) is
represented as a point in the biplot.

A biplot allows you to visualize the magnitude and sign of each
variable’s contribution to the first two or three principal components,
and how each observation is represented in terms of those components.

biplot imposes a sign convention, forcing the element with largest
magnitude in each column of coefs to be positive. This flips some of the
vectors in coefs to the opposite direction, but often makes the plot easier
to read. Interpretation of the plot is unaffected, because changing the
sign of a coefficient vector does not change its meaning.

biplot(coefs,...,'VarLabels',varlabels) labels each vector
(variable) with the text in the character array or cell array varlabels.
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biplot(coefs,...,'Scores',scores,'ObsLabels',obslabels) uses
the text in the character array or cell array obslabels as observation
names when displaying data cursors.

biplot(coefs,...,'Positive',true) restricts the biplot
to the positive quadrant (in 2-D) or octant (in 3-D).
biplot(coefs,...,'Positive',false) (the default) makes
the biplot over the range +/- max(coefs(:)) for all coordinates.

biplot(coeffs,...,PropertyName,PropertyValue,...) sets
properties to the specified property values for all line graphics objects
created by biplot.

h = biplot(coefs,...) returns a column vector of handles to the
graphics objects created by biplot. The h contains, in order, handles
corresponding to variables (line handles, followed by marker handles,
followed by text handles), to observations (if present, marker handles
followed by text handles), and to the axis lines.

Examples Perform a principal component analysis of the data in carsmall.mat:

load carsmall
x = [Acceleration Displacement Horsepower MPG Weight];
x = x(all(~isnan(x),2),:);

[coefs,score] = princomp(zscore(x));

View the data and the original variables in the space of the first three
principal components:

vbls = {'Accel','Disp','HP','MPG','Wgt'};
biplot(coefs(:,1:3),'scores',score(:,1:3),...

'varlabels',vbls);
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See Also factoran, nnmf, princomp, pcacov, rotatefactors

18-69



bootci

Purpose Bootstrap confidence interval

Syntax ci = bootci(nboot,bootfun,...)
ci = bootci(nboot,{bootfun,...},'alpha',alpha)
ci = bootci(nboot,{bootfun,...},...,'type',type)
ci = bootci(nboot,{bootfun,...},...,'type','student',

'nbootstd',nbootstd)
ci = bootci(nboot,{bootfun,...},...,'type','student','stderr',

stderr)
ci = bootci(nboot,{bootfun,...},...,'Options',options)

Description ci = bootci(nboot,bootfun,...) computes the 95% bootstrap
confidence interval of the statistic computed by the function bootfun.
nboot is a positive integer indicating the number of bootstrap samples
used in the computation. bootfun is a function handle to a function
returning a scalar. Additional input arguments to bootci are passed
as data inputs to bootfun. Data inputs are scalars, column vectors,
or matrices; vectors and matrices must have the same number of
rows. Scalar data inputs are passed to bootfun unchanged. Rows of
non-scalar data inputs are used to create bootstrap samples. ci is a
vector containing the lower and upper bounds of the confidence interval.

ci = bootci(nboot,{bootfun,...},'alpha',alpha) computes the
100*(1-alpha)% bootstrap confidence interval of the statistic defined
by the function bootfun. bootfun and the data that bootci passes to it
are contained in a single cell array. alpha is a scalar between 0 and 1.
The default value of alpha is 0.05.

ci = bootci(nboot,{bootfun,...},...,'type',type) computes the
bootstrap confidence interval of the statistic defined by the function
bootfun. type is the confidence interval type, chosen from among the
following strings:

• 'normal' — Normal approximated interval with bootstrapped bias
and standard error.

• 'per' — Basic percentile method.

• 'cper' — Bias corrected percentile method.
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• 'bca' — Bias corrected and accelerated percentile method. This
is the default.

• 'student' — Studentized confidence interval.

ci =
bootci(nboot,{bootfun,...},...,'type','student','nbootstd',nbootstd)
computes the studentized bootstrap confidence interval of the statistic
defined by the function bootfun. The standard error of the
bootstrap statistics is estimated using bootstrap, with nbootstd
bootstrap data samples. nbootstd is a positive integer value.
The default value of nbootstd is 100.

ci =
bootci(nboot,{bootfun,...},...,'type','student','stderr',stderr)
computes the studentized bootstrap confidence interval of statistics
defined by the function bootfun. The standard error of the bootstrap
statistics is evaluated by the function stderr. stderr is a function
handle. stderr takes the same arguments as bootfun and returns the
standard error of the statistic computed by bootfun.

ci = bootci(nboot,{bootfun,...},...,'Options',options)
specifies options that govern the computation of bootstrap iterations.
One option requests that bootci perform bootstrap iterations using
multiple processors, if the Parallel Computing Toolbox is available. Two
options specify the random number streams to be used in bootstrap
resampling. This argument is a struct that you can create with a call to
statset. You can retrieve values of the individual fields with a call to
statget. Applicable statset parameters are:

• 'UseParallel' — If 'always' and if a matlabpool of the Parallel
Computing Toolbox is open, compute bootstrap iterations in parallel.
If the Parallel Computing Toolbox is not installed, or a matlabpool is
not open, computation occurs in serial mode. Default is 'never', or
serial computation.

• 'UseSubstreams' — If 'always', perform each bootstrap iteration
using a separate Substream of the random number generator (aka
Stream). This option is available only with RandStream types that
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support Substreams. Default is 'never', or do not use a different
Substream for each bootstrap iteration.

• 'Streams' — An object of the RandStream class,or a cell array
of RandStream objects. Defaults is an empty cell array. If you do
not supply a value for this parameter, bootci uses the default
RandStream on each MATLAB executable to generate boostrap
samples. Otherwise, bootci selects bootstrap samples using the
supplied RandStream object(s).

If you select 'UseSubstreams', the Streams parameter, if present,
must be a scalar RandStream object.

If you do not select 'UseSubstreams', then the Streams parameter,
if present, must match the number of processors used for the
computation. For serial computation, the Streams parameter must
be a scalar.

If computation is distributed ('UseParallel' is 'always' and a
matlabpool is open), then the Streams parameter must be a cell
array of the same length as the matlabpool size. In this case, each
element of the cell array supplies the random number generator for
bootstrap sampling on one of the parallel workers.

Examples Compute the confidence interval for the capability index in statistical
process control:

y = normrnd(1,1,30,1); % Simulated process data

LSL = -3; USL = 3; % Process specifications

capable = @(x)(USL-LSL)./(6* std(x)); % Process capability

ci = bootci(2000,capable,y) % BCa confidence interval

ci =

0.8122

1.2657

sci = bootci(2000,{capable,y},'type','student') % Studentized ci

sci =

0.7739

1.2707

18-72



bootci

See Also bootstrp, jackknife
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Purpose Bootstrap sampling

Syntax bootstat = bootstrp(nboot,bootfun,d1,...)
[bootstat,bootsam] = bootstrp(...)
bootstat = bootstrp(...,'Options',options)

Description bootstat = bootstrp(nboot,bootfun,d1,...) draws nboot
bootstrap data samples, computes statistics on each sample using
bootfun, and returns the results in the matrix bootstat. nboot must
be a positive integer. bootfun is a function handle specified with
@. Each row of bootstat contains the results of applying bootfun to
one bootstrap sample. If bootfun returns a matrix or array, then this
output is converted to a row vector for storage in bootstat.

The third and later input arguments (d1,...) are data (scalars, column
vectors, or matrices) used to create inputs to bootfun. bootstrp creates
each bootstrap sample by sampling with replacement from the rows of
the non-scalar data arguments (these must have the same number of
rows). bootfun accepts scalar data unchanged.

[bootstat,bootsam] = bootstrp(...) returns an n-by-nboot matrix
of bootstrap indices, bootsam. Each column in bootsam contains indices
of the values that were drawn from the original data sets to constitute
the corresponding bootstrap sample. For example, if d1,... each
contain 16 values, and nboot = 4, then bootsam is a 16-by-4 matrix.
The first column contains the indices of the 16 values drawn from
d1,..., for the first of the four bootstrap samples, the second column
contains the indices for the second of the four bootstrap samples, and so
on. (The bootstrap indices are the same for all input data sets.) To get
the output samples bootsam without applying a function, set bootfun
to empty ([]).

bootstat = bootstrp(...,'Options',options) specifies options that
govern the computation of bootstrap iterations. One option requests that
bootstrap iterations use multiple processors, if the Parallel Computing
Toolbox is available. Two options specify the random number streams
used in bootstrap resampling. This argument is a struct you can create
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with a call to statset. You can retrieve values of the individual fields
with a call to statget. Applicable statset parameters are:

• 'UseParallel' — If 'always' and if a matlabpool of the Parallel
Computing Toolbox is open, compute bootstrap iterations in parallel.
If the Parallel Computing Toolbox is not installed, or a matlabpool is
not open, computation occurs in serial mode. Default is 'never', or
serial computation.

• 'UseSubstreams' — If 'always', perform each bootstrap iteration
using a separate Substream of the random number generator (aka
Stream). This option is available only with RandStream types that
support Substreams. Default is 'never', or do not use a different
Substream for each bootstrap iteration.

• 'Streams' — An object of the RandStream class,or a cell array
of RandStream objects. Defaults is an empty cell array. If you do
not supply a value for this parameter, bootci uses the default
RandStream on each MATLAB executable to generate boostrap
samples. Otherwise, bootci selects bootstrap samples using the
supplied RandStream object(s).

If you select 'UseSubstreams', the Streams parameter, if present,
must be a scalar RandStream object.

If you do not select 'UseSubstreams', then the Streams parameter,
if present, must match the number of processors used for the
computation. For serial computation, the Streams parameter must
be a scalar.

If computation is distributed ('UseParallel' is 'always' and a
matlabpool is open), then the Streams parameter must be a cell
array of the same length as the matlabpool size. In this case, each
element of the cell array supplies the random number generator for
bootstrap sampling on one of the parallel workers.

Examples Bootstrapping a Correlation Coefficient Standard Error

Load a data set containing the LSAT scores and law-school GPA for 15
students. These 15 data points are resampled to create 1000 different

18-75



bootstrp

data sets, and the correlation between the two variables is computed
for each data set.

load lawdata
[bootstat,bootsam] = bootstrp(1000,@corr,lsat,gpa);

Display the first 5 bootstrapped correlation coefficients.

bootstat(1:5,:)
ans =

0.6600
0.7969
0.5807
0.8766
0.9197

Display the indices of the data selected for the first 5 bootstrap samples.

bootsam(:,1:5)
ans =

9 8 15 11 15
14 7 6 7 14
4 6 10 3 11
3 10 11 9 2

15 4 13 4 14
9 4 5 2 10
8 5 4 3 13
1 9 1 15 11

10 8 6 12 3
1 4 5 2 8
1 1 10 6 2
3 10 15 10 8

14 6 10 3 8
13 12 1 2 4
12 6 4 9 8

hist(bootstat)
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The histogram shows the variation of the correlation coefficient across
all the bootstrap samples. The sample minimum is positive, indicating
that the relationship between LSAT score and GPA is not accidental.

Finally, compute a bootstrap standard of error for the estimated
correlation coefficient.

se = std(bootstat)
se =

0.1327
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Estimating the Density of Bootstrapped Statistic

Compute a sample of 100 bootstrapped means of random samples
taken from the vector Y, and plot an estimate of the density of these
bootstrapped means:

y = exprnd(5,100,1);
m = bootstrp(100,@mean,y);
[fi,xi] = ksdensity(m);
plot(xi,fi);
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Bootstrapping More Than One Statistic

Compute a sample of 100 bootstrapped means and standard deviations
of random samples taken from the vector Y, and plot the bootstrap
estimate pairs:

y = exprnd(5,100,1);
stats = bootstrp(100,@(x)[mean(x) std(x)],y);
plot(stats(:,1),stats(:,2),'o')
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Bootstrapping a Regression Model

Estimate the standard errors for a coefficient vector in a linear
regression by bootstrapping residuals:

load hald
x = [ones(size(heat)),ingredients];
y = heat;
b = regress(y,x);
yfit = x*b;
resid = y - yfit;
se = std(bootstrp(...

1000,@(bootr)regress(yfit+bootr,x),resid));

See Also hist, ksdensity,parfor,random, randsample, RandStream, statget,
statset
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Purpose Box plot

Syntax boxplot(X)
boxplot(X,G)
boxplot(axes,X,...)
boxplot(...,param1,val1,param2,val2,...)

Description boxplot(X) produces a box plot of the data in X. If X is a matrix, there is
one box per column; if X is a vector, there is just one box. On each box,
the central mark is the median, the edges of the box are the 25th and
75th percentiles, the whiskers extend to the most extreme data points
not considered outliers, and outliers are plotted individually.

boxplot(X,G) specifies one or more grouping variables G, producing
a separate box for each set of X values sharing the same G value or
values (see “Grouped Data” on page 2-33). Grouping variables must
have one row per element of X, or one row per column of X. Specify a
single grouping variable in G using a vector, a character array, a cell
array of strings, or a vector categorical array; specify multiple grouping
variables in G using a cell array of these variable types, such as {G1 G2
G3}, or by using a matrix. If multiple grouping variables are used, they
must all be the same length. Groups that contain a NaN value or an
empty string in a grouping variable are omitted, and are not counted in
the number of groups considered by other parameters.

By default, character and string grouping variables are sorted in the
order they initially appear in the data, categorical grouping variables
are sorted by the order of their levels, and numeric grouping variables
are sorted in numeric order. To control the order of groups, do one of
the following:

• Use categorical variables in G and specify the order of their levels.

• Use the 'grouporder' parameter described below.

• Pre-sort your data.

boxplot(axes,X,...) creates the plot in the axes with handle axes.
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boxplot(...,param1,val1,param2,val2,...) specifies optional
parameter name/value pairs, as described in the following table.

Parameter Values

'plotstyle' • 'traditional' — Traditional box style.
This is the default.

• 'compact' — Box style designed for plots
with many groups. This style changes the
defaults for some other parameters, as
described in the following table.

'boxstyle' • 'outline' — Draws an unfilled box with
dashed whiskers. This is the default.

• 'filled'— Draws a narrow filled box with
lines for whiskers.

'colorgroup' One or more grouping variables, of the same
type as permitted for G, specifying that the
box color should change when the specified
variables change. The default is [] for no box
color change.

'colors' Colors for boxes, specified as a single color
(such as 'r' or [1 0 0]) or multiple colors
(such as 'rgbm' or a three-column matrix of
RGB values). The sequence is replicated or
truncated as required, so for example 'rb'
gives boxes that alternate in color. The default
when no 'colorgroup' is specified is to use
the same color scheme for all boxes. The
default when 'colorgroup' is specified is a
modified hsv colormap.

'datalim' A two-element vector containing lower and
upper limits, used by 'extrememode' to
determine which points are extreme. The
default is [-Inf Inf].
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Parameter Values

'extrememode' • 'clip'—Moves data outside the 'datalim'
limits to the limit. This is the default.

• 'compress' — Evenly distributes data
outside the 'datalim' limits in a region
just outside the limit, retaining the relative
order of the points.

A dotted line marks the limit if any points
are outside it, and two gray lines mark
the compression region if any points are
compressed. Values at +/–Inf can be clipped
or compressed, but NaN values still do not
appear on the plot. Box notches are drawn to
scale and may extend beyond the bounds if the
median is inside the limit; they are not drawn
if the median is outside the limits.

'factordirection' • 'data' — Arranges factors with the first
value next to the origin. This is the default.

• 'list'— Arranges factors left-to-right if on
the x axis or top-to-bottom if on the y axis.

• 'auto' — Uses 'data' for numeric
grouping variables and 'list' for strings.

'fullfactors' • 'off'— One group for each unique row of
G. This is the default.

• 'on' — Create a group for each possible
combination of group variable values,
including combinations that do not appear
in the data.
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Parameter Values

'factorseparator' Specifies which factors should have their
values separated by a grid line. The value
may be 'auto' or a vector of grouping variable
numbers. For example, [1 2] adds a separator
line when the first or second grouping variable
changes value. 'auto' is [] for one grouping
variable and [1] for two or more grouping
variables. The default is [].

'factorgap' Specifies an extra gap to leave between boxes
when the corresponding grouping factor
changes value, expressed as a percentage of
the width of the plot. For example, with [3 1],
the gap is 3% of the width of the plot between
groups with different values of the first
grouping variable, and 1% between groups
with the same value of the first grouping
variable but different values for the second.
'auto' specifies that boxplot should choose a
gap automatically. The default is [].

'grouporder' Order of groups for plotting, specified as a
cell array of strings. With multiple grouping
variables, separate values within each string
with a comma. Using categorical arrays as
grouping variables is an easier way to control
the order of the boxes. The default is [], which
does not reorder the boxes.

'jitter' Maximum distance d to displace outliers along
the factor axis by a uniform random amount, in
order to make duplicate points visible. A d of
1 makes the jitter regions just touch between
the closest adjacent groups. The default is 0.
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Parameter Values

'labels' A character array, cell array of strings, or
numeric vector of box labels. There may be
one label per group or one label per X value.
Multiple label variables may be specified via a
numeric matrix or a cell array containing any
of these types.

Tip To remove labels from a plot, use the
following command:

set(gca,'XTickLabel',{' '})

'labelorientation' • 'inline'—Rotates the labels to be vertical.
This is the default when 'plotstyle' is
'compact'.

• 'horizontal' — Leaves the labels
horizontal. This is the default when
'plotstyle' has the default value of
'traditional'.

When the labels are on the y axis, both settings
leave the labels horizontal.

18-85



boxplot

Parameter Values

'labelverbosity' • 'all' — Displays every label. This is the
default.

• 'minor'— Displays a label for a factor only
when that factor has a different value from
the previous group.

• 'majorminor' — Displays a label for a
factor when that factor or any factor major
to it has a different value from the previous
group.

'medianstyle' • 'line'—Draws a line for the median. This
is the default.

• 'target' — Draws a black dot inside a
white circle for the median.

'notch' • 'on' — Draws comparison intervals
using notches when 'plotstyle' is
'traditional', or triangular markers
when 'plotstyle' is 'compact'.

• 'marker' — Draws comparison intervals
using triangular markers.

• 'off'— Omits notches. This is the default.

Two medians are significantly different at the
5% significance level if their intervals do not
overlap. Interval endpoints are the extremes
of the notches or the centers of the triangular
markers. When the sample size is small,
notches may extend beyond the end of the box.

'orientation' • 'vertical'— Plots X on the y axis. This is
the default.

• 'horizontal'— Plots X on the x axis.
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Parameter Values

'outliersize' Size of the marker used for outliers, in points.
The default is 6 (6/72 inch).

'positions' Box positions specified as a numeric vector
with one entry per group or X value. The
default is 1:numGroups, where numGroups is
the number of groups.

'symbol' Symbol and color to use for outliers, using
the same values as the LineSpec parameter
in plot. The default is 'r+'. If the symbol
is omitted then the outliers are invisible; if
the color is omitted then the outliers have the
same color as their corresponding box.

'whisker' Maximum whisker length w. The default is a
w of 1.5. Points are drawn as outliers if they
are larger than q3 + w(q3 – q1) or smaller than
q1 – w(q3 – q1), where q1 and q3 are the 25th
and 75th percentiles, respectively. The default
of 1.5 corresponds to approximately +/–2.7σ
and 99.3 coverage if the data are normally
distributed. The plotted whisker extends to the
adjacent value, which is the most extreme data
value that is not an outlier. Set 'whisker' to
0 to give no whiskers and to make every point
outside of q1 and q3 an outlier.

'widths' A scalar or vector of box widths for when
'boxstyle' is 'outline'. The default is half
of the minimum separation between boxes,
which is 0.5 when the 'positions' argument
takes its default value. The list of values is
replicated or truncated as necessary.

When the 'plotstyle' parameter takes the value 'compact', the
default values for other parameters are the listed in the following table.

18-87



boxplot

Parameter Default when plotstyle is compact

'boxstyle' 'filled'

'factorseparator' 'auto'

'factorgap' 'auto'

'jitter' 0.5

'labelorientation' 'inline'

'labelverbosity' 'majorminor'

'medianstyle' 'target'

'outliersize' 4

'symbol' 'o'

You can see data values and group names using the data cursor in the
figure window. The cursor shows the original values of any points
affected by the 'datalim' parameter. You can label the group to which
an outlier belongs using the gname function.

To modify graphics properties of a box plot component, use findobj
with the 'Tag' property to find the component’s handle. 'Tag' values
for box plot components depend on parameter settings, and are listed
in the table below.

Parameter
Settings

Tag Values

All settings • 'Box'

• 'Outliers'

When 'plotstyle'
is 'traditional'

• 'Median'

• 'Upper Whisker'

• 'Lower Whisker'

• 'Upper Adjacent Value'

• 'Lower Adjacent Value'
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Parameter
Settings

Tag Values

When 'plotstyle'
is 'compact'

• 'Whisker'

• 'MedianOuter'

• 'MedianInner'

When 'notch' is
'marker'

• 'NotchLo'

• 'NotchHi'

Examples Example 1

Create a box plot of car mileage, grouped by country:

load carsmall
boxplot(MPG,Origin)
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Example 2

Create notched box plots for two groups of sample data:

x1 = normrnd(5,1,100,1);
x2 = normrnd(6,1,100,1);
boxplot([x1,x2],'notch','on')
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The difference between the medians of the two groups is
approximately 1. Since the notches in the box plot do not overlap, you
can conclude, with 95% confidence, that the true medians do differ.

The following figure shows the box plot for the same data with the
length of the whiskers specified as 1.0 times the interquartile range.
Points beyond the whiskers are displayed using +.

boxplot([x1,x2],'notch','on','whisker',1)
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Example 3

A 'plotstyle' of 'compact' is useful for large numbers of groups:

X = randn(100,25);

subplot(2,1,1)
boxplot(X)

subplot(2,1,2)
boxplot(X,'plotstyle','compact')
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References [1] McGill, R., J. W. Tukey, and W. A. Larsen. “Variations of Boxplots.”
The American Statistician. Vol. 32, No. 1, 1978, pp. 12–16.

[2] Velleman, P.F., and D.C. Hoaglin. Applications, Basics, and
Computing of Exploratory Data Analysis. Pacific Grove, CA: Duxbury
Press, 1981.

[3] Nelson, L. S. “Evaluating Overlapping Confidence Intervals.”
Journal of Quality Technology. Vol. 21, 1989, pp. 140–141.
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See Also “Grouped Data” on page 2-33

anova1, axes_props, kruskalwallis, multcompare
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Purpose Piecewise distribution boundaries

Syntax [p,q] = boundary(obj)
[p,q] = boundary(obj,i)

Description [p,q] = boundary(obj) returns the boundary points between
segments of the piecewise distribution object obj. p is a vector of
cumulative probabilities at each boundary. q is a vector of quantiles at
each boundary.

[p,q] = boundary(obj,i) returns p and q for the ith boundary.

Examples Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and
0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
[p,q] = boundary(obj)
p =

0.1000
0.9000

q =
-1.7766
1.8432

See Also paretotails, cdf, icdf, nsegments
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Purpose Candidate set row exchange

Syntax treatments = candexch(C,nruns)
treatments = candexch(...,param1,val1,param2,val2,...)

Description treatments = candexch(C,nruns) uses a row-exchange algorithm
to select treatments from a candidate design matrix C to produce a
D-optimal design with nruns runs. The columns of C represent model
terms evaluated at candidate treatments. treatments is a vector of
length nruns giving indices of the rows in C used in the D-optimal
design. The function selects a starting design at random.

treatments = candexch(...,param1,val1,param2,val2,...)
specifies additional parameter/value pairs for the design. Valid
parameters and their values are listed in the following table.

Parameter Value

'display' Either 'on' or 'off' to control display of the
iteration counter. The default is 'on'.

'init' Initial design as an nruns-by-p matrix, where p is
the number of model terms. The default is a random
subset of the rows of C.

'maxiter' Maximum number of iterations. The default is 10.

'start' A matrix of treatments as a nobs-by-pmatrix, where
p is the number of model terms, specifying a set of
nobs fixed treatments to include in the design. The
default matrix is empty. candexch finds nruns-nobs
additional rows to add to the 'start' design. The
parameter provides the same functionality as the
daugment function, using a row-exchange algorithm
rather than a coordinate-exchange algorithm.

'tries' Number of times to try to generate a design from
a new starting point. The algorithm uses random
points for each try, except possibly the first. The
default is 1.
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Note The rowexch function automatically generates a candidate set
using candgen, and then creates a D-optimal design from that candidate
set using candexch. Call candexch separately to specify your own
candidate set to the row-exchange algorithm.

Examples The following example uses rowexch to generate a five-run design for a
two-factor pure quadratic model using a candidate set that is produced
internally:

dRE1 = rowexch(2,5,'purequadratic','tries',10)
dRE1 =

-1 1
0 0
1 -1
1 0
1 1

The same thing can be done using candgen and candexch in sequence:

[dC,C] = candgen(2,'purequadratic') % Candidate set
dC =

-1 -1
0 -1
1 -1

-1 0
0 0
1 0

-1 1
0 1
1 1

C =
1 -1 -1 1 1
1 0 -1 0 1
1 1 -1 1 1
1 -1 0 1 0
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1 0 0 0 0
1 1 0 1 0
1 -1 1 1 1
1 0 1 0 1
1 1 1 1 1

treatments = candexch(C,5,'tries',10) % D-opt subset
treatments =

2
1
7
3
4

dRE2 = dC(treatments,:) % Display design
dRE2 =

0 -1
-1 -1
-1 1
1 -1

-1 0

You can replace C in this example with a design matrix evaluated
at your own candidate set. For example, suppose your experiment
is constrained so that the two factors cannot have extreme settings
simultaneously. The following produces a restricted candidate set:

constraint = sum(abs(dC),2) < 2; % Feasible treatments
my_dC = dC(constraint,:)
my_dC =

0 -1
-1 0
0 0
1 0
0 1

Use the x2fx function to convert the candidate set to a design matrix:

my_C = x2fx(my_dC,'purequadratic')
my_C =
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1 0 -1 0 1
1 -1 0 1 0
1 0 0 0 0
1 1 0 1 0
1 0 1 0 1

Find the required design in the same manner:

my_treatments = candexch(my_C,5,'tries',10) % D-opt subset
my_treatments =

2
4
5
1
3

my_dRE = my_dC(my_treatments,:) % Display design
my_dRE =

-1 0
1 0
0 1
0 -1
0 0

See Also candgen, rowexch, cordexch, daugment, x2fx
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Purpose Candidate set generation

Syntax dC = candgen(nfactors,model)
[dC,C] = candgen(nfactors,model)
[...] = candgen(...,param1,val1,param2,val2,...)

Description dC = candgen(nfactors,model) generates a candidate set dC of
treatments appropriate for estimating the parameters in the model
with nfactors factors. dC has nfactors columns and one row for each
candidate treatment. model is one of the following strings:

• 'linear'— Constant and linear terms. This is the default.

• 'interaction'— Constant, linear, and interaction terms

• 'quadratic'— Constant, linear, interaction, and squared terms

• 'purequadratic'— Constant, linear, and squared terms

Alternatively, model can be a matrix specifying polynomial terms of
arbitrary order. In this case, model should have one column for each
factor and one row for each term in the model. The entries in any row
of model are powers for the factors in the columns. For example, if a
model has factors X1, X2, and X3, then a row [0 1 2] in model specifies
the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model
specifies a constant term, which can be omitted.

[dC,C] = candgen(nfactors,model) also returns the design matrix C
evaluated at the treatments in dC. The order of the columns of C for a
full quadratic model with n terms is:

1 The constant term

2 The linear terms in order 1, 2, ..., n

3 The interaction terms in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n–1, n)

4 The squared terms in order 1, 2, ..., n
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Other models use a subset of these terms, in the same order.

Pass C to candexch to generate a D-optimal design using a
coordinate-exchange algorithm.

[...] = candgen(...,param1,val1,param2,val2,...) specifies
additional parameter/value pairs for the design. Valid parameters and
their values are listed in the following table.

Parameter Value

'bounds' Lower and upper bounds for each factor, specified as
a 2-by-nfactors matrix. Alternatively, this value
can be a cell array containing nfactors elements,
each element specifying the vector of allowable
values for the corresponding factor.

'categorical' Indices of categorical predictors.

'levels' Vector of number of levels for each factor.

Note The rowexch function automatically generates a candidate set
using candgen, and then creates a D-optimal design from that candidate
set using candexch. Call candexch separately to specify your own
candidate set to the row-exchange algorithm.

Examples The following example uses rowexch to generate a five-run design for a
two-factor pure quadratic model using a candidate set that is produced
internally:

dRE1 = rowexch(2,5,'purequadratic','tries',10)
dRE1 =

-1 1
0 0
1 -1
1 0
1 1
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The same thing can be done using candgen and candexch in sequence:

[dC,C] = candgen(2,'purequadratic') % Candidate set, C
dC =

-1 -1
0 -1
1 -1

-1 0
0 0
1 0

-1 1
0 1
1 1

C =
1 -1 -1 1 1
1 0 -1 0 1
1 1 -1 1 1
1 -1 0 1 0
1 0 0 0 0
1 1 0 1 0
1 -1 1 1 1
1 0 1 0 1
1 1 1 1 1

treatments = candexch(C,5,'tries',10) % Find D-opt subset
treatments =

2
1
7
3
4

dRE2 = dC(treatments,:) % Display design
dRE2 =

0 -1
-1 -1
-1 1
1 -1

-1 0
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See Also candexch, rowexch
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Purpose Canonical correlation

Syntax [A,B] = canoncorr(X,Y)
[A,B,r] = canoncorr(X,Y)
[A,B,r,U,V] = canoncorr(X,Y)
[A,B,r,U,V,stats] = canoncorr(X,Y)

Description [A,B] = canoncorr(X,Y) computes the sample canonical coefficients
for the n-by-d1 and n-by-d2 data matrices X and Y. X and Y must have
the same number of observations (rows) but can have different numbers
of variables (columns). A and B are d1-by-d and d2-by-d matrices, where
d = min(rank(X),rank(Y)). The jth columns of A and B contain the
canonical coefficients, i.e., the linear combination of variables making
up the jth canonical variable for X and Y, respectively. Columns of
A and B are scaled to make the covariance matrices of the canonical
variables the identity matrix (see U and V below). If X or Y is less than
full rank, canoncorr gives a warning and returns zeros in the rows of A
or B corresponding to dependent columns of X or Y.

[A,B,r] = canoncorr(X,Y) also returns a 1-by-d vector containing the
sample canonical correlations. The jth element of r is the correlation
between the jth columns of U and V (see below).

[A,B,r,U,V] = canoncorr(X,Y) also returns the canonical variables,
scores. U and V are n-by-d matrices computed as

U = (X-repmat(mean(X),N,1))*A
V = (Y-repmat(mean(Y),N,1))*B

[A,B,r,U,V,stats] = canoncorr(X,Y) also returns a structure
stats containing information relating to the sequence of d null

hypotheses , that the (k+1)st through dth correlations are all zero,
for k = 0:(d-1). stats contains seven fields, each a 1-by-d vector with
elements corresponding to the values of k, as described in the following
table:
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Field Description

Wilks Wilks’ lambda (likelihood ratio) statistic

chisq
Bartlett’s approximate chi-squared statistic for
with Lawley’s modification

pChisq Right-tail significance level for chisq

F
Rao’s approximate F statistic for

pF Right-tail significance level for F

df1 Degrees of freedom for the chi-squared statistic, and
the numerator degrees of freedom for the F statistic

df2 Denominator degrees of freedom for the F statistic

Examples load carbig;
X = [Displacement Horsepower Weight Acceleration MPG];
nans = sum(isnan(X),2) > 0;
[A B r U V] = canoncorr(X(~nans,1:3),X(~nans,4:5));

plot(U(:,1),V(:,1),'.')
xlabel('0.0025*Disp+0.020*HP-0.000025*Wgt')
ylabel('-0.17*Accel-0.092*MPG')
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References [1] Krzanowski, W. J. Principles of Multivariate Analysis: A User’s
Perspective. New York: Oxford University Press, 1988.

[2] Seber, G. A. F.Multivariate Observations. Hoboken, NJ: John Wiley
& Sons, Inc., 1984.

See Also manova1, princomp
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Purpose Process capability indices

Syntax S = capability(data,specs)

Description S = capability(data,specs) estimates capability indices for
measurements in data given the specifications in specs. data can be
either a vector or a matrix of measurements. If data is a matrix, indices
are computed for the columns. specs can be either a two-element vector
of the form [L,U] containing lower and upper specification limits, or (if
data is a matrix) a two-row matrix with the same number of columns as
data. If there is no lower bound, use -Inf as the first element of specs.
If there is no upper bound, use Inf as the second element of specs.

The output S is a structure with the following fields:

• mu — Sample mean

• sigma — Sample standard deviation

• P — Estimated probability of being within limits

• Pl — Estimated probability of being below L

• Pu — Estimated probability of being above U

• Cp — (U-L)/(6*sigma)

• Cpl — (mu-L)./(3.*sigma)

• Cpu — (U-mu)./(3.*sigma)

• Cpk — min(Cpl,Cpu)

Indices are computed under the assumption that data values are
independent samples from a normal population with constant mean
and variance.

Indices divide a “specification width” (between specification limits) by
a “process width” (between control limits). Higher ratios indicate a
process with fewer measurements outside of specification.
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Examples Simulate a sample from a process with a mean of 3 and a standard
deviation of 0.005:

data = normrnd(3,0.005,100,1);

Compute capability indices if the process has an upper specification
limit of 3.01 and a lower specification limit of 2.99:

S = capability(data,[2.99 3.01])
S =

mu: 3.0006
sigma: 0.0047

P: 0.9669
Pl: 0.0116
Pu: 0.0215
Cp: 0.7156

Cpl: 0.7567
Cpu: 0.6744
Cpk: 0.6744

Visualize the specification and process widths:

capaplot(data,[2.99 3.01]);
grid on
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References [1] Montgomery, D. Introduction to Statistical Quality Control.
Hoboken, NJ: John Wiley & Sons, 1991, pp. 369–374.

See Also capaplot, histfit
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Purpose Process capability plot

Syntax p = capaplot(data,specs)
[p,h] = capaplot(data,specs)

Description p = capaplot(data,specs) estimates the mean of and variance for
the observations in input vector data, and plots the pdf of the resulting
T distribution. The observations in data are assumed to be normally
distributed. The output, p, is the probability that a new observation
from the estimated distribution will fall within the range specified by
the two-element vector specs. The portion of the distribution between
the lower and upper bounds specified in specs is shaded in the plot.

[p,h] = capaplot(data,specs) additionally returns handles to the
plot elements in h.

capaplot treats NaN values in data as missing, and ignores them.

Examples Simulate a sample from a process with a mean of 3 and a standard
deviation of 0.005:

data = normrnd(3,0.005,100,1);

Compute capability indices if the process has an upper specification
limit of 3.01 and a lower specification limit of 2.99:

S = capability(data,[2.99 3.01])
S =

mu: 3.0006
sigma: 0.0047

P: 0.9669
Pl: 0.0116
Pu: 0.0215
Cp: 0.7156

Cpl: 0.7567
Cpu: 0.6744
Cpk: 0.6744
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Visualize the specification and process widths:

capaplot(data,[2.99 3.01]);
grid on

See Also capability, histfit
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Purpose Read case names from file

Syntax names = caseread(filename)
names = caseread

Description names = caseread(filename) reads the contents of filename and
returns a string matrix of names. filename is the name of a file in
the current folder, or the complete path name of any file elsewhere.
caseread treats each line as a separate case.

names = caseread displays the Select File to Open dialog box for
interactive selection of the input file.

Examples Read the file months.dat created using the casewrite function.

type months.dat

January
February
March
April
May

names = caseread('months.dat')
names =
January
February
March
April
May

See Also casewrite, gname, tdfread, tblread
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Purpose Write case names to file

Syntax casewrite(strmat,filename)
casewrite(strmat)

Description casewrite(strmat,filename) writes the contents of string matrix
strmat to filename. Each row of strmat represents one case name.
filename is the name of a file in the current folder, or the complete
path name of any file elsewhere. casewrite writes each name to a
separate line in filename.

casewrite(strmat) displays the Select File to Write dialog box for
interactive specification of the output file.

Examples strmat = char('January','February',...
'March','April','May')

strmat =
January
February
March
April
May

casewrite(strmat,'months.dat')
type months.dat

January
February
March
April
May

See Also gname, caseread, tblwrite, tdfread
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Purpose Concatenate categorical arrays

Syntax c = cat(dim,A,B,...)

Description c = cat(dim,A,B,...) concatenates the categorical arrays A,B,...
along dimension dim. All inputs must have the same size except along
dimension dim. The set of categorical levels for C is the sorted union of
the sets of levels of the inputs, as determined by their labels.

See Also cat (MATLAB function), horzcat (categorical class method), vertcat
(categorical class method)

18-114



categorical class

Purpose Arrays for categorical data

Description Categorical arrays store data with values in a discrete set of levels.
Each level is meant to capture a single, defining characteristic of an
observation. If you do not encode ordering in the levels, the data and
the array are nominal. If you do encode an ordering, the data and the
array are ordinal.

Construction categorical Create categorical array

Methods addlevels Add levels to categorical array

cat Concatenate categorical arrays

cellstr Convert categorical array to cell
array of strings

char Convert categorical array to
character array

circshift Shift categorical array circularly

ctranspose Transpose categorical matrix

disp Display categorical array

display Display categorical array

double Convert categorical array to
double array

droplevels Drop levels

end Last index in indexing expression
for categorical array

flipdim Flip categorical array along
specified dimension
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fliplr Flip categorical matrix in
left/right direction

flipud Flip categorical matrix in
up/down direction

getlabels Access categorical array labels

getlevels Get categorical array levels

horzcat Horizontal concatenation for
categorical arrays

int16 Convert categorical array to
signed 16-bit integer array

int32 Convert categorical array to
signed 32-bit integer array

int64 Convert categorical array to
signed 64-bit integer array

int8 Convert categorical array to
signed 8-bit integer array

intersect Set intersection for categorical
arrays

ipermute Inverse permute dimensions of
categorical array

isempty True for empty categorical array

isequal True if categorical arrays are
equal

islevel Test for levels

ismember True for elements of categorical
array in set

isscalar True if categorical array is scalar

isundefined Test for undefined elements

isvector True if categorical array is vector
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length Length of categorical array

levelcounts Element counts by level

ndims Number of dimensions of
categorical array

numel Number of elements in categorical
array

permute Permute dimensions of
categorical array

reorderlevels Reorder levels

repmat Replicate and tile categorical
array

reshape Resize categorical array

rot90 Rotate categorical matrix 90
degrees

setdiff Set difference for categorical
arrays

setlabels Label levels

setxor Set exclusive-or for categorical
arrays

shiftdim Shift dimensions of categorical
array

single Convert categorical array to
single array

size Size of categorical array

squeeze Squeeze singleton dimensions
from categorical array

subsasgn Subscripted assignment for
categorical array

18-117



categorical class

subsindex Subscript index for categorical
array

subsref Subscripted reference for
categorical array

summary Summary statistics for categorical
array

times Product of categorical arrays

transpose Transpose categorical matrix

uint16 Convert categorical array to
unsigned 16-bit integers

uint32 Convert categorical array to
unsigned 32-bit integers

uint64 Convert categorical array to
unsigned 64-bit integers

uint8 Convert categorical array to
unsigned 8-bit integers

union Set union for categorical arrays

unique Unique values in categorical
array

vertcat Vertical concatenation for
categorical arrays

Properties labels Text labels for levels

undeflabel Text label for undefined levels

Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.
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See Also “Categorical Arrays” on page 2-13
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Purpose Create categorical array

Description categorical is an abstract class, and you cannot create instances of it
directly. You must create nominal or ordinal arrays.

See Also nominal, ordinal
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Purpose Concatenate dataset arrays

Syntax ds = cat(dim, ds1, ds2, ...)

Description ds = cat(dim, ds1, ds2, ...) concatenates the dataset arrays ds1,
ds2, ... along dimension dim by calling the dataset/horzcat or
dataset/vertcat method. dim must be 1 or 2.

See Also horzcat, vertcat
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Purpose Categorical splits used for branches in decision tree

Syntax v=catsplit(t)
v=catsplit(t,j)

Description v=catsplit(t) returns an n-by-2 cell array v. Each row in v gives left
and right values for a categorical split. For each branch node j based on
a categorical predictor variable z, the left child is chosen if z is in v(j,1)
and the right child is chosen if z is in v(j,2). The splits are in the
same order as nodes of the tree. Nodes for these splits can be found by
running cuttype and selecting 'categorical' cuts from top to bottom.

v=catsplit(t,j) takes an array j of rows and returns the splits for
the specified rows.

See Also classregtree
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Purpose Cumulative distribution function for Gaussian mixture distribution

Syntax y = cdf(obj,X)

Description y = cdf(obj,X) returns a vector y of length n containing the values of
the cumulative distribution function (cdf) for the gmdistribution object
obj, evaluated at the n-by-d data matrix X, where n is the number of
observations and d is the dimension of the data. obj is an object created
by gmdistribution or fit. y(I) is the cdf of observation I.

Examples Create a gmdistribution object defining a two-component mixture of
bivariate Gaussian distributions:

MU = [1 2;-3 -5];
SIGMA = cat(3,[2 0;0 .5],[1 0;0 1]);
p = ones(1,2)/2;
obj = gmdistribution(MU,SIGMA,p);

ezsurf(@(x,y)cdf(obj,[x y]),[-10 10],[-10 10])
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See Also gmdistribution, fit, pdf, mvncdf

18-124



ccdesign

Purpose Central composite design

Syntax dCC = ccdesign(n)
[dCC,blocks] = ccdesign(n)
[...] = ccdesign(n,param1,val1,param2,val2,...)

Description dCC = ccdesign(n) generates a central composite design for n factors.
nmust be an integer 2 or larger. The output matrix dCC ism-by-n, where
m is the number of runs in the design. Each row represents one run,
with settings for all factors represented in the columns. Factor values
are normalized so that the cube points take values between -1 and 1.

[dCC,blocks] = ccdesign(n) requests a blocked design. The output
blocks is an m-by-1 vector of block numbers for each run. Blocks
indicate runs that are to be measured under similar conditions
to minimize the effect of inter-block differences on the parameter
estimates.

[...] = ccdesign(n,param1,val1,param2,val2,...) specifies
additional parameter/value pairs for the design. Valid parameters and
their values are listed in the following table.

Parameter Description Values

'center' Number of
center points.

• Integer — Number of center
points to include.

• 'uniform'— Select number of
center points to give uniform
precision.

• 'orthogonal' — Select
number of center points to give
an orthogonal design. This is
the default.
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Parameter Description Values

'fraction' Fraction of
full-factorial
cube, expressed
as an exponent
of 1/2.

• 0— Whole design. This is the
default.

• 1 — 1/2 fraction.

• 2 — 1/4 fraction.

'type' Type of CCD. • 'circumscribed' —
Circumscribed (CCC). This is
the default.

• 'inscribed' — Inscribed
(CCI).

• 'faced'— Faced (CCF).

'blocksize' Maximum
number of
points per block.

Integer. The default is Inf.

Examples The following creates a 2-factor CCC:

dCC = ccdesign(2,'type','circumscribed')
dCC =

-1.0000 -1.0000
-1.0000 1.0000
1.0000 -1.0000
1.0000 1.0000

-1.4142 0
1.4142 0

0 -1.4142
0 1.4142
0 0
0 0
0 0
0 0
0 0
0 0
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0 0
0 0

The center point is run 8 times to reduce the correlations among the
coefficient estimates.

Visualize the design as follows:

plot(dCC(:,1),dCC(:,2),'ro','MarkerFaceColor','b')
X = [1 -1 -1 -1; 1 1 1 -1];
Y = [-1 -1 1 -1; 1 -1 1 1];
line(X,Y,'Color','b')
axis square equal

See Also bbdesign
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Purpose Cumulative distribution functions

Syntax Y = cdf(name,X,A)
Y = cdf(name,X,A,B)
Y = cdf(name,X,A,B,C)

Description Y = cdf(name,X,A) computes the cumulative distribution function for
the one-parameter family of distributions specified by name. A contains
parameter values for the distribution. The cumulative distribution
function is evaluated at the values in X and its values are returned in Y.

If X and A are arrays, they must be the same size. If X is a scalar, it is
expanded to a constant matrix the same size as A. If A is a scalar, it is
expanded to a constant matrix the same size as X.

Y is the common size of X and A after any necessary scalar expansion.

Y = cdf(name,X,A,B) computes the cumulative distribution function
for two-parameter families of distributions, where parameter values
are given in A and B.

If X, A, and B are arrays, they must be the same size. If X is a scalar, it is
expanded to a constant matrix the same size as A and B. If either A or B
are scalars, they are expanded to constant matrices the same size as X.

Y is the common size of X, A, and B after any necessary scalar expansion.

Y = cdf(name,X,A,B,C) computes the cumulative distribution function
for three-parameter families of distributions, where parameter values
are given in A, B, and C.

If X, A, B, and C are arrays, they must be the same size. If X is a scalar,
it is expanded to a constant matrix the same size as A, B, and C. If
any of A, B or C are scalars, they are expanded to constant matrices
the same size as X.

Y is the common size of X, A, B, and C after any necessary scalar
expansion.

Acceptable strings for name are:
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• 'beta' (Beta distribution)

• 'bino' (Binomial distribution)

• 'chi2' (Chi-square distribution)

• 'exp' (Exponential distribution)

• 'ev' (Extreme value distribution)

• 'f' (F distribution)

• 'gam' (Gamma distribution)

• 'gev' (Generalized extreme value distribution)

• 'gp' (Generalized Pareto distribution)

• 'geo' (Geometric distribution)

• 'hyge' (Hypergeometric distribution)

• 'logn' (Lognormal distribution)

• 'nbin' (Negative binomial distribution)

• 'ncf' (Noncentral F distribution)

• 'nct' (Noncentral tdistribution)

• 'ncx2' (Noncentral chi-square distribution)

• 'norm' (Normal distribution)

• 'poiss' (Poisson distribution)

• 'rayl' (Rayleigh distribution)

• 't' (t distribution)

• 'unif' (Uniform distribution)

• 'unid' (Discrete uniform distribution)

• 'wbl' (Weibull distribution)

Examples Compute the cdf of the normal distribution with mean 0 and standard
deviation 1 at inputs –2, –1, 0, 1, 2:
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p1 = cdf('Normal',-2:2,0,1)
p1 =

0.0228 0.1587 0.5000 0.8413 0.9772

The order of the parameters is the same as for normcdf.

Compute the cdfs of Poisson distributions with rate parameters 0, 1, ...,
4 at inputs 1, 2, ..., 5, respectively:

p2 = cdf('Poisson',0:4,1:5)
p2 =

0.3679 0.4060 0.4232 0.4335 0.4405

The order of the parameters is the same as for poisscdf.

See Also pdf, icdf
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Purpose Cumulative distribution function for piecewise distribution

Syntax P = cdf(obj,X)

Description P = cdf(obj,X) returns an array P of values of the cumulative
distribution function for the piecewise distribution object obj, evaluated
at the values in the array X.

Examples Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and
0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
[p,q] = boundary(obj)
p =

0.1000
0.9000

q =
-1.7766
1.8432

cdf(obj,q)
ans =

0.1000
0.9000

See Also paretotails, pdf, icdf
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Purpose Return cumulative distribution function (CDF) for ProbDist object

Syntax Y = cdf(PD, X)

Description Y = cdf(PD, X) returns Y, an array containing the cumulative
distribution function (CDF) for the ProbDist object PD, evaluated at
values in X.

Inputs PD An object of the class ProbDistUnivParam or
ProbDistUnivKernel.

X A numeric array of values where you want to
evaluate the CDF.

Outputs Y An array containing the cumulative
distribution function (CDF) for the ProbDist
object PD.

See Also cdf
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Purpose Empirical cumulative distribution function plot

Syntax cdfplot(X)
h = cdfplot(X)
[h,stats] = cdfplot(X)

Description cdfplot(X) displays a plot of the empirical cumulative distribution
function (cdf) for the data in the vector X. The empirical cdf is
defined as the proportion of X values less than or equal to x.

This plot, like those produced by hist and normplot, is useful for
examining the distribution of a sample of data. You can overlay a
theoretical cdf on the same plot to compare the empirical distribution
of the sample to the theoretical distribution.

The kstest, kstest2, and lillietest functions compute test statistics
that are derived from the empirical cdf. You may find the empirical
cdf plot produced by cdfplot useful in helping you to understand the
output from those functions.

h = cdfplot(X) returns a handle to the cdf curve.

[h,stats] = cdfplot(X) also returns a stats structure with the
following fields.

Field Description

stats.min Minimum value

stats.max Maximum value

stats.mean Sample mean

stats.median Sample median (50th percentile)

stats.std Sample standard deviation

Examples The following example compares the empirical cdf for a sample from
an extreme value distribution with a plot of the cdf for the sampling
distribution. In practice, the sampling distribution would be unknown,
and would be chosen to match the empirical cdf.
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y = evrnd(0,3,100,1);
cdfplot(y)
hold on
x = -20:0.1:10;
f = evcdf(x,0,3);
plot(x,f,'m')
legend('Empirical','Theoretical','Location','NW')

See Also ecdf
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Purpose Convert categorical array to cell array of strings

Syntax B = cellstr(A)

Description B = cellstr(A) converts the categorical array A to a cell array of
strings. Each element of B contains the categorical level label for the
corresponding element of A.

See Also char, getlabels

18-135



categorical.char

Purpose Convert categorical array to character array

Syntax B = char(A)

Description B = char(A) converts the categorical array A to a 2-D character matrix.
char does not preserve the shape of A. B contains numel(A) rows, and
each row of B contains the categorical level label for the corresponding
element of A(:).

See Also cellstr, getlabels
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Purpose Chi-square cumulative distribution function

Syntax P = chi2cdf(X,V)

Description P = chi2cdf(X,V) computes the chi-square cdf at each of the values
in X using the corresponding degrees of freedom in V. X and V can
be vectors, matrices, or multidimensional arrays that have the same
size. A scalar input is expanded to a constant array with the same
dimensions as the other input.

The degrees of freedom parameters in V must be positive integers, and
the values in X must lie on the interval [0 Inf].

The χ2 cdf for a given value x and degrees-of-freedom ν is

where Γ( · ) is the Gamma function.

The chi-square density function with ν degrees-of-freedom is the same
as the gamma density function with parameters ν/2 and 2.

Examples probability = chi2cdf(5,1:5)
probability =

0.9747 0.9179 0.8282 0.7127 0.5841

probability = chi2cdf(1:5,1:5)
probability =

0.6827 0.6321 0.6084 0.5940 0.5841

See Also cdf | chi2pdf | chi2inv | chi2stat | chi2rnd

How To • “Chi-Square Distribution” on page B-12
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Purpose Chi-square goodness-of-fit test

Syntax h = chi2gof(x)
[h,p] = chi2gof(...)
[h,p,stats] = chi2gof(...)
[...] = chi2gof(X,name1,val1,name2,val2,...)

Description h = chi2gof(x) performs a chi-square goodness-of-fit test of the
default null hypothesis that the data in vector x are a random sample
from a normal distribution with mean and variance estimated from
x, against the alternative that the data are not normally distributed
with the estimated mean and variance. The result h is 1 if the null
hypothesis can be rejected at the 5% significance level. The result h is 0
if the null hypothesis cannot be rejected at the 5% significance level.

The null distribution can be changed from a normal distribution to
an arbitrary discrete or continuous distribution. See the syntax for
specifying optional argument name/value pairs below.

The test is performed by grouping the data into bins, calculating
the observed and expected counts for those bins, and computing the
chi-square test statistic

χ2

1

2

= −
=
∑ ( ) /O E Ei i
i

N

i

where Oi are the observed counts and Ei are the expected counts. The
statistic has an approximate chi-square distribution when the counts
are sufficiently large. Bins in either tail with an expected count less
than 5 are pooled with neighboring bins until the count in each extreme
bin is at least 5. If bins remain in the interior with counts less than 5,
chi2gof displays a warning. In this case, you should use fewer bins,
or provide bin centers or edges, to increase the expected counts in all
bins. (See the syntax for specifying optional argument name/value pairs
below.) chi2gof sets the number of bins, nbins, to 10 by default, and
compares the test statistic to a chi-square distribution with nbins – 3
degrees of freedom to take into account the two estimated parameters.
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[h,p] = chi2gof(...) also returns the p-value of the test, p. The
p-value is the probability, under assumption of the null hypothesis, of
observing the given statistic or one more extreme.

[h,p,stats] = chi2gof(...) also returns a structure stats with
the following fields:

• chi2stat — The chi-square statistic

• df — Degrees of freedom

• edges — Vector of bin edges after pooling

• O — Observed count in each bin

• E — Expected count in each bin

[...] = chi2gof(X,name1,val1,name2,val2,...) specifies optional
argument name/value pairs chosen from the following lists. Argument
names are case insensitive and partial matches are allowed.

The following name/value pairs control the initial binning of the data
before pooling. You should not specify more than one of these options.

• 'nbins'— The number of bins to use. Default is 10.

• 'ctrs' — A vector of bin centers

• 'edges' — A vector of bin edges

The following name/value pairs determine the null distribution for the
test. Do not specify both 'cdf' and 'expected'.

• 'cdf' — A fully specified cumulative distribution function. This
can be a function name, a function handle, or a ProbDist object of
the ProbDistUnivParam class or ProbDistUnivKernel class. When
'cdf' is a function name or handle, the distribution function must
take x as its only argument. Alternately, you can provide a cell array
whose first element is a function name or handle, and whose later
elements are parameter values, one per cell. The function must take
x as its first argument, and other parameters as later arguments.
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• 'expected' — A vector with one element per bin specifying the
expected counts for each bin.

• 'nparams'— The number of estimated parameters; used to adjust
the degrees of freedom to be nbins – 1 – nparams, where nbins is
the number of bins.

If your 'cdf' or 'expected' input depends on estimated parameters,
you should use 'nparams' to ensure that the degrees of freedom for the
test is correct. If 'cdf'is a cell array, the default value of 'nparams' is
the number of parameters in the array; otherwise the default is 0.

The following name/value pairs control other aspects of the test.

• 'emin' — The minimum allowed expected value for a bin; any bin
in either tail having an expected value less than this amount is
pooled with a neighboring bin. Use the value 0 to prevent pooling.
The default is 5.

• 'frequency' — A vector the same length as x containing the
frequency of the corresponding xvalues

• 'alpha'— Significance level for the test. The default is 0.05.

Examples Example 1

Equivalent ways to test against an unspecified normal distribution
with estimated parameters:

x = normrnd(50,5,100,1);

[h,p] = chi2gof(x)

h =

0

p =

0.7532

[h,p] = chi2gof(x,'cdf',@(z)normcdf(z,mean(x),std(x)),'nparams',2)

h =

0
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p =

0.7532

[h,p] = chi2gof(x,'cdf',{@normcdf,mean(x),std(x)})

h =

0

p =

0.7532

Example 2

Test against the standard normal:

x = randn(100,1);

[h,p] = chi2gof(x,'cdf',@normcdf)
h =

0
p =

0.9443

Example 3

Test against the standard uniform:

x = rand(100,1);

n = length(x);
edges = linspace(0,1,11);
expectedCounts = n * diff(edges);
[h,p,st] = chi2gof(x,'edges',edges,...

'expected',expectedCounts)
h =

0
p =

0.3191
st =

chi2stat: 10.4000
df: 9
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edges: [1x11 double]
O: [6 11 4 12 15 8 14 9 11 10]
E: [1x10 double]

Example 4

Test against the Poisson distribution by specifying observed and
expected counts:

bins = 0:5;
obsCounts = [6 16 10 12 4 2];
n = sum(obsCounts);
lambdaHat = sum(bins.*obsCounts)/n;
expCounts = n*poisspdf(bins,lambdaHat);

[h,p,st] = chi2gof(bins,'ctrs',bins,...
'frequency',obsCounts, ...
'expected',expCounts,...
'nparams',1)

h =
0

p =
0.4654

st =
chi2stat: 2.5550

df: 3
edges: [1x6 double]

O: [6 16 10 12 6]
E: [7.0429 13.8041 13.5280 8.8383 6.0284]

See Also crosstab | lillietest | kstest | chi2cdf | chi2pdf | chi2inv |
chi2stat | chi2rnd

How To • “Chi-Square Distribution” on page B-12
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Purpose Chi-square inverse cumulative distribution function

Syntax X = chi2inv(P,V)

Description X = chi2inv(P,V) computes the inverse of the chi-square cdf with
degrees of freedom specified by V for the corresponding probabilities in
P. P and V can be vectors, matrices, or multidimensional arrays that
have the same size. A scalar input is expanded to a constant array with
the same dimensions as the other inputs.

The degrees of freedom parameters in V must be positive integers, and
the values in P must lie in the interval [0 1].

The inverse chi-square cdf for a given probability p and ν degrees of
freedom is

where

and Γ( · ) is the Gamma function. Each element of output X is the value
whose cumulative probability under the chi-square cdf defined by the
corresponding degrees of freedom parameter in V is specified by the
corresponding value in P.

Examples Find a value that exceeds 95% of the samples from a chi-square
distribution with 10 degrees of freedom.

x = chi2inv(0.95,10)
x =

18.3070

You would observe values greater than 18.3 only 5% of the time by
chance.
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See Also icdf | chi2cdf | chi2pdf | chi2stat | chi2rnd

How To • “Chi-Square Distribution” on page B-12
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Purpose Chi-square probability density function

Syntax Y = chi2pdf(X,V)

Description Y = chi2pdf(X,V) computes the chi-square pdf at each of the values
in X using the corresponding degrees of freedom in V. X and V can be
vectors, matrices, or multidimensional arrays that have the same size,
which is also the size of the output Y. A scalar input is expanded to a
constant array with the same dimensions as the other input.

The degrees of freedom parameters in V must be positive integers, and
the values in X must lie on the interval [0 Inf].

The chi-square pdf for a given value x and ν degrees of freedom is

where Γ( · ) is the Gamma function.

If x is standard normal, then x2 is distributed chi-square with one
degree of freedom. If x1, x2, ..., xn are n independent standard normal
observations, then the sum of the squares of the x’s is distributed
chi-square with n degrees of freedom (and is equivalent to the gamma
density function with parameters ν/2 and 2).

Examples nu = 1:6;
x = nu;
y = chi2pdf(x,nu)
y =

0.2420 0.1839 0.1542 0.1353 0.1220 0.1120

The mean of the chi-square distribution is the value of the degrees of
freedom parameter, nu. The above example shows that the probability
density of the mean falls as nu increases.

See Also pdf | chi2cdf | chi2inv | chi2stat | chi2rnd
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How To • “Chi-Square Distribution” on page B-12
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Purpose Chi-square random numbers

Syntax R = chi2rnd(V)
R = chi2rnd(V,u)
R = chi2rnd(V,m,n)

Description R = chi2rnd(V) generates random numbers from the chi-square
distribution with degrees of freedom parameters specified by V. V can be
a vector, a matrix, or a multidimensional array. R is the same size as V.

R = chi2rnd(V,u) generates an array R of size u containing random
numbers from the chi-square distribution with degrees of freedom
parameters specified by V, where u is a row vector. If u is a 1-by-2
vector, R is a matrix with u(1) rows and u(2) columns. If u is 1-by-n, R
is an n-dimensional array.

R = chi2rnd(V,m,n) generates an m-by-n matrix containing random
numbers from the chi-square distribution with degrees of freedom
parameter V.

Examples Note that the first and third commands are the same, but are different
from the second command.

r = chi2rnd(1:6)
r =

0.0037 3.0377 7.8142 0.9021 3.2019 9.0729

r = chi2rnd(6,[1 6])
r =

6.5249 2.6226 12.2497 3.0388 6.3133 5.0388

r = chi2rnd(1:6,1,6)
r =

0.7638 6.0955 0.8273 3.2506 1.5469 10.9197

See Also random | chi2cdf | chi2pdf | chi2inv | chi2stat
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How To • “Chi-Square Distribution” on page B-12
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Purpose Chi-square mean and variance

Syntax [M,V] = chi2stat(NU)

Description [M,V] = chi2stat(NU) returns the mean of and variance for the
chi-square distribution with degrees of freedom parameters specified
by NU.

The mean of the chi-square distribution is ν, the degrees of freedom
parameter, and the variance is 2ν.

Examples nu = 1:10;
nu = nu'*nu;
[m,v] = chi2stat(nu)
m =
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

v =
2 4 6 8 10 12 14 16 18 20
4 8 12 16 20 24 28 32 36 40
6 12 18 24 30 36 42 48 54 60
8 16 24 32 40 48 56 64 72 80

10 20 30 40 50 60 70 80 90 100
12 24 36 48 60 72 84 96 108 120
14 28 42 56 70 84 98 112 126 140
16 32 48 64 80 96 112 128 144 160
18 36 54 72 90 108 126 144 162 180
20 40 60 80 100 120 140 160 180 200
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See Also chi2cdf | chi2pdf | chi2inv | chi2rnd

How To • “Chi-Square Distribution” on page B-12
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Purpose Child nodes

Syntax C = children(t)
C = children(t,nodes)

Description C = children(t) returns an n-by-2 array C containing the numbers
of the child nodes for each node in the tree t, where n is the number of
nodes. Leaf nodes have child node 0.

C = children(t,nodes) takes a vector nodes of node numbers and
returns the children for the specified nodes.

Examples Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})

t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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C = children(t)
C =

2 3
0 0
4 5
6 7
0 0
8 9
0 0
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0 0
0 0

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also classregtree, numnodes, parent
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Purpose Cholesky-like covariance decomposition

Syntax T = cholcov(SIGMA)
[T,num] = cholcov(SIGMA)
[T,num] = cholcov(SIGMA,0)

Description T = cholcov(SIGMA) computes T such that SIGMA = T'*T. SIGMA
must be square, symmetric, and positive semi-definite. If SIGMA is
positive definite, then T is the square, upper triangular Cholesky factor.
If SIGMA is not positive definite, T is computed from an eigenvalue
decomposition of SIGMA. T is not necessarily triangular or square in this
case. Any eigenvectors whose corresponding eigenvalue is close to zero
(within a small tolerance) are omitted. If any remaining eigenvalues
are negative, T is empty.

[T,num] = cholcov(SIGMA) returns the number num of negative
eigenvalues of SIGMA, and T is empty if num is positive. If num is zero,
SIGMA is positive semi-definite. If SIGMA is not square and symmetric,
num is NaN and T is empty.

[T,num] = cholcov(SIGMA,0) returns num equal to zero if SIGMA
is positive definite, and T is the Cholesky factor. If SIGMA is not
positive definite, num is a positive integer and T is empty. [...] =
cholcov(SIGMA,1) is equivalent to [...] = cholcov(SIGMA).

Examples The following 4-by-4 covariance matrix is rank-deficient:

C1 = [2 1 1 2;1 2 1 2;1 1 2 2;2 2 2 3]
C1 =

2 1 1 2
1 2 1 2
1 1 2 2
2 2 2 3

rank(C1)
ans =

3

Use cholcov to factor C1:
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T = cholcov(C1)
T =

-0.2113 0.7887 -0.5774 0
0.7887 -0.2113 -0.5774 0
1.1547 1.1547 1.1547 1.7321

C2 = T'*T
C2 =

2.0000 1.0000 1.0000 2.0000
1.0000 2.0000 1.0000 2.0000
1.0000 1.0000 2.0000 2.0000
2.0000 2.0000 2.0000 3.0000

Use T to generate random data with the specified covariance:

C3 = cov(randn(1e6,3)*T)
C3 =

1.9973 0.9982 0.9995 1.9975
0.9982 1.9962 0.9969 1.9956
0.9995 0.9969 1.9980 1.9972
1.9975 1.9956 1.9972 2.9951

See Also chol, cov
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Purpose Shift categorical array circularly

Syntax B = circshift(A,shiftsize)

Description B = circshift(A,shiftsize) circularly shifts the values in the
categorical array A by shiftsize elements. shiftsize is a vector of
integer scalars where the n-th element specifies the shift amount for the
n-th dimension of array A. If an element in shiftsize is positive, the
values of A are shifted down (or to the right). If it is negative, the values
of A are shifted up (or to the left).

See Also permute, shiftdim

18-156



NaiveBayes.CIsNonEmpty property

Purpose Flag for non-empty classes

Description The CIsNonEmpty property is a logical vector of length NClasses
specifying which classes are not empty. When the grouping variable
is categorical, it may contain categorical levels that don’t appear in
the elements of the grouping variable. Those levels are empty and
NaiveBayes ignores them for the purposes of training the classifier.
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Purpose Class counts

Syntax P = classcount(t)
P = classcount(t,nodes)

Description P = classcount(t) returns an n-by-m array P of class counts for the
nodes in the classification tree t, where n is the number of nodes and
m is the number of classes. For any node number i, the class counts
P(i,:) are counts of observations (from the data used in fitting the
tree) from each class satisfying the conditions for node i.

P = classcount(t,nodes) takes a vector nodes of node numbers and
returns the class counts for the specified nodes.

Examples Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})

t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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P = classcount(t)
P =

50 50 50
50 0 0
0 50 50
0 49 5
0 1 45
0 47 1
0 2 4

18-159



classregtree.classcount

0 47 0
0 0 1

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also classregtree, numnodes
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Purpose Discriminant analysis

Syntax class = classify(sample,training,group)
class = classify(sample,training,group,type)
class = classify(sample,training,group,type,prior)
[class,err] = classify(...)
[class,err,POSTERIOR] = classify(...)
[class,err,POSTERIOR,logp] = classify(...)
[class,err,POSTERIOR,logp,coeff] = classify(...)

Description class = classify(sample,training,group) classifies each row of
the data in sample into one of the groups in training. sample and
training must be matrices with the same number of columns. group is
a grouping variable for training. Its unique values define groups; each
element defines the group to which the corresponding row of training
belongs. group can be a categorical variable, a numeric vector, a string
array, or a cell array of strings. training and group must have the
same number of rows. (See “Grouped Data” on page 2-33.) classify
treats NaNs or empty strings in group as missing values, and ignores
the corresponding rows of training. The output class indicates the
group to which each row of sample has been assigned, and is of the
same type as group.

class = classify(sample,training,group,type) allows you to
specify the type of discriminant function. type is one of:

• 'linear'— Fits a multivariate normal density to each group, with a
pooled estimate of covariance. This is the default.

• 'diaglinear'— Similar to 'linear', but with a diagonal covariance
matrix estimate (naive Bayes classifiers).

• 'quadratic'— Fits multivariate normal densities with covariance
estimates stratified by group.

• 'diagquadratic' — Similar to 'quadratic', but with a diagonal
covariance matrix estimate (naive Bayes classifiers).
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• 'mahalanobis' — Uses Mahalanobis distances with stratified
covariance estimates.

class = classify(sample,training,group,type,prior) allows you
to specify prior probabilities for the groups. prior is one of:

• A numeric vector the same length as the number of unique values
in group (or the number of levels defined for group, if group is
categorical). If group is numeric or categorical, the order of prior
must correspond to the ordered values in group, or, if group contains
strings, to the order of first occurrence of the values in group.

• A 1-by-1 structure with fields:

- prob — A numeric vector.

- group — Of the same type as group, containing unique values
indicating the groups to which the elements of prob correspond.

As a structure, prior can contain groups that do not appear in
group. This can be useful if training is a subset a larger training
set. classify ignores any groups that appear in the structure but
not in the group array.

• The string 'empirical', indicating that group prior probabilities
should be estimated from the group relative frequencies in training.

prior defaults to a numeric vector of equal probabilities, i.e., a uniform
distribution. prior is not used for discrimination by Mahalanobis
distance, except for error rate calculation.

[class,err] = classify(...) also returns an estimate err of the
misclassification error rate based on the training data. classify
returns the apparent error rate, i.e., the percentage of observations in
training that are misclassified, weighted by the prior probabilities
for the groups.

[class,err,POSTERIOR] = classify(...) also returns a matrix
POSTERIOR of estimates of the posterior probabilities that the jth
training group was the source of the ith sample observation, i.e.,
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Pr(group j|obs i). POSTERIOR is not computed for Mahalanobis
discrimination.

[class,err,POSTERIOR,logp] = classify(...) also returns a
vector logp containing estimates of the logarithms of the unconditional
predictive probability density of the sample observations, p(obs i) = sum
of p(obs i|group j)Pr(group j) over all groups. logp is not computed
for Mahalanobis discrimination.

[class,err,POSTERIOR,logp,coeff] = classify(...) also returns
a structure array coeff containing coefficients of the boundary
curves between pairs of groups. Each element coeff(I,J) contains
information for comparing group I to group J in the following fields:

• type— Type of discriminant function, from the type input.

• name1 — Name of the first group.

• name2 — Name of the second group.

• const— Constant term of the boundary equation (K)

• linear— Linear coefficients of the boundary equation (L)

• quadratic— Quadratic coefficient matrix of the boundary equation
(Q)

For the 'linear' and 'diaglinear' types, the quadratic field is
absent, and a row x from the sample array is classified into group I
rather than group J if 0 < K+x*L. For the other types, x is classified
into group I if 0 < K+x*L+x*Q*x'.

Examples For training data, use Fisher’s sepal measurements for iris versicolor
and virginica:

load fisheriris
SL = meas(51:end,1);
SW = meas(51:end,2);
group = species(51:end);
h1 = gscatter(SL,SW,group,'rb','v^',[],'off');
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set(h1,'LineWidth',2)
legend('Fisher versicolor','Fisher virginica',...

'Location','NW')

Classify a grid of measurements on the same scale:

[X,Y] = meshgrid(linspace(4.5,8),linspace(2,4));
X = X(:); Y = Y(:);
[C,err,P,logp,coeff] = classify([X Y],[SL SW],...

group,'quadratic');

Visualize the classification:
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hold on;
gscatter(X,Y,C,'rb','.',1,'off');
K = coeff(1,2).const;
L = coeff(1,2).linear;
Q = coeff(1,2).quadratic;
f = sprintf('0 = %g+%g*x+%g*y+%g*x^2+%g*x.*y+%g*y.^2',...

K,L,Q(1,1),Q(1,2)+Q(2,1),Q(2,2));
h2 = ezplot(f,[4.5 8 2 4]);
set(h2,'Color','m','LineWidth',2)
axis([4.5 8 2 4])
xlabel('Sepal Length')
ylabel('Sepal Width')
title('{\bf Classification with Fisher Training Data}')
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References [1] Krzanowski, W. J. Principles of Multivariate Analysis: A User’s
Perspective. New York: Oxford University Press, 1988.

[2] Seber, G. A. F.Multivariate Observations. Hoboken, NJ: John Wiley
& Sons, Inc., 1984.

See Also “Grouped Data” on page 2-33

classregtree, mahal, NaiveBayes
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CompactTreeBagger.ClassNames property

Purpose Names of classes

Description The ClassNames property is a cell array containing the class names for
the response variable Y supplied to TreeBagger. This property is empty
for regression trees.
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TreeBagger.ClassNames property

Purpose Names of classes

Description The ClassNames property is a cell array containing the class names for
the response variable Y. This property is empty for regression trees.
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Purpose Class probabilities

Syntax P = classprob(t)
P = classprob(t,nodes)

Description P = classprob(t) returns an n-by-m array P of class probabilities for
the nodes in the classification tree t, where n is the number of nodes
and m is the number of classes. For any node number i, the class
probabilities P(i,:) are the estimated probabilities for each class for a
point satisfying the conditions for node i.

P = classprob(t,nodes) takes a vector nodes of node numbers and
returns the class probabilities for the specified nodes.

Examples Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})

t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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P = classprob(t)
P =

0.3333 0.3333 0.3333
1.0000 0 0

0 0.5000 0.5000
0 0.9074 0.0926
0 0.0217 0.9783
0 0.9792 0.0208
0 0.3333 0.6667
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0 1.0000 0
0 0 1.0000

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also classregtree, numnodes
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Purpose Classification and regression trees

Construction classregtree Construct classification and
regression trees

Methods catsplit Categorical splits used for
branches in decision tree

children Child nodes

classcount Class counts

classprob Class probabilities

cutcategories Cut categories

cutpoint Returns decision tree cut point
values

cuttype Cut types

cutvar Cut variable names

disp Display classregtree object

display Display classregtree object

eval Predicted responses

isbranch Test node for branch

nodeerr Return vector of node errors

nodeprob Node probabilities

nodesize Return node size

numnodes Number of nodes

parent Parent node

prune Prune tree

risk Node risks
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subsasgn Subscripted reference for
classregtree object

subsref Subscripted reference for
classregtree object

test Error rate

type Tree type

varimportance Compute embedded estimates of
input feature importance

view Plot tree

Properties Objects of the classregtree class have no properties accessible by dot
indexing, get methods, or set methods. To obtain information about a
classregtree object, use the appropriate method.

Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.

See Also “Regression and Classification by Bagging Decision Trees” on page
12-14, “Classification Trees” on page 12-9

“Regression Trees” on page 9-90

“Grouped Data” on page 2-33
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Purpose Construct classification and regression trees

Syntax t = classregtree(X,y)
t = classregtree(X,y,param1,val1,param2,val2)

Description t = classregtree(X,y) creates a decision tree t for predicting the
response y as a function of the predictors in the columns of X. X is an
n-by-m matrix of predictor values. If y is a vector of n response values,
classregtree performs regression. If y is a categorical variable,
character array, or cell array of strings, classregtree performs
classification. Either way, t is a binary tree where each branching node
is split based on the values of a column of X. NaN values in X or y are
taken to be missing values. Observations with all missing values for
X or missing values for y are not used in the fit. Observations with
some missing values for X are used to find splits on variables for which
these observations have valid values.

t = classregtree(X,y,param1,val1,param2,val2) specifies optional
parameter name/value pairs, as follows.

For all trees:

• 'categorical' — Vector of indices of the columns of X that are to
be treated as unordered categorical variables

• 'method' — Either 'classification' (default if y is text or a
categorical variable) or 'regression' (default if y is numeric).

• 'names'— A cell array of names for the predictor variables, in the
order in which they appear in the X from which the tree was created.

• 'prune' — 'on' (default) to compute the full tree and the optimal
sequence of pruned subtrees, or 'off' for the full tree without
pruning.

• 'minparent'— A number k such that impure nodes must have k or
more observations to be split (default is 10).

• 'minleaf'— Aminimal number of observations per tree leaf (default
is 1). If you supply both 'minparent' and 'minleaf', classregtree
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uses the setting which results in larger leaves: minparent =
max(minparent,2*minleaf)

• 'nvartosample'— Number of predictor variables randomly selected
for each split. By default all variables are considered for each
decision split.

• 'mergeleaves'— 'on' (default) to merge leaves that originate from
the same parent node and give the sum of risk values greater or equal
to the risk associated with the parent node. If 'off', classregtree
does not merge leaves.

• 'weights'— Vector of observation weights. By default the weight
of every observation is 1. The length of this vector must be equal to
the number of rows in X.
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For regression trees only:

• 'qetoler' — Defines tolerance on quadratic error per node for
regression trees. Splitting nodes stops when quadratic error per
node drops below qetoler*qed, where qed is the quadratic error for
the entire data computed before the decision tree is grown: qed =
norm(y-ybar) with ybar estimated as the average of the input array
Y. Default value is 1e-6.

For classification trees only:

• 'cost'— Square matrix C, where C(i,j) is the cost of classifying
a point into class j if its true class is i (default has C(i,j)=1 if
i~=j, and C(i,j)=0 if i=j). Alternatively, this value can be a
structure S having two fields: S.groupcontaining the group names as
a categorical variable, character array, or cell array of strings; and
S.cost containing the cost matrix C.

• 'splitcriterion' — Criterion for choosing a split. One of 'gdi'
(default) or Gini’s diversity index, 'twoing' for the twoing rule, or
'deviance' for maximum deviance reduction.

• 'priorprob'— Prior probabilities for each class, specified as a vector
(one value for each distinct group name) or as a structure S with two
fields: S.group containing the groupnames as a categorical variable,
character array, or cell array of strings; and S.prob containing a
vector of corresponding probabilities.

Examples Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})

t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
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3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also “Regression and Classification by Bagging Decision Trees” on page 12-14

Grouped Data

eval, prune, test, view
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NaiveBayes.CLevels property

Purpose Class levels

Description The CLevels property is a vector of the same type as the grouping
variable, containing the unique levels of the grouping variable.

18-179



cluster

Purpose Construct agglomerative clusters from linkages

Syntax T = cluster(Z,'cutoff',c)
T = cluster(Z,'cutoff',c,'depth',d)
T = cluster(Z,'cutoff',c,'criterion',criterion)
T = cluster(Z,'maxclust',n)

Description T = cluster(Z,'cutoff',c) constructs clusters from the
agglomerative hierarchical cluster tree, Z, as generated by the linkage
function. Z is a matrix of size (m – 1)-by-3, where m is the number of
observations in the original data. c is a threshold for cutting Z into
clusters. Clusters are formed when a node and all of its subnodes have
inconsistent value less than c. All leaves at or below the node are
grouped into a cluster. t is a vector of size m containing the cluster
assignments of each observation.

If c is a vector, T is a matrix of cluster assignments with one column
per cutoff value.

T = cluster(Z,'cutoff',c,'depth',d) evaluates inconsistent values
by looking to a depth d below each node. The default depth is 2.

T = cluster(Z,'cutoff',c,'criterion',criterion) uses the
specified criterion for forming clusters, where criterion is one of the
strings 'inconsistent' (default) or 'distance'. The 'distance'
criterion uses the distance between the two subnodes merged at a node
to measure node height. All leaves at or below a node with height less
than c are grouped into a cluster.

T = cluster(Z,'maxclust',n) constructs a maximum of n clusters
using the 'distance' criterion. cluster finds the smallest height at
which a horizontal cut through the tree leaves n or fewer clusters.

If n is a vector, T is a matrix of cluster assignments with one column
per maximum value.

Examples Compare clusters from Fisher iris data with species:

load fisheriris
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d = pdist(meas);
Z = linkage(d);
c = cluster(Z,'maxclust',3:5);

crosstab(c(:,1),species)
ans =

0 0 2
0 50 48

50 0 0

crosstab(c(:,2),species)
ans =

0 0 1
0 50 47
0 0 2

50 0 0

crosstab(c(:,3),species)
ans =

0 4 0
0 46 47
0 0 1
0 0 2

50 0 0

See Also clusterdata, cophenet, inconsistent, linkage, pdist
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Purpose Construct clusters from Gaussian mixture distribution

Syntax idx = cluster(obj,X)
[idx,nlogl] = cluster(obj,X)
[idx,nlogl,P] = cluster(obj,X)
[idx,nlogl,P,logpdf] = cluster(obj,X)
[idx,nlogl,P,logpdf,M] = cluster(obj,X)

Description idx = cluster(obj,X) partitions data in the n-by-d matrix X, where n
is the number of observations and d is the dimension of the data, into
k clusters determined by the k components of the Gaussian mixture
distribution defined by obj. obj is an object created by gmdistribution
or fit. idx is an n-by-1 vector, where idx(I) is the cluster index of
observation I. The cluster index gives the component with the largest
posterior probability for the observation, weighted by the component
probability.

Note The data in X is typically the same as the data used to create
the Gaussian mixture distribution defined by obj. Clustering with
cluster is treated as a separate step, apart from density estimation.
For cluster to provide meaningful clustering with new data, X should
come from the same population as the data used to create obj.

cluster treats NaN values as missing data. Rows of X with NaN values
are excluded from the partition.

[idx,nlogl] = cluster(obj,X) also returns nlogl, the negative
log-likelihood of the data.

[idx,nlogl,P] = cluster(obj,X) also returns the posterior
probabilities of each component for each observation in the n-by-k
matrix P. P(I,J) is the probability of component J given observation I.

[idx,nlogl,P,logpdf] = cluster(obj,X) also returns the n-by-1
vector logpdf containing the logarithm of the estimated probability
density function for each observation. The density estimate for
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observation I is a sum over all components of the component density at
I times the component probability.

[idx,nlogl,P,logpdf,M] = cluster(obj,X) also returns an n-by-k
matrix M containing Mahalanobis distances in squared units. M(I,J) is
the Mahalanobis distance of observation I from the mean of component
J.

Examples Generate data from a mixture of two bivariate Gaussian distributions
using the mvnrnd function:

MU1 = [1 2];
SIGMA1 = [2 0; 0 .5];
MU2 = [-3 -5];
SIGMA2 = [1 0; 0 1];
X = [mvnrnd(MU1,SIGMA1,1000);mvnrnd(MU2,SIGMA2,1000)];

scatter(X(:,1),X(:,2),10,'.')
hold on
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Fit a two-component Gaussian mixture model:

obj = gmdistribution.fit(X,2);
h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);
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Use the fit to cluster the data:

idx = cluster(obj,X);
cluster1 = X(idx == 1,:);
cluster2 = X(idx == 2,:);

delete(h)
h1 = scatter(cluster1(:,1),cluster1(:,2),10,'r.');
h2 = scatter(cluster2(:,1),cluster2(:,2),10,'g.');
legend([h1 h2],'Cluster 1','Cluster 2','Location','NW')
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See Also gmdistribution, fit, posterior, mahal
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Purpose Construct agglomerative clusters from data

Syntax T = clusterdata(X,cutoff)
T = clusterdata(X,param1,val1,param2,val2,...)

Description T = clusterdata(X,cutoff) uses the pdist, linkage, and cluster
functions to construct agglomerative clusters from data X. X is an m-by-n
matrix, treated as m observations of n variables. cutoff is a threshold
for cutting the hierarchical tree generated by linkage into clusters.
When 0 < cutoff < 2, clusterdata forms clusters when inconsistent
values are greater than cutoff (see inconsistent). When cutoff is an
integer ≥ 2, clusterdata interprets cutoff as the maximum number
of clusters to keep in the hierarchical tree generated by linkage. The
output T is a vector of size m containing a cluster number for each
observation.

When 0 < cutoff < 2, T = clusterdata(X,cutoff) is equivalent to:

Y = pdist(X,'euclid');
Z = linkage(Y,'single');
T = cluster(Z,'cutoff',cutoff);

When cutoff is an integer ≥ 2, T = clusterdata(X,cutoff) is
equivalent to:

Y = pdist(X,'euclid');
Z = linkage(Y,'single');
T = cluster(Z,'maxclust',cutoff);

T = clusterdata(X,param1,val1,param2,val2,...) provides more
control over the clustering through a set of parameter/value pairs.
Valid parameters are:

Parameter Value

'distance' Any of the distance metric names allowed by pdist
(follow the 'minkowski' option by the value of the
exponent p)
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Parameter Value

'linkage' Any of the linkage methods allowed by the linkage
function

'cutoff' Cutoff for inconsistent or distance measure

'maxclust' Maximum number of clusters to form

'criterion' Either 'inconsistent' or 'distance'

’depth' Depth for computing inconsistent values

Examples The example first creates a sample data set of random numbers. It then
uses clusterdata to compute the distances between items in the data
set and create a hierarchical cluster tree from the data set. Finally,
the clusterdata function groups the items in the data set into three
clusters. The example uses the find function to list all the items in
cluster 2, and the scatter3 function to plot the data with each cluster
shown in a different color.

X = [gallery('uniformdata',[10 3],12);...
gallery('uniformdata',[10 3],13)+1.2;...
gallery('uniformdata',[10 3],14)+2.5];
T = clusterdata(X,'maxclust',3);
find(T==2)
ans =

11
12
13
14
15
16
17
18
19
20

scatter3(X(:,1),X(:,2),X(:,3),100,T,'filled')
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See Also cluster, inconsistent, kmeans, linkage, pdist
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Purpose Classical multidimensional scaling

Syntax Y = cmdscale(D)
[Y,e] = cmdscale(D)

Description Y = cmdscale(D) takes an n-by-n distance matrix D, and returns an
n-by-p configuration matrix Y. Rows of Y are the coordinates of n points
in p-dimensional space for some p < n. When D is a Euclidean distance
matrix, the distances between those points are given by D. p is the
dimension of the smallest space in which the n points whose inter-point
distances are given by D can be embedded.

[Y,e] = cmdscale(D) also returns the eigenvalues of Y*Y'. When D is
Euclidean, the first p elements of e are positive, the rest zero. If the first
k elements of e are much larger than the remaining (n-k), then you can
use the first k columns of Y as k-dimensional points whose inter-point
distances approximate D. This can provide a useful dimension reduction
for visualization, e.g., for k = 2.

D need not be a Euclidean distance matrix. If it is non-Euclidean or a
more general dissimilarity matrix, then some elements of e are negative,
and cmdscale chooses p as the number of positive eigenvalues. In this
case, the reduction to p or fewer dimensions provides a reasonable
approximation to D only if the negative elements of e are small in
magnitude.

You can specify D as either a full dissimilarity matrix, or in upper
triangle vector form such as is output by pdist. A full dissimilarity
matrix must be real and symmetric, and have zeros along the diagonal
and positive elements everywhere else. A dissimilarity matrix in upper
triangle form must have real, positive entries. You can also specify D
as a full similarity matrix, with ones along the diagonal and all other
elements less than one. cmdscale transforms a similarity matrix to a
dissimilarity matrix in such a way that distances between the points
returned in Y equal or approximate sqrt(1-D). To use a different
transformation, you must transform the similarities prior to calling
cmdscale.
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Examples Generate some points in 4-D space, but close to 3-D space, then reduce
them to distances only.

X = [normrnd(0,1,10,3) normrnd(0,.1,10,1)];
D = pdist(X,'euclidean');

Find a configuration with those inter-point distances.

[Y,e] = cmdscale(D);

% Four, but fourth one small
dim = sum(e > eps^(3/4))

% Poor reconstruction
maxerr2 = max(abs(pdist(X)-pdist(Y(:,1:2))))

% Good reconstruction
maxerr3 = max(abs(pdist(X)-pdist(Y(:,1:3))))

% Exact reconstruction
maxerr4 = max(abs(pdist(X)-pdist(Y)))

% D is now non-Euclidean
D = pdist(X,'cityblock');
[Y,e] = cmdscale(D);

% One is large negative
min(e)

% Poor reconstruction
maxerr = max(abs(pdist(X)-pdist(Y)))

References [1] Seber, G. A. F.Multivariate Observations. Hoboken, NJ: John Wiley
& Sons, Inc., 1984.

See Also mdscale, pdist, procrustes
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NaiveBayes.CNames property

Purpose Class names

Description The CNames property is an NClasses-by-1 cell array containing the
group names, where NClasses number of groups in the grouping
variable used to create the Naive Bayes classifier.
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CompactTreeBagger.combine

Purpose Combine two ensembles

Syntax B1 = combine(B1,B2)

Description B1 = combine(B1,B2) appends decision trees from ensemble B2 to
those stored in B1 and returns ensemble B1. This method requires that
the class and variable names be identical in both ensembles.

See Also TreeBagger.append
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Purpose Enumeration of combinations

Syntax C = combnk(v,k)

Description C = combnk(v,k) returns all combinations of the n elements in v taken
k at a time.

C = combnk(v,k) produces a matrix C with k columns and n! / k!(n-k)!
rows, where each row contains k of the elements in the vector v.

It is not practical to use this function if v has more than about 15
elements.

Examples Combinations of characters from a string.

C = combnk('tendril',4);
last5 = C(31:35,:)
last5 =
tedr
tenl
teni
tenr
tend

Combinations of elements from a numeric vector.

c = combnk(1:4,2)
c =

3 4
2 4
2 3
1 4
1 3
1 2

See Also

perms
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Purpose Compact ensemble of decision trees

Description Return an object of class CompactTreeBagger holding the structure
of the trained ensemble. The class is more compact than the full
TreeBagger class because it does not contain information for growing
more trees for the ensemble. In particular, it does not contain X and
Y used for training.

See Also CompactTreeBagger
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Purpose Compact ensemble of decision trees grown by bootstrap aggregation

Description CompactTreeBagger class is a lightweight class that contains the trees
grown using TreeBagger. CompactTreeBagger does not preserve
any information about how TreeBagger grew the decision trees. It
does not contain the input data used for growing trees, nor does it
contain training parameters such as minimal leaf size or number of
variables sampled for each decision split at random. You can only use
CompactTreeBagger for predicting the response of the trained ensemble
given new data X, and other related functions.

CompactTreeBagger lets you save the trained ensemble to disk, or
use it in any other way, while discarding training data and various
parameters of the training configuration irrelevant for predicting
response of the fully grown ensemble. This reduces storage and memory
requirements, especially for ensembles trained on large datasets.

Construction CompactTreeBagger Create CompactTreeBagger
object

Methods combine Combine two ensembles

error Error (misclassification
probability or MSE)

margin Classification margin

mdsProx Multidimensional scaling of
proximity matrix

meanMargin Mean classification margin

outlierMeasure Outlier measure for data

predict Predict response
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proximity Proximity matrix for data

SetDefaultYfit Set default value for predict

Properties ClassNames Names of classes

DefaultYfit Default value returned by
predict

DeltaCritDecisionSplit Split criterion contributions for
each predictor

Method Method used by trees
(classification or regression)

NTrees Number of decision trees in
ensemble

Trees Decision trees in ensemble

VarNames Variable names

Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.

See Also classregtree

“Regression and Classification by Bagging Decision Trees” on page 12-14

“Classification Trees” on page 12-9

“Regression Trees” on page 9-90

“Grouped Data” on page 2-33
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Purpose Create CompactTreeBagger object

Description When you use the TreeBagger constructor to grow trees, it creates a
CompactTreeBagger object. You can obtain the compact object from the
full TreeBagger object using the TreeBagger/compact method. You do
not create an instance of CompactTreeBagger directly.

See Also “Regression and Classification by Bagging Decision Trees” on page
12-14, Grouped Data

TreeBagger
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TreeBagger.ComputeOOBPrediction property

Purpose Flag to compute out-of-bag predictions

Description The ComputeOOBPrediction property is a logical flag specifying
whether out-of-bag predictions for training observations should be
computed. The default is false.

If this flag is true, the following properties are available:

• OOBIndices

• OOBInstanceWeight

If this flag is true, the following methods can be called:

• oobError

• oobMargin

• oobMeanMargin

See Also oobError, OOBIndices, OOBInstanceWeight, oobMargin,
oobMeanMargin
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TreeBagger.ComputeOOBVarImp property

Purpose Flag to compute out-of-bag variable importance

Description The ComputeOOBVarImp property is a logical flag specifying whether
TreeBagger should compute out-of-bag estimates of variable
importance. The default is false.

If this flag is true, the following properties are available:

• OOBPermutedVarDeltaError

• OOBPermutedVarDeltaMeanMargin

• OOBPermutedVarCountRaiseMargin

See Also ComputeOOBPrediction, OOBPermutedVarDeltaError,
OOBPermutedVarDeltaMeanMargin,OOBPermutedVarCountRaiseMargin,
oobMeanMargin, TreeBagger.
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Purpose Confusion matrix

Syntax C = confusionmat(group,grouphat)
C = confusionmat(group,grouphat,'order',grouporder)
[C,order] = confusionmat(...)

Description C = confusionmat(group,grouphat) returns the confusion matrix C
determined by the known and predicted groups in group and grouphat,
respectively. group and grouphat are grouping variables with the
same number of observations, as described in “Grouped Data” on page
2-33. Input vectors must be of the same type. C is a square matrix
with size equal to the total number of distinct elements in group and
grouphat. C(i,j) is a count of observations known to be in group
i but predicted to be in group j. Group indices and their order are
the same for the rows and columns of C, computed by grp2idx using
grp2idx(group;grouphat). NaN, empty, or 'undefined' groups are
not counted.

C = confusionmat(group,grouphat,'order',grouporder) uses
grouporder to order the rows and columns of C. grouporder is a
grouping variable containing all of the distinct elements in group and
grouphat. If grouporder contains elements that are not in group or
grouphat, the corresponding entries in C will be 0.

[C,order] = confusionmat(...) also returns the order of the rows
and columns of C in a variable order the same type as group and
grouphat.

Examples Example 1

Display the confusion matrix for data with two misclassifications and
one missing classification:

g1 = [1 1 2 2 3 3]'; % Known groups
g2 = [1 1 2 3 4 NaN]'; % Predicted groups

[C,order] = confusionmat(g1,g2)
C =
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2 0 0 0
0 1 1 0
0 0 0 1
0 0 0 0

order =
1
2
3
4

Example 2

Randomize the measurements and groups in Fisher’s iris data:

load fisheriris
numObs = length(species);
p = randperm(numObs);
meas = meas(p,:);
species = species(p);

Use classify to classify measurements in the second half of the data,
using the first half of the data for training:

half = floor(numObs/2);
training = meas(1:half,:);
trainingSpecies = species(1:half);
sample = meas(half+1:end,:);
grouphat = classify(sample,training,trainingSpecies);

Display the confusion matrix for the resulting classification:

group = species(half+1:end);
[C,order] = confusionmat(group,grouphat)
C =

22 0 0
2 22 0
0 0 29

order =
'virginica'
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'versicolor'
'setosa'

See Also “Grouped Data” on page 2-33

crosstab, grp2idx

18-203



controlchart

Purpose Shewhart control charts

Syntax controlchart(X)
controlchart(x,group)
controlchart(X,group)
[stats,plotdata] = controlchart(...)
controlchart(...,param1,val1,param2,val2,...)

Description controlchart(X) produces an xbar chart of the measurements in
matrix X. Each row of X is considered to be a subgroup of measurements
containing replicate observations taken at the same time. The rows
should be in time order. If X is a time series object, the time samples
should contain replicate observations.

The chart plots the means of the subgroups in time order, a center line
(CL) at the average of the means, and upper and lower control limits
(UCL, LCL) at three standard deviations from the center line. Process
standard deviation is estimated from the average of the subgroup
standard deviations. Out of control measurements are marked as
violations and drawn with a red circle. Data cursor mode is enabled, so
clicking any data point displays information about that point.

controlchart(x,group) accepts a grouping variable group for a vector
of measurements x. (See “Grouped Data” on page 2-33.) group is a
categorical variable, vector, string array, or cell array of strings the
same length as x. Consecutive measurements x(n) sharing the same
value of group(n) for 1 ≤ n ≤ length(x) are defined to be a subgroup.
Subgroups can have different numbers of observations.

Control limits are shown at three subgroup standard deviations from
the subgroup means.

controlchart(X,group) accepts a grouping variable group for a matrix
of measurements in X. In this case, group is only used to label the time
axis; it does not change the default grouping by rows.

[stats,plotdata] = controlchart(...) returns a structure stats of
subgroup statistics and parameter estimates, and a structure plotdata
of plotted values. plotdata contains one record for each chart.
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The fields in stats and plotdata depend on the chart type.

The fields in stats are selected from the following:

• mean — Subgroup means

• std — Subgroup standard deviations

• range — Subgroup ranges

• n — Subgroup size, or total inspection size or area

• i — Individual data values

• ma — Moving averages

• mr — Moving ranges

• count — Count of defects or defective items

• mu — Estimated process mean

• sigma— Estimated process standard deviation

• p — Estimated proportion defective

• m — Estimated mean defects per unit

The fields in plotdata are the following:

• pts — Plotted point values

• cl — Center line

• lcl — Lower control limit

• ucl — Upper control limit

• se — Standard error of plotted point

• n — Subgroup size

• ooc— Logical that is true for points that are out of control

controlchart(...,param1,val1,param2,val2,...) specifies one or
more of the following parameter name/value pairs:
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• 'charttype' — The name of a chart type chosen from among the
following:

- 'xbar' — Xbar or mean

- 's' — Standard deviation

- 'r' — Range

- 'ewma'— Exponentially weighted moving average

- 'i' — Individual observation

- 'mr' — Moving range of individual observations

- 'ma'— Moving average of individual observations

- 'p' — Proportion defective

- 'np' — Number of defectives

- 'u' — Defects per unit

- 'c' — Count of defects

Alternatively, a parameter can be a cell array listing multiple
compatible chart types. There are four sets of compatible types:

- 'xbar', 's', 'r', and 'ewma'

- 'i', 'mr', and 'ma'

- 'p' and 'np'

- 'u' and 'c'

• 'display' — Either 'on' (default) to display the control chart, or
'off' to omit the display

• 'label'— A string array or cell array of strings, one per subgroup.
This label is displayed as part of the data cursor for a point on the
plot.

• 'lambda'— A parameter between 0 and 1 controlling how much the
current prediction is influenced by past observations in an EWMA
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plot. Higher values of 'lambda' give less weight to past observations
and more weight to the current observation. The default is 0.4.

• 'limits' — A three-element vector specifying the values of the
lower control limit, center line, and upper control limits. Default is
to estimate the center line and to compute control limits based on
the estimated value of sigma. Not permitted if there are multiple
chart types.

• 'mean' — Value for the process mean, or an empty value (default)
to estimate the mean from X. This is the p parameter for p and np
charts, the mean defects per unit for u and c charts, and the normal
mu parameter for other charts.

• 'nsigma' — The number of sigma multiples from the center line
to a control limit. Default is 3.

• 'parent'— The handle of the axes to receive the control chart plot.
Default is to create axes in a new figure. Not permitted if there are
multiple chart types.

• 'rules' — The name of a control rule, or a cell array containing
multiple control rule names. These rules, together with the control
limits, determine if a point is marked as out of control. The default is
to apply no control rules, and to use only the control limits to decide
if a point is out of control. See controlrules for more information.
Control rules are applied to charts that measure the process level
(xbar, i, c, u, p, and np) rather than the variability (r, s), and they
are not applied to charts based on moving statistics (ma, mr, ewma).

• 'sigma' — Either a value for sigma, or a method of estimating
sigma chosen from among 'std' (the default) to use the average
within-subgroup standard deviation, 'range' to use the average
subgroup range, and 'variance' to use the square root of the pooled
variance. When creating i, mr, or ma charts for data not in subgroups,
the estimate is always based on a moving range.

• 'specs'— A vector specifying specification limits. Typically this is
a two-element vector of lower and upper specification limits. Since
specification limits typically apply to individual measurements, this
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parameter is primarily suitable for i charts. These limits are not
plotted on r, s, or mr charts.

• 'unit'— The total number of inspected items for p and np charts,
and the size of the inspected unit for u and c charts. In both cases
X must be the count of the number of defects or defectives found.
Default is 1 for u and c charts. This argument is required (no default)
for p and np charts.

• 'width'— The width of the window used for computing the moving
ranges and averages in mr and ma charts, and for computing the
sigma estimate in i, mr, and ma charts. Default is 5.

Examples Create xbar and r control charts for the data in parts.mat:

load parts
st = controlchart(runout,'chart',{'xbar' 'r'});
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Display the process mean and standard deviation:

fprintf('Parameter estimates: mu = %g, sigma = %g\n',st.mu,st.sigma);

Parameter estimates: mu = -0.0863889, sigma = 0.130215

See Also “Grouped Data” on page 2-33

controlrules
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Purpose Western Electric and Nelson control rules

Syntax R = controlrules(rules,x,cl,se)
[R,RULES] = controlrules(...)

Description R = controlrules(rules,x,cl,se) determines which points in the
vector x violate the control rules in rules. cl is a vector of center-line
values. se is a vector of standard errors. (Typically, control limits on a
control chart are at the values cl – 3*se and cl + 3*se.) rules is the
name of a control rule, or a cell array containing multiple control rule
names, from the list below. If x has n values and rules contains m
rules, then R is an n-by-m logical array, with R(i,j) assigned the value
1 if point i violates rule j, 0 if it does not.

The following are accepted values for rules:

• 'we1' — 1 point above cl + 3*se

• 'we2' — 2 of 3 above cl + 2*se

• 'we3' — 4 of 5 above cl + se

• 'we4' — 8 of 8 above cl

• 'we5' — 1 below cl 3*se

• 'we6' — 2 of 3 below cl 2*se

• 'we7' — 4 of 5 below cl se

• 'we8' — 8 of 8 below cl

• 'we9'— 15 of 15 between cl se and cl + se

• 'we10' — 8 of 8 below cl se or above cl + se

• 'n1' — 1 point below cl 3*se or above cl + 3*se

• 'n2' — 9 of 9 on the same side of cl

• 'n3' — 6 of 6 increasing or decreasing

• 'n4' — 14 alternating up/down
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• 'n5'— 2 of 3 below cl 2*se or above cl + 2*se, same side

• 'n6'— 4 of 5 below cl se or above cl + se, same side

• 'n7' — 15 of 15 between cl se and cl + se

• 'n8'— 8 of 8 below cl se or above cl + se, either side

• 'we' — All Western Electric rules

• 'n' — All Nelson rules

For multi-point rules, a rule violation at point i indicates that the set
of points ending at point i triggered the rule. Point i is considered to
have violated the rule only if it is one of the points violating the rule’s
condition.

Any points with NaN as their x, cl, or se values are not considered to
have violated rules, and are not counted in the rules for other points.

Control rules can be specified in the controlchart function as values
for the 'rules' parameter.

[R,RULES] = controlrules(...) returns a cell array of text strings
RULES listing the rules applied.

Examples Create an xbar chart using the we2 rule to mark out of control
measurements:

load parts;
st = controlchart(runout,'rules','we2');
x = st.mean;
cl = st.mu;
se = st.sigma./sqrt(st.n);
hold on
plot(cl+2*se,'m')
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Use controlrules to identify the measurements that violate the
control rule:

R = controlrules('we2',x,cl,se);
I = find(R)
I =

21
23
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24
25
26
27

See Also controlchart
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gmdistribution.Converged property

Purpose Determine if algorithm converged

Description Logical true if the algorithm has converged; logical false if the
algorithm has not converged.

Note This property applies only to gmdistribution objects constructed
with fit.
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Purpose Cophenetic correlation coefficient

Syntax c = cophenet(Z,Y)
[c,d] = cophenet(Z,Y)

Description c = cophenet(Z,Y) computes the cophenetic correlation coefficient
for the hierarchical cluster tree represented by Z. Z is the output of
the linkage function. Y contains the distances or dissimilarities used
to construct Z, as output by the pdist function. Z is a matrix of size
(m-1)-by-3, with distance information in the third column. Y is a vector
of size .

[c,d] = cophenet(Z,Y) returns the cophenetic distances d in the same
lower triangular distance vector format as Y.

The cophenetic correlation for a cluster tree is defined as the linear
correlation coefficient between the cophenetic distances obtained from
the tree, and the original distances (or dissimilarities) used to construct
the tree. Thus, it is a measure of how faithfully the tree represents the
dissimilarities among observations.

The cophenetic distance between two observations is represented in a
dendrogram by the height of the link at which those two observations
are first joined. That height is the distance between the two subclusters
that are merged by that link.

The output value, c, is the cophenetic correlation coefficient. The
magnitude of this value should be very close to 1 for a high-quality
solution. This measure can be used to compare alternative cluster
solutions obtained using different algorithms.

The cophenetic correlation between Z(:,3) and Y is defined as

where:
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• Yij is the distance between objects i and j in Y.

• Zij is the cophenetic distance between objects i and j, from Z(:,3).

• y and z are the average of Y and Z(:,3), respectively.

Examples X = [rand(10,3); rand(10,3)+1; rand(10,3)+2];
Y = pdist(X);
Z = linkage(Y,'average');

% Compute Spearman's rank correlation between the
% dissimilarities and the cophenetic distances
[c,D] = cophenet(Z,Y);
r = corr(Y',D','type','spearman')
r =

0.8279

See Also cluster, dendrogram, inconsistent, linkage, pdist, squareform
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Purpose Copula cumulative distribution function

Syntax Y = copulacdf('Gaussian',U,rho)
Y = copulacdf('t',U,rho,NU)
Y = copulacdf(family,U,alpha)

Description Y = copulacdf('Gaussian',U,rho) returns the cumulative
probability of the Gaussian copula with linear correlation parameters
rho, evaluated at the points in U. U is an n-by-p matrix of values in
[0,1], representing n points in the p-dimensional unit hypercube. rho
is a p-by-p correlation matrix. If U is an n-by-2 matrix, rho may also
be a scalar correlation coefficient.

Y = copulacdf('t',U,rho,NU) returns the cumulative probability
of the t copula with linear correlation parameters rho and degrees
of freedom parameter NU, evaluated at the points in U. U is an n-by-p
matrix of values in [0,1]. rho is a p-by-p correlation matrix. If U is an
n-by-2 matrix, rho may also be a scalar correlation coefficient.

Y = copulacdf(family,U,alpha) returns the cumulative probability
of the bivariate Archimedean copula determined by family, with scalar
parameter alpha, evaluated at the points in U. family is 'Clayton',
'Frank', or 'Gumbel'. U is an n-by-2 matrix of values in [0,1].

Examples u = linspace(0,1,10);
[U1,U2] = meshgrid(u,u);
F = copulacdf('Clayton',[U1(:) U2(:)],1);
surf(U1,U2,reshape(F,10,10))
xlabel('u1')
ylabel('u2')
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See Also copulapdf, copularnd, copulastat, copulaparam
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Purpose Fit copula to data

Syntax RHOHAT = copulafit('Gaussian',U)
[RHOHAT,nuhat] = copulafit('t',U)
[RHOHAT,nuhat,nuci] = copulafit('t',U)
paramhat = copulafit(family,U)
[paramhat,paramci] = copulafit(family,U)
[...] = copulafit(...,'alpha',alpha)
[...] = copulafit('t',U,'Method','ApproximateML')
[...] = copulafit(...,'Options',options)

Description RHOHAT = copulafit('Gaussian',U) returns an estimate RHOHAT of
the matrix of linear correlation parameters for a Gaussian copula, given
data in U. U is an n-by-p matrix of values in the open interval (0,1)
representing n points in the p-dimensional unit hypercube.

[RHOHAT,nuhat] = copulafit('t',U) returns an estimate RHOHAT
of the matrix of linear correlation parameters for a t copula and an
estimate nuhat of the degrees of freedom parameter, given data in U.
U is an n-by-p matrix of values in the open interval (0,1) representing
n points in the p-dimensional unit hypercube.

[RHOHAT,nuhat,nuci] = copulafit('t',U) also returns an
approximate 95% confidence interval nuci for the degrees of freedom
parameter estimated in nuhat.

paramhat = copulafit(family,U) returns an estimate paramhat of
the copula parameter for an Archimedean copula specified by family,
given data in U. U is an n-by-2 matrix of values in the open interval (0,1)
representing n points in the unit square. family is one of 'Clayton',
'Frank', or 'Gumbel'.

[paramhat,paramci] = copulafit(family,U) also returns an
approximate 95% confidence interval paramci for the copula parameter
estimated in paramhat.

[...] = copulafit(...,'alpha',alpha) returns approximate
100*(1-alpha)% confidence intervals in nuci or paramci.

18-219



copulafit

Note By default, copulafit uses maximum likelihood to fit a
copula to U. When U contains data transformed to the unit hypercube
by parametric estimates of their marginal cumulative distribution
functions, this is known as the Inference Functions for Margins (IFM)
method. When U contains data transformed by the empirical cdf (see
ecdf), this is known as Canonical Maximum Likelihood (CML).

[...] = copulafit('t',U,'Method','ApproximateML') fits a t
copula for large samples U by maximizing an objective function that
approximates the profile log-likelihood for the degrees of freedom
parameter (see [1]). This method can be significantly faster than
maximum likelihood, but the estimates and confidence limits may not
be accurate for small to moderate sample sizes.

[...] = copulafit(...,'Options',options) specifies control
parameters for the iterative parameter estimation algorithm
using an options structure options as created by statset. Type
statset('copulafit') at the command prompt for fields and default
values used by copulafit. This argument is not applicable to the
'Gaussian' family.

References [1] Bouye, E., V. Durrleman, A. Nikeghbali, G. Riboulet, and T. Roncalli.
“Copulas for Finance: A Reading Guide and Some Applications.”
Working Paper. Groupe de Recherche Operationnelle, Credit Lyonnais,
2000.

Examples Load and plot simulated stock return data:

load stockreturns
x = stocks(:,1);
y = stocks(:,2);

scatterhist(x,y)
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Transform the data to the copula scale (unit square) using a kernel
estimator of the cumulative distribution function:

u = ksdensity(x,x,'function','cdf');
v = ksdensity(y,y,'function','cdf');

scatterhist(u,v)
xlabel('u')
ylabel('v')
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Fit a t copula:

[Rho,nu] = copulafit('t',[u v],'Method','ApproximateML')
Rho =

1.0000 0.7220
0.7220 1.0000

nu =
2.8934e+006

Generate a random sample from the t copula:

r = copularnd('t',Rho,nu,1000);
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u1 = r(:,1);
v1 = r(:,2);

scatterhist(u1,v1)
xlabel('u')
ylabel('v')
set(get(gca,'children'),'marker','.')

Transform the random sample back to the original scale of the data:

x1 = ksdensity(x,u1,'function','icdf');
y1 = ksdensity(y,v1,'function','icdf');
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scatterhist(x1,y1)
set(get(gca,'children'),'marker','.')

See Also ecdf, copulacdf, copulaparam, copulapdf, copularnd, copulastat
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Purpose Copula parameters as function of rank correlation

Syntax rho = copulaparam('Gaussian',R)
rho = copulaparam('t',R,NU)
alpha = copulaparam(family,R)
[...] = copulaparam(...,'type',type)

Description rho = copulaparam('Gaussian',R) returns the linear correlation
parameters rho corresponding to a Gaussian copula having Kendall’s
rank correlation R. If R is a scalar correlation coefficient, rho is a scalar
correlation coefficient corresponding to a bivariate copula. If R is a
p-by-p correlation matrix, rho is a p-by-p correlation matrix.

rho = copulaparam('t',R,NU) returns the linear correlation
parameters rho corresponding to a t copula having Kendall’s rank
correlation R and degrees of freedom NU. If R is a scalar correlation
coefficient, rho is a scalar correlation coefficient corresponding to a
bivariate copula. If R is a p-by-p correlation matrix, rho is a p-by-p
correlation matrix.

alpha = copulaparam(family,R) returns the copula parameter alpha
corresponding to a bivariate Archimedean copula having Kendall’s
rank correlation R. R is a scalar. family is one of 'Clayton', 'Frank',
or 'Gumbel'.

[...] = copulaparam(...,'type',type) assumes R is the specified
type of rank correlation. type is 'Kendall' for Kendall’s tau or
'Spearman' for Spearman’s rho.

copulaparam uses an approximation to Spearman’s rank correlation
for some copula families when no analytic formula exists. The
approximation is based on a smooth fit to values computed using Monte
Carlo simulations.

Examples Get the linear correlation coefficient corresponding to a bivariate
Gaussian copula having a rank correlation of -0.5.

tau = -0.5
rho = copulaparam('gaussian',tau)
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rho =
-0.7071

% Generate dependent beta random values using that copula
u = copularnd('gaussian',rho,100);
b = betainv(u,2,2);

% Verify that the sample has a rank correlation
% approximately equal to tau
tau_sample = corr(b,'type','k')
tau_sample =

1.0000 -0.4638
-0.4638 1.0000

See Also copulacdf, copulapdf, copularnd, copulastat
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Purpose Copula probability density function

Syntax Y = copulapdf('Gaussian',U,rho)
Y = copulapdf('t',U,rho,NU)
Y = copulapdf(family,U,alpha)

Description Y = copulapdf('Gaussian',U,rho) returns the probability density of
the Gaussian copula with linear correlation parameters rho, evaluated
at the points in U. U is an n-by-p matrix of values in [0,1], representing
n points in the p-dimensional unit hypercube. rho is a p-by-p correlation
matrix. If U is an n-by-2 matrix, rho may also be a scalar correlation
coefficient.

Y = copulapdf('t',U,rho,NU) returns the probability density of the t
copula with linear correlation parameters rho and degrees of freedom
parameter NU, evaluated at the points in U. U is an n-by-p matrix of
values in [0,1]. rho is a p-by-p correlation matrix. If U is an n-by-2
matrix, rho may also be a scalar correlation coefficient.

Y = copulapdf(family,U,alpha) returns the probability density of
the bivariate Archimedean copula determined by family, with scalar
parameter alpha, evaluated at the points in U. family is 'Clayton',
'Frank', or 'Gumbel'. U is an n-by-2 matrix of values in [0,1].

Examples u = linspace(0,1,10);
[U1,U2] = meshgrid(u,u);
F = copulapdf('Clayton',[U1(:) U2(:)],1);
surf(U1,U2,reshape(F,10,10))
xlabel('u1')
ylabel('u2')
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See Also copulacdf, copulaparam, copularnd, copulastat
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Purpose Copula rank correlation

Syntax R = copulastat('Gaussian',rho)
R = copulastat('t',rho,NU)
R = copulastat(family,alpha)
R = copulastat(...,'type',type)

Description R = copulastat('Gaussian',rho) returns the Kendall’s rank
correlation R that corresponds to a Gaussian copula having linear
correlation parameters rho. If rho is a scalar correlation coefficient, R is
a scalar correlation coefficient corresponding to a bivariate copula. If
rho is a p-by-p correlation matrix, R is a p-by-p correlation matrix.

R = copulastat('t',rho,NU) returns the Kendall’s rank correlation R
that corresponds to a t copula having linear correlation parameters rho
and degrees of freedom NU. If rho is a scalar correlation coefficient, R is
a scalar correlation coefficient corresponding to a bivariate copula. If
rho is a p-by-p correlation matrix, R is a p-by-p correlation matrix.

R = copulastat(family,alpha) returns the Kendall’s rank correlation
R that corresponds to a bivariate Archimedean copula with scalar
parameter alpha. family is one of 'Clayton', 'Frank', or 'Gumbel'.

R = copulastat(...,'type',type) returns the specified type of rank
correlation. type is 'Kendall' to compute Kendall’s tau, or 'Spearman'
to compute Spearman’s rho.

copulastat uses an approximation to Spearman’s rank correlation
for some copula families when no analytic formula exists. The
approximation is based on a smooth fit to values computed using
Monte-Carlo simulations.

Examples Get the theoretical rank correlation coefficient for a bivariate.

% Gaussian copula with linear correlation parameter rho
rho = -.7071;
tau = copulastat('gaussian',rho)
tau =

-0.5000
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% Generate dependent beta random values using that copula
u = copularnd('gaussian',rho,100);
b = betainv(u,2,2);

% Verify that the sample has a rank correlation
% approximately equal to tau
tau_sample = corr(b,'type','k')
tau_sample =

1.0000 -0.5265
-0.5265 1.0000

See Also copulacdf, copulaparam, copulapdf, copularnd
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Purpose Copula random numbers

Syntax U = copularnd('Gaussian',rho,N)
U = copularnd('t',rho,NU,N)
U = copularnd(family,alpha,N)

Description U = copularnd('Gaussian',rho,N) returns N random vectors
generated from a Gaussian copula with linear correlation parameters
rho. If rho is a p-by-p correlation matrix, U is an n-by-p matrix. If rho is
a scalar correlation coefficient, copularnd generates U from a bivariate
Gaussian copula. Each column of U is a sample from a Uniform(0,1)
marginal distribution.

U = copularnd('t',rho,NU,N) returns N random vectors generated
from a t copula with linear correlation parameters rho and degrees of
freedom NU. If rho is a p-by-p correlation matrix, U is an n-by-p matrix.
If rho is a scalar correlation coefficient, copularnd generates U from a
bivariate t copula. Each column of U is a sample from a Uniform(0,1)
marginal distribution.

U = copularnd(family,alpha,N) returns N random vectors generated
from the bivariate Archimedean copula determined by family, with
scalar parameter alpha. family is 'Clayton', 'Frank', or 'Gumbel'. U
is an n-by-2 matrix. Each column of U is a sample from a Uniform(0,1)
marginal distribution.

Examples Determine the linear correlation parameter corresponding to a bivariate
Gaussian copula having a rank correlation of -0.5.

tau = -0.5
rho = copulaparam('gaussian',tau)
rho =

-0.7071

% Generate dependent beta random values using that copula
u = copularnd('gaussian',rho,100);
b = betainv(u,2,2);
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% Verify that the sample has a rank correlation
% approximately equal to tau
tau_sample = corr(b,'type','kendall')
tau_sample =

1.0000 -0.4537
-0.4537 1.0000

See Also copulacdf, copulaparam, copulapdf, copulastat
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Purpose Coordinate exchange

Syntax dCE = cordexch(nfactors,nruns)
[dCE,X] = cordexch(nfactors,nruns)
[dCE,X] = cordexch(nfactors,nruns,model)
[dCE,X] = cordexch(...,param1,val1,param2,val2,...)

Description dCE = cordexch(nfactors,nruns) uses a coordinate-exchange
algorithm to generate a D-optimal design dCE with nruns runs (the rows
of dCE) for a linear additive model with nfactors factors (the columns
of dCE). The model includes a constant term.

[dCE,X] = cordexch(nfactors,nruns) also returns the associated
design matrix X, whose columns are the model terms evaluated at each
treatment (row) of dCE.

[dCE,X] = cordexch(nfactors,nruns,model) uses the linear
regression model specified in model. model is one of the following
strings:

• 'linear'— Constant and linear terms. This is the default.

• 'interaction'— Constant, linear, and interaction terms

• 'quadratic'— Constant, linear, interaction, and squared terms

• 'purequadratic'— Constant, linear, and squared terms

The order of the columns of X for a full quadratic model with n terms is:

1 The constant term

2 The linear terms in order 1, 2, ..., n

3 The interaction terms in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n–1, n)

4 The squared terms in order 1, 2, ..., n

Other models use a subset of these terms, in the same order.
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Alternatively, model can be a matrix specifying polynomial terms of
arbitrary order. In this case, model should have one column for each
factor and one row for each term in the model. The entries in any row
of model are powers for the factors in the columns. For example, if a
model has factors X1, X2, and X3, then a row [0 1 2] in model specifies
the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model
specifies a constant term, which can be omitted.

[dCE,X] = cordexch(...,param1,val1,param2,val2,...) specifies
additional parameter/value pairs for the design. Valid parameters and
their values are listed in the following table.

Parameter Value

'bounds' Lower and upper bounds for each factor, specified as
a 2-by-nfactors matrix. Alternatively, this value
can be a cell array containing nfactors elements,
each element specifying the vector of allowable
values for the corresponding factor.

'categorical' Indices of categorical predictors.

'display' Either 'on' or 'off' to control display of the
iteration counter. The default is 'on'.

'excludefun' Handle to a function that excludes undesirable
runs. If the function is f, it must support the syntax
b = f(S), where S is a matrix of treatments with
nfactors columns and b is a vector of Boolean
values with the same number of rows as S. b(i) is
true if the method should exclude ith row S.

'init' Initial design as a nruns-by-nfactors matrix. The
default is a randomly selected set of points.

'levels' Vector of number of levels for each factor.
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Parameter Value

'maxiter' Maximum number of iterations. The default is 10.

'tries' Number of times to try to generate a design from
a new starting point. The algorithm uses random
points for each try, except possibly the first. The
default is 1.

Algorithm Both cordexch and rowexch use iterative search algorithms. They
operate by incrementally changing an initial design matrix X to increase
D = |XTX| at each step. In both algorithms, there is randomness
built into the selection of the initial design and into the choice of the
incremental changes. As a result, both algorithms may return locally,
but not globally, D-optimal designs. Run each algorithm multiple times
and select the best result for your final design. Both functions have a
'tries' parameter that automates this repetition and comparison.

Unlike the row-exchange algorithm used by rowexch, cordexch does not
use a candidate set. (Or rather, the candidate set is the entire design
space.) At each step, the coordinate-exchange algorithm exchanges a
single element of X with a new element evaluated at a neighboring
point in design space. The absence of a candidate set reduces demands
on memory, but the smaller scale of the search means that the
coordinate-exchange algorithm is more likely to become trapped in a
local minimum.

Examples Suppose you want a design to estimate the parameters in the following
three-factor, seven-term interaction model:

y x x x x x x x x x= + + + + + + +       0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3

Use cordexch to generate a D-optimal design with seven runs:

nfactors = 3;
nruns = 7;
[dCE,X] = cordexch(nfactors,nruns,'interaction','tries',10)
dCE =

18-235



cordexch

-1 1 1
-1 -1 -1
1 1 1

-1 1 -1
1 -1 1
1 -1 -1

-1 -1 1
X =

1 -1 1 1 -1 -1 1
1 -1 -1 -1 1 1 1
1 1 1 1 1 1 1
1 -1 1 -1 -1 1 -1
1 1 -1 1 -1 1 -1
1 1 -1 -1 -1 -1 1
1 -1 -1 1 1 -1 -1

Columns of the design matrix X are the model terms evaluated at each
row of the design dCE. The terms appear in order from left to right:
constant term, linear terms (1, 2, 3), interaction terms (12, 13, 23). Use
X to fit the model, as described in “Linear Regression” on page 9-3, to
response data measured at the design points in dCE.

See Also rowexch, daugment, dcovary
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Purpose Linear or rank correlation

Syntax RHO = corr(X)
RHO = corr(X,Y,...)
[RHO,PVAL] = corr(...)
[...] = corr(...,param1,val1,param2,val2,...)

Description RHO = corr(X) returns a p-by-p matrix containing the pairwise linear
correlation coefficient between each pair of columns in the n-by-p
matrix X.

RHO = corr(X,Y,...) returns a p1-by-p2 matrix containing the
pairwise correlation coefficient between each pair of columns in the
n-by-p1 and n-by-p2 matrices X and Y.

[RHO,PVAL] = corr(...) also returns PVAL, a matrix of p-values for
testing the hypothesis of no correlation against the alternative that
there is a nonzero correlation. Each element of PVAL is the p-value for
the corresponding element of RHO. If PVAL(i, j) is small, say less than
0.05, then the correlation RHO(i, j) is significantly different from zero.

[...] = corr(...,param1,val1,param2,val2,...) specifies
additional parameters and their values. The following table lists the
valid parameters and their values.

Parameter Values

'type' • 'Pearson' (the default) computes Pearson’s
linear correlation coefficient

• 'Kendall' computes Kendall’s tau

• 'Spearman' computes Spearman’s rho
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Parameter Values

'rows' • 'all' (the default) uses all rows regardless of
missing values (NaNs)

• 'complete' uses only rows with no missing
values

• 'pairwise'computes RHO(i,j) using rows
with no missing values in column i or j

'tail' — The
alternative
hypothesis
against which to
compute p-values
for testing the
hypothesis of no
correlation

• 'both'— Correlation is not zero (the default)

• 'right'— Correlation is greater than zero

• 'left'— Correlation is less than zero

Using the 'pairwise' option for the 'rows' parameter may return a
matrix that is not positive definite. The 'complete' option always
returns a positive definite matrix, but in general the estimates are
based on fewer observations.

corr computes p-values for Pearson’s correlation using a Student’s
t distribution for a transformation of the correlation. This correlation
is exact when X and Y are normal. corr computes p-values for
Kendall’s tau and Spearman’s rho using either the exact permutation
distributions (for small sample sizes), or large-sample approximations.

corr computes p-values for the two-tailed test by doubling the more
significant of the two one-tailed p-values.

References [1] Gibbons, J.D. (1985) Nonparametric Statistical Inference, 2nd ed.,
M. Dekker.

[2] Hollander, M. and D.A. Wolfe (1973) Nonparametric Statistical
Methods, Wiley.
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[3] Kendall, M.G. (1970) Rank Correlation Methods, Griffin.

[4] Best, D.J. and D.E. Roberts (1975) "Algorithm AS 89: The Upper
Tail Probabilities of Spearman’s rho", Applied Statistics, 24:377-379.

See Also corrcoef, partialcorr, corrcov, tiedrank
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Purpose Convert covariance matrix to correlation matrix

Syntax R = corrcov(C)
[R,sigma] = corrcov(C)

Description R = corrcov(C) computes the correlation matrix R corresponding to
the covariance matrix C. C must be square, symmetric, and positive
semi-definite.

[R,sigma] = corrcov(C) also computes the vector of standard
deviations sigma.

Examples Use cov and corrcoef to compute covariances and correlations,
respectively, for sample data on weight and blood pressure (systolic,
diastolic) in hospital.mat:

load hospital
X = [hospital.Weight hospital.BloodPressure];
C = cov(X)
C =

706.0404 27.7879 41.0202
27.7879 45.0622 23.8194
41.0202 23.8194 48.0590

R = corrcoef(X)
R =

1.0000 0.1558 0.2227
0.1558 1.0000 0.5118
0.2227 0.5118 1.0000

Compare R with the correlation matrix computed from C by corrcov:

corrcov(C)
ans =

1.0000 0.1558 0.2227
0.1558 1.0000 0.5118
0.2227 0.5118 1.0000

See Also cov, corrcoef, corr, cholcov
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TreeBagger.Cost property

Purpose Misclassification costs

Description The Cost property is a matrix with misclassification costs. This
property is empty for ensembles of regression trees.

See Also classregtree
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gmdistribution.CovType property

Purpose Type of covariance matrices

Description The string 'diagonal' if the covariance matrices are restricted to be
diagonal; the string 'full' otherwise.
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Purpose Cox proportional hazards regression

Syntax b = coxphfit(X,y)
[...] = coxphfit(X,Y,param1,val1,param2,val2,...)
[b,logl,H,stats] = coxphfit(...)

Description b = coxphfit(X,y) returns a p-by-1 vector b of coefficient estimates
for a Cox proportional hazards regression of the responses in y on
the predictors in X. X is an n-by-p matrix of p predictors at each of n
observations. y is an n-by-1 vector of observed responses.

The phrase h(t)*exp(X*b) models the hazard rate for the distribution
of y, where h(t) is a common baseline hazard function. The model does
not include a constant term, and X cannot contain a column of 1s.

[...] = coxphfit(X,Y,param1,val1,param2,val2,...) specifies
additional parameter name/value pairs chosen from the following:

Name Value

'baseline' The X values at which to compute the baseline
hazard. Default is mean(X), so the hazard at X is
h(t)*exp((X-mean(X))*b). Enter 0 to compute
the baseline relative to 0, so the hazard at X is
h(t)*exp(X*b).

'censoring' A Boolean array of the same size as y that is 1
for observations that are right-censored and 0 for
observations that are observed exactly. Default is all
observations observed exactly.

'frequency' An array of the same size as y containing nonnegative
integer counts. The jth element of this vector gives
the number of times the method observes the jth

element of y and the jth row of X. Default is one
observation per row of X and y.
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Name Value

'init' A vector containing initial values for the estimated
coefficients b.

'options' A structure specifying control parameters for
the iterative algorithm used to estimate b. A
call to statset can create this argument. For
parameter names and default values, type
statset('coxphfit').

[b,logl,H,stats] = coxphfit(...) returns additional results. logl
is the log likelihood. H is a two-column matrix containing y values in the
first column and the estimated baseline cumulative hazard evaluated at
those values in the second column. stats is a structure that contains
the fields:

• beta — Coefficient estimates (same as b)

• se — Standard errors of coefficient estimates b

• z — z statistics for b (b divided by standard error)

• p — p-values for b

• covb — Estimated covariance matrix for b

Examples Generate Weibull data depending on predictor x:

x = 4*rand(100,1);
A = 50*exp(-0.5*x); B = 2;
y = wblrnd(A,B);

Fit a Cox model :

[b,logL,H,stats] = coxphfit(x,y);

Show the Cox estimate of the baseline survivor function together with
the known Weibull function:

stairs(H(:,1),exp(-H(:,2)))
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xx = linspace(0,100);
line(xx,1-wblcdf(xx,50*exp(-0.5*mean(x)),B),'color','r')
xlim([0,50])
legend('Survivor Function','Weibull Function')

References [1] Cox, D.R., and D. Oakes. Analysis of Survival Data. London:
Chapman & Hall, 1984.

[2] Lawless, J. F. Statistical Models and Methods for Lifetime Data.
Hoboken, NJ: Wiley-Interscience, 2002.

See Also ecdf, statset, wblfit
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NaiveBayes.CPrior property

Purpose Class priors

Description The CPrior property is a vector of length NClasses containing the class
priors. The priors for empty classes are zero.
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Purpose Cross-tabulation

Syntax table = crosstab(x1,x2)
table = crosstab(x1,x2,x3,...)
[table,chi2,p] = crosstab(...)
[table,chi2,p,labels] = crosstab(...)

Description table = crosstab(x1,x2) returns a cross-tabulation table of two
vectors of the same length x1 and x2. table is m-by-n, where m is the
number of distinct values in x1 and n is the number of distinct values
in x2.

x1 and x2 are grouping variables, as described in “Grouped Data” on
page 2-33. crosstab uses grp2idx to assign a positive integer to each
distinct value. table(i,j) is a count of indices where grp2idx(x1)
is i and grp2idx(x2) is j. The numerical order of grp2idx(x1) and
grp2idx(x2) order rows and columns of table, respectively.

table = crosstab(x1,x2,x3,...) returns a multi-dimensional table
where table(i,j,k,...) is a count of indices where grp2idx(x1) is i,
grp2idx(x2) is j, grp2idx(x3) is k, and so on.

[table,chi2,p] = crosstab(...) also returns the chi-square
statistic chi2 and its p-value p for a test that table is independent in
each dimension. The null hypothesis is that the proportion in any entry
of table is the product of the proportions in each dimension.

[table,chi2,p,labels] = crosstab(...) also returns a cell array
labels with one column for each input argument. The entries in the
first column are labels for the rows of table, the entries in the second
column are labels for the columns, and so on, for a multi-dimensional
table.

Examples Example 1

Cross-tabulate two vectors with three and four distinct values,
respectively:

x = [1 1 2 3 1]; y = [1 2 5 3 1];
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table = crosstab(x,y)
table =

2 1 0 0
0 0 0 1
0 0 1 0

Example 2

Generate two independent vectors, each containing 50 discrete uniform
random numbers in the range 1:3:

x1 = unidrnd(3,50,1);
x2 = unidrnd(3,50,1);
[table,chi2,p] = crosstab(x1,x2)
table =

1 6 7
5 5 2

11 7 6
chi2 =

7.5449
p =

0.1097

At the 95% confidence level, the p-value fails to reject the null
hypothesis that table is independent in each dimension.

Example 3

The file carbig.mat contains measurements of large model cars during
the years 1970-1982:

load carbig
[table,chi2,p,labels] = crosstab(cyl4,when,org)
table(:,:,1) =

82 75 25
12 22 38

table(:,:,2) =
0 4 3

23 26 17
table(:,:,3) =
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3 3 4
12 25 32

chi2 =
207.7689

p =
0

label =
'Other' 'Early' 'USA'
'Four' 'Mid' 'Europe'

[] 'Late' 'Japan'

table and label together show that the number of four-cylinder cars
made in the USA during the late period of the data was table(2,3,1)
or 38 cars.

See Also “Grouped Data” on page 2-33

tabulate, grp2idx
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Purpose Loss estimate using cross-validation

Syntax vals = crossval(fun,X)
vals = crossval(fun,X,Y,...)
mse = crossval('mse',X,y,'Predfun',predfun)
mcr = crossval('mcr',X,y,'Predfun',predfun)
val = crossval(criterion,X1,X2,...,y,'Predfun',predfun)
vals = crossval(...,param1,val1,param2,val2,...)

Description vals = crossval(fun,X) performs 10-fold cross-validation for the
function fun, applied to the data in X.

fun is a function handle to a function with two inputs, the training
subset of X, XTRAIN, and the test subset of X, XTEST, as follows:

testval = fun(XTRAIN,XTEST)

Each time it is called, fun should use XTRAIN to fit a model, then return
some criterion testval computed on XTEST using that fitted model.

X can be a column vector or a matrix. Rows of X correspond to
observations; columns correspond to variables or features. Each row of
vals contains the result of applying fun to one test set. If testval is
a non-scalar value, crossval converts it to a row vector using linear
indexing and stored in one row of vals.

vals = crossval(fun,X,Y,...) is used when data are stored in
separate variables X, Y, ... . All variables (column vectors, matrices, or
arrays) must have the same number of rows. fun is called with the
training subsets of X, Y, ... , followed by the test subsets of X, Y, ... ,
as follows:

testvals = fun(XTRAIN,YTRAIN,...,XTEST,YTEST,...)

mse = crossval('mse',X,y,'Predfun',predfun) returns mse, a
scalar containing a 10-fold cross-validation estimate of mean-squared
error for the function predfun. X can be a column vector, matrix, or
array of predictors. y is a column vector of response values. X and y
must have the same number of rows.
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predfun is a function handle called with the training subset of X, the
training subset of y, and the test subset of X as follows:

yfit = predfun(XTRAIN,ytrain,XTEST)

Each time it is called, predfun should use XTRAIN and ytrain to fit a
regression model and then return fitted values in a column vector yfit.
Each row of yfit contains the predicted values for the corresponding
row of XTEST. crossval computes the squared errors between yfit
and the corresponding response test set, and returns the overall mean
across all test sets.

mcr = crossval('mcr',X,y,'Predfun',predfun) returns mcr, a
scalar containing a 10-fold cross-validation estimate of misclassification
rate (the proportion of misclassified samples) for the function predfun.
The matrix X contains predictor values and the vector y contains class
labels. predfun should use XTRAIN and YTRAIN to fit a classification
model and return yfit as the predicted class labels for XTEST.
crossval computes the number of misclassifications between yfit
and the corresponding response test set, and returns the overall
misclassification rate across all test sets.

val = crossval(criterion,X1,X2,...,y,'Predfun',predfun),
where criterion is 'mse' or 'mcr', returns a cross-validation estimate
of mean-squared error (for a regression model) or misclassification rate
(for a classification model) with predictor values in X1, X2, ... and,
respectively, response values or class labels in y. X1, X2, ... and y must
have the same number of rows. predfun is a function handle called
with the training subsets of X1, X2, ..., the training subset of y, and the
test subsets of X1, X2, ..., as follows:

yfit=predfun(X1TRAIN,X2TRAIN,...,ytrain,X1TEST,X2TEST,...)

yfit should be a column vector containing the fitted values.

vals = crossval(...,param1,val1,param2,val2,...) specifies
optional parameter name/value pairs from the following table:
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Name Value

'holdout' A scalar specifying the ratio or the number
of observations p for holdout cross-validation.
When 0 < p < 1, approximately p*n observations
for the test set are randomly selected. When p
is an integer, p observations for the test set are
randomly selected.

'kfold' A scalar specifying the number of folds k for
k-fold cross-validation.

'leaveout' Specifies leave-one-out cross-validation. The
value must be 1.

'mcreps' A positive integer specifying the number of
Monte-Carlo repetitions for validation. Ifthe
first input of crossval is 'mse' or 'mcr',
crossval returns the mean of mean-squared
error or misclassification rate across all of the
Monte-Carlo repetitions. Otherwise, crossval
concatenates the values vals from all of
the Monte-Carlo repetitions along the first
dimension.

'partition' An object c of the cvpartition class, specifying
the cross-validation type and partition.

'stratify' A column vector group specifying groups for
stratification. Both training and test sets have
roughly the same class proportions as in group.
NaNs or empty strings in group are treated as
missing values, and the corresponding rows of
the data are ignored.

'options' A struct that specifies options that govern the
computation of crossval. One option requests
that crossval conduct multiple function
evaluations using multiple processors, if the
Parallel Computing Toolbox is available. Two

18-252



crossval

Name Value

options specify the random number streams to
use in constructing randomized cvpartition
objects. You can create this argument with
a call to statset You can retrieve values of
the individual fields with a call to statget.
Applicable statset parameters are:

• 'UseParallel' — If 'always' and if a
matlabpool of the Parallel Computing Toolbox
is open, compute separate function evaluations
in parallel. If the Parallel Computing Toolbox
is not installed, or a matlabpool is not open,
computation occurs in serial mode. Default is
'never', or serial computation.

• 'UseSubstreams' — If 'always' perform
each partitioning operation using a separate
Substream of the random number generator
(aka Stream). This option is available
only with RandStream types that support
Substreams. Default is 'never', do not use
a different Substream for each partitioning
operation.

• 'Streams' — An object of the RandStream
class, or a scalar cell array (length==1)
containing a RandStream object. If you do not
supply a value for this parameter, crossval
uses the default RandStream on each MATLAB
executable in constructing randomized
partitions. Otherwise, crossval selects
randomized partitions using the supplied
RandStream object(s).

Only one of 'kfold', 'holdout', 'leaveout', or 'partition' can be
specified, and 'partition' cannot be specified with 'stratify'. If
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both 'partition' and 'mcreps' are specified, the first Monte-Carlo
repetition uses the partition information in the cvpartition object, and
the repartition method is called to generate new partitions for each of
the remaining repetitions. If no cross-validation type is specified, the
default is 10-fold cross-validation.

Note When using cross-validation with classification algorithms,
stratification is preferred. Otherwise, some test sets may not include
observations from all classes.

Examples Example 1

Compute mean-squared error for regression using 10-fold
cross-validation:

load('fisheriris');
y = meas(:,1);
X = [ones(size(y,1),1),meas(:,2:4)];

regf=@(XTRAIN,ytrain,XTEST)(XTEST*regress(ytrain,XTRAIN));

cvMse = crossval('mse',X,y,'predfun',regf)
cvMse =

0.1015

Example 2

Compute misclassification rate using stratified 10-fold cross-validation:

load('fisheriris');
y = species;
X = meas;
cp = cvpartition(y,'k',10); % Stratified cross-validation

classf = @(XTRAIN, ytrain,XTEST)(classify(XTEST,XTRAIN,...
ytrain));

18-254



crossval

cvMCR = crossval('mcr',X,y,'predfun',classf,'partition',cp)
cvMCR =

0.0200

Example 3

Compute the confusion matrix using stratified 10-fold cross-validation:

load('fisheriris');
y = species;
X = meas;
order = unique(y); % Order of the group labels
cp = cvpartition(y,'k',10); % Stratified cross-validation

f = @(xtr,ytr,xte,yte)confusionmat(yte,...
classify(xte,xtr,ytr),'order',order);

cfMat = crossval(f,X,y,'partition',cp);
cfMat = reshape(sum(cfMat),3,3)
cfMat =

50 0 0
0 48 2
0 1 49

cfMat is the summation of 10 confusion matrices from 10 test sets.

References [1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning. New York: Springer, 2001.

See Also “Grouped Data” on page 2-33

cvpartition
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Purpose Transpose categorical matrix

Syntax B = ctranspose(A)

Description B = ctranspose(A) returns the transpose of the 2-D categorical matrix
A. Note that ctranspose is identical to transpose for categorical arrays.

See Also transpose, permute
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Purpose Cut categories

Syntax C = cutcategories(t)
C = cutcategories(t,nodes)

Description C = cutcategories(t) returns an n-by-2 cell array C of the categories
used at branches in the decision tree t, where n is the number of nodes.
For each branch node i based on a categorical predictor variable x,
the left child is chosen if x is among the categories listed in C{i,1},
and the right child is chosen if x is among those listed in C{i,2}. Both
columns of C are empty for branch nodes based on continuous predictors
and for leaf nodes.

C = cutcategories(t,nodes) takes a vector nodes of node numbers
and returns the categories for the specified nodes.

Examples Create a classification tree for car data:

load carsmall

t = classregtree([MPG Cylinders],Origin,...
'names',{'MPG' 'Cyl'},'cat',2)

t =
Decision tree for classification
1 if Cyl=4 then node 2 else node 3
2 if MPG<31.5 then node 4 else node 5
3 if Cyl=6 then node 6 else node 7
4 if MPG<21.5 then node 8 else node 9
5 if MPG<41 then node 10 else node 11
6 if MPG<17 then node 12 else node 13
7 class = USA
8 class = France
9 class = USA

10 class = Japan
11 class = Germany
12 class = Germany
13 class = USA
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view(t)

C = cutcategories(t)
C =

[4] [1x2 double]
[] []

[6] [ 8]
[] []
[] []
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[] []
[] []
[] []
[] []
[] []
[] []
[] []
[] []

C{1,2}
ans =

6 8

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also classregtree, cutpoint, cuttype, cutvar

18-259



classregtree.cutpoint

Purpose Returns decision tree cut point values

Syntax v = cutpoint(t)
v = cutpoint(t,nodes)

Description v = cutpoint(t) returns an n-element vector v of the values used as
cut points in the decision tree t, where n is the number of nodes. For
each branch node i based on a continuous predictor variable x, the
left child is chosen if x < v(i) and the right child is chosen if x >=
v(i). v is NaN for branch nodes based on categorical predictors and
for leaf nodes.

v = cutpoint(t,nodes) takes a vector nodes of node numbers and
returns the cut points for the specified nodes.

Examples Create a classification tree for car data:

load carsmall

t = classregtree([MPG Cylinders],Origin,...
'names',{'MPG' 'Cyl'},'cat',2)

t =
Decision tree for classification
1 if Cyl=4 then node 2 else node 3
2 if MPG<31.5 then node 4 else node 5
3 if Cyl=6 then node 6 else node 7
4 if MPG<21.5 then node 8 else node 9
5 if MPG<41 then node 10 else node 11
6 if MPG<17 then node 12 else node 13
7 class = USA
8 class = France
9 class = USA

10 class = Japan
11 class = Germany
12 class = Germany
13 class = USA
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view(t)

v = cutpoint(t)
v =

NaN
31.5000

NaN
21.5000
41.0000
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17.0000
NaN
NaN
NaN
NaN
NaN
NaN
NaN

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also classregtree, cutcategories, cuttype, cutvar
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Purpose Cut types

Syntax c = cuttype(t)
c = cuttype(t,nodes)

Description c = cuttype(t) returns an n-element cell array c indicating the type
of cut at each node in the tree t, where n is the number of nodes. For
each node i, c{i} is:

• 'continuous'— If the cut is defined in the form x < v for a variable
x and cut point v.

• 'categorical'— If the cut is defined by whether a variable x takes
a value in a set of categories.

• '' — If i is a leaf node.

cutvar returns the cut points for 'continuous' cuts, and
cutcategories returns the set of categories.

c = cuttype(t,nodes) takes a vector nodes of node numbers and
returns the cut types for the specified nodes.

Examples Create a classification tree for car data:

load carsmall

t = classregtree([MPG Cylinders],Origin,...
'names',{'MPG' 'Cyl'},'cat',2)

t =
Decision tree for classification
1 if Cyl=4 then node 2 else node 3
2 if MPG<31.5 then node 4 else node 5
3 if Cyl=6 then node 6 else node 7
4 if MPG<21.5 then node 8 else node 9
5 if MPG<41 then node 10 else node 11
6 if MPG<17 then node 12 else node 13
7 class = USA
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8 class = France
9 class = USA

10 class = Japan
11 class = Germany
12 class = Germany
13 class = USA
view(t)

c = cuttype(t)
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c =
'categorical'
'continuous'
'categorical'
'continuous'
'continuous'
'continuous'
''
''
''
''
''
''
''

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also classregtree, numnodes, cutvar, cutcategories
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Purpose Cut variable names

Syntax v = cutvar(t)
v = cutvar(t,nodes)
[v,num] = cutvar(...)

Description v = cutvar(t) returns an n-element cell array v of the names of the
variables used for branching in each node of the tree t, where n is
the number of nodes. These variables are sometimes known as cut
variables. For leaf nodes, v contains an empty string.

v = cutvar(t,nodes) takes a vector nodes of node numbers and
returns the cut variables for the specified nodes.

[v,num] = cutvar(...) also returns a vector num containing the
number of each variable.

Examples Create a classification tree for car data:

load carsmall

t = classregtree([MPG Cylinders],Origin,...
'names',{'MPG' 'Cyl'},'cat',2)

t =
Decision tree for classification
1 if Cyl=4 then node 2 else node 3
2 if MPG<31.5 then node 4 else node 5
3 if Cyl=6 then node 6 else node 7
4 if MPG<21.5 then node 8 else node 9
5 if MPG<41 then node 10 else node 11
6 if MPG<17 then node 12 else node 13
7 class = USA
8 class = France
9 class = USA

10 class = Japan
11 class = Germany
12 class = Germany
13 class = USA
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view(t)

[v,num] = cutvar(t)
v =

'Cyl'
'MPG'
'Cyl'
'MPG'
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'MPG'
'MPG'
''
''
''
''
''
''
''

num =
2
1
2
1
1
1
0
0
0
0
0
0
0

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also classregtree, numnodes, children
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Purpose Data partitions for cross-validation

Description An object of the cvpartition class defines a random partition on a set of
data of a specified size. You can be use this partition to define test and
training sets for validating a statistical model using cross-validation.

Construction cvpartition Create cross-validation partition
for data

Methods disp Display cvpartition object

display Display cvpartition object

repartition Repartition data for
cross-validation

test Test indices for cross-validation

training Training indices for
cross-validation

Properties N Number of observations
(including observations with
missing group values)

NumTestSets Number of test sets

TestSize Size of each test set

TrainSize Size of each training set

Type Type of partition

Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.
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Examples Use a 10-fold stratified cross-validation to compute the misclassification
error for classify on iris data.

load('fisheriris');
CVO = cvpartition(species,'k',10);
err = zeros(CVO.NumTestSets,1);
for i = 1:CVO.NumTestSets

trIdx = CVO.training(i);
teIdx = CVO.test(i);
ytest = classify(meas(teIdx,:),meas(trIdx,:),...

species(trIdx,:));
err(i) = sum(~strcmp(ytest,species(teIdx)));

end
cvErr = sum(err)/sum(CVO.TestSize);

See Also “Grouped Data” on page 2-33

crossval
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Purpose Create cross-validation partition for data

Syntax c = cvpartition(n,'kfold',k)
c = cvpartition(group,'kfold',k)
c = cvpartition(n,'holdout',p)
c = cvpartition(group,'holdout',p)
c = cvpartition(n,'leaveout')
c = cvpartition(n,'resubstitution')

Description c = cvpartition(n,'kfold',k) constructs an object c of
the cvpartition class defining a random partition for k-fold
cross-validation on n observations. The partition divides the
observations into k disjoint subsamples (or folds), chosen randomly but
with roughly equal size. The default value of k is 10.

c = cvpartition(group,'kfold',k) creates a random partition for a
stratified k-fold cross-validation. group is a numeric vector, categorical
array, string array, or cell array of strings indicating the class of each
observation. Each subsample has roughly equal size and roughly the
same class proportions as in group. cvpartition treats NaNs or empty
strings in group as missing values.

c = cvpartition(n,'holdout',p) creates a random partition for
holdout validation on n observations. This partition divides the
observations into a training set and a test (or holdout) set. The
parameter p must be a scalar. When 0 < p < 1, cvpartition randomly
selects approximately p*n observations for the test set. When p is an
integer, cvpartition randomly selects p observations for the test set.
The default value of p is 1/10.

c = cvpartition(group,'holdout',p) randomly partitions
observations into a training set and a test set with stratification, using
the class information in group; that is, both training and test sets have
roughly the same class proportions as in group.

c = cvpartition(n,'leaveout') creates a random partition for
leave-one-out cross-validation on n observations. Leave-one-out is a
special case of 'kfold', in which the number of folds equals the number
of observations.
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c = cvpartition(n,'resubstitution') creates an object c that does
not partition the data. Both the training set and the test set contain
all of the original n observations.

Examples Use stratified 10-fold cross-validation to compute misclassification rate:

load fisheriris;
y = species;
c = cvpartition(y,'k',10);

fun = @(xT,yT,xt,yt)(sum(~strcmp(yt,classify(xt,xT,yT))));

rate = sum(crossval(fun,meas,y,'partition',c))...
/sum(c.TestSize)

rate =
0.0200

See Also Grouped Data

crossval, repartition
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Purpose Arrays for statistical data

Description Dataset arrays are used to collect heterogeneous data and metadata
including into a single container variable. Dataset arrays can be viewed
as tables of values, with rows representing different observations and
columns representing different measured variables. Dataset arrays can
accommodate variables of different types, sizes, units, etc.

Construction dataset Construct dataset array

Methods cat Concatenate dataset arrays

datasetfun Apply function to dataset array
variables

disp Display dataset array

display Display dataset array

double Convert dataset variables to
double array

end Last index in indexing expression
for dataset array

export Write dataset array to file

get Access dataset array properties

grpstats Summary statistics by group for
dataset arrays

horzcat Horizontal concatenation for
dataset arrays

isempty True for empty dataset array

join Merge observations

length Length of dataset array
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ndims Number of dimensions of dataset
array

numel Number of elements in dataset
array

replacedata Replace dataset variables

set Set and display properties

single Convert dataset variables to
single array

size Size of dataset array

sortrows Sort rows of dataset array

stack Stack data from multiple
variables into single variable

subsasgn Subscripted assignment to
dataset array

subsref Subscripted reference for dataset
array

summary Print summary of dataset array

unique Unique observations in dataset
array

unstack Unstack data from single variable
into multiple variables

vertcat Vertical concatenation for dataset
arrays

Properties description String describing data set

DimNames Cell array of strings giving units
of variables in data set
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ObsNames Cell array of nonempty,
distinct strings giving names
of observations in data set

units Units of variables in data set

UserData Variable containing additional
information associated with data
set

VarNames Cell array giving names of
variables in data set

Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.

See Also “Dataset Arrays” on page 2-23

genvarname, tdfread, textscan, xlsread
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Purpose Construct dataset array

Syntax A = dataset(VAR1,VAR2,...)
A = dataset(...,{VAR,name},...)
A = dataset(...,{VAR,name_1,...,name_m},...)
A = dataset(...,'VarNames',{name_1,...,name_m},...)
A = dataset(...,'ObsNames',{name_1,...,name_n},...)
A = dataset('File',filename,param1,val1,param2,val2,...)
A = dataset('XLSFile',filename,param1,val1,param2,val2,...)
A = dataset('XPTFile',xptfilename, ...)

Description A = dataset(VAR1,VAR2,...) creates dataset array A from workspace
variables VAR1, VAR2, ... using the workspace variable names for the
names of the variables in A. Variables can be arrays of any size, but all
variables must be the same size along dimension 1 (rows).

A = dataset(...,{VAR,name},...) creates a variable in dataset A
from the workspace variable VAR and assigns it the name name in A.
Names must be valid, unique MATLAB identifier strings.

A = dataset(...,{VAR,name_1,...,name_m},...), where VAR is an
array with size m along dimension 2 (columns), creates m variables in
dataset A from the columns of the workspace variable VAR and assigns
them the names name_1, ..., name_m in A.

A = dataset(...,'VarNames',{name_1,...,name_m},...) names the
m variables in A with the specified variable names. Names must be valid,
unique MATLAB identifier strings. The number of names must equal
the number of variables in A. You cannot use the 'VarNames' parameter
if you provide names for individual variables using {VAR,name} pairs.

A = dataset(...,'ObsNames',{name_1,...,name_n},...) names the
n observations in A with the specified observation names. The names
need not be valid MATLAB identifier strings, but must be unique. The
number of names must equal the number of observations (rows) in A.
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Note Dataset arrays may contain built-in types or array objects as
variables. Array objects must implement each of the following:

• Standard MATLAB parenthesis indexing of the form var(i,...),
where i is a numeric or logical vector corresponding to rows of the
variable

• A size method with a dim argument

• A vertcat method

A = dataset('File',filename,param1,val1,param2,val2,...)
creates dataset array A from column-oriented data in the text file
specified by the string filename. Variables in A are of type double
if data in the corresponding column of the file, following the column
header, are entirely numeric; otherwise the variables in A are cell arrays
of strings. dataset converts empty fields to either NaN (for a numeric
variable) or the empty string (for a string-valued variable). dataset
ignores insignificant white space in the file.

The following optional parameter name/value pairs are available:

'Delimiter' A string indicating the character separating columns in
the file. Values are

• '\t' (tab, the default when no format is specified)

• ' ' (space, the default when a format is specified)

• ',' (comma)

• ';' (semicolon)

• '|' (bar)

'Format' A format string, as accepted by textscan. dataset
reads the file using textscan, and creates variables in
A according to the conversion specifiers in the format
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string. You may also provide any parameter/value pairs
accepted by textscan. Using the 'format' parameter
is much faster for large files.

'ReadVarNames'A logical value indicating whether (true) or not (false)
to read variable names from the first row of the file. The
default is true. If 'ReadVarNames' is true, variable
names in the column headers of the file cannot be empty.

'ReadObsNames'A logical value indicating whether (true) or not (false)
to read observation names from the first column of
the file. The default is false. If 'ReadObsNames' and
'ReadVarNames' are both true, dataset saves the
header of the first column in the file as the name of the
first dimension in A.Properties.DimNames.

'TreatAsEmpty'Specifies strings to treat as the empty string in a
numeric column. Values may be a character string or
a cell array of strings. The parameter applies only to
numeric columns in the file; dataset does not accept
numeric literals such as '-99'.

A = dataset('XLSFile',filename,param1,val1,param2,val2,...)
creates dataset array A from column-oriented data in the Excel®

spreadsheet specified by the string filename. Variables in A are of
type double if data in the corresponding column of the spreadsheet,
following the column header, are entirely numeric; otherwise the
variables in A are cell arrays of strings. Optional parameter name/value
pairs are as follows:
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'Sheet' A positive scalar value of type double indicating the
sheet number, or a quoted string indicating the sheet
name.

'Range' A string of the form 'C1:C2' where C1 and C2 are the
names of cells at opposing corners of a rectangular
region to be read, as for xlsread. By default, the
rectangular region extends to the right-most column
containing data. If the spreadsheet contains empty
columns between columns of data, or if the spreadsheet
contains figures or other non-tabular information,
specify a range that contains only data.

'ReadVarNames'A logical value indicating whether (true) or not
(false) to read variable names from the first row of
the range. The default is true. If 'ReadVarNames'
is true, variable names in the column headers of the
range cannot be empty.

'ReadObsNames'A logical value indicating whether (true) or not (false)
to read observation names from the first column of the
range. The default is false. If 'ReadObsNames' and
'ReadVarNames' are both true, the header of the first
column in the range is saved as the name of the first
dimension in A.Properties.DimNames.

A = dataset('XPTFile',xptfilename, ...) creates a dataset array
from a SAS XPORT format file. Variable names from the XPORT format
file are preserved. Numeric data types in the XPORT format file are
preserved but all other data types are converted to cell arrays of
strings. The XPORT format allows for 28 missing data types. dataset
represents these in the file by an upper case letter, '.' or '_'. dataset
converts all missing data to NaN values in A. However, if you need the
specific missing types you can use the xptread function to recover the
information.

When reading from an XPT format file, the 'ReadObsNames' parameter
name/value pair determines whether or not to try to use the first
variable in the file as observation names. Specify as a logical value
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(default false). If the contents of the first variable are not valid
observation names then the variable will be read into a variable of the
dataset array and observation names will not be set.

Examples Example 1

Create a dataset array to contain Fisher’s iris data:

load fisheriris
NumObs = size(meas,1);
NameObs = strcat({'Obs'},num2str((1:NumObs)','%-d'));
iris = dataset({nominal(species),'species'},...

{meas,'SL','SW','PL','PW'},...
'ObsNames',NameObs);

iris(1:5,:)
ans =

species SL SW PL PW
Obs1 setosa 5.1 3.5 1.4 0.2
Obs2 setosa 4.9 3 1.4 0.2
Obs3 setosa 4.7 3.2 1.3 0.2
Obs4 setosa 4.6 3.1 1.5 0.2
Obs5 setosa 5 3.6 1.4 0.2

Example 2

1 Load patient data from the CSV file hospital.dat and store the
information in a dataset array with observation names given by the
first column in the data (patient identification):

patients = dataset('file','hospital.dat',...
'delimiter',',',...
'ReadObsNames',true);

2 Make the {0,1}-valued variable smoke nominal, and change the labels
to 'No' and 'Yes':

patients.smoke = nominal(patients.smoke,{'No','Yes'});
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3 Add new levels to smoke as placeholders for more detailed histories
of smokers:

patients.smoke = addlevels(patients.smoke,...
{'0-5 Years','5-10 Years','LongTerm'});

4 Assuming the nonsmokers have never smoked, relabel the 'No' level:

patients.smoke = setlabels(patients.smoke,'Never','No');

5 Drop the undifferentiated 'Yes' level from smoke:

patients.smoke = droplevels(patients.smoke,'Yes');

Warning: OLDLEVELS contains categorical levels that
were present in A, caused some array elements to have
undefined levels.

Note that smokers now have an undefined level.

6 Set each smoker to one of the new levels, by observation name:

patients.smoke('YPL-320') = '5-10 Years';

See Also tdfread, textscan, xlsread
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Purpose Apply function to dataset array variables

Syntax b = datasetfun(fun,A)
[b,c,...] = datasetfun(fun,A)
[b,...] = datasetfun(fun,A,...,'UniformOutput',false)
[b,...] = datasetfun(fun,A,...,'DatasetOutput',true)
[b,...] = datasetfun(fun,A,...,'DataVars',vars)
[b,...] = datasetfun(fun,A,...,'ObsNames',obsnames)
[b,...] = datasetfun(fun,A,...,'ErrorHandler',efun)

Description b = datasetfun(fun,A) applies the function specified by fun to each
variable of the dataset array A, and returns the results in the vector b.
The ith element of b is equal to fun applied to the ith dataset variable of
A. fun is a function handle to a function that takes one input argument
and returns a scalar value. fun must return values of the same class
each time it is called, and datasetfun concatenates them into the vector
b. The outputs from fun must be one of the following types: numeric,
logical, character, structure, or cell.

To apply functions that return results that are nonscalar or of different
sizes and types, use the 'UniformOutput' or 'DatasetOutput'
parameters described below.

Do not rely on the order in which datasetfun computes the elements
of b, which is unspecified.

If fun is bound to more than one built-in function or M-file, (that is, if it
represents a set of overloaded functions), datasetfun follows MATLAB
dispatching rules in calling the function. (See “Determining Which
Function Gets Called”.)

[b,c,...] = datasetfun(fun,A), where fun is a function handle
to a function that returns multiple outputs, returns vectors b, c, ...,
each corresponding to one of the output arguments of fun. datasetfun
calls fun each time with as many outputs as there are in the call to
datasetfun. funmay return output arguments having different classes,
but the class of each output must be the same each time fun is called.
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[b,...] = datasetfun(fun,A,...,'UniformOutput',false) allows
you to specify a function fun that returns values of different sizes or
types. datasetfun returns a cell array (or multiple cell arrays), where
the ith cell contains the value of fun applied to the ith dataset variable
of A. Setting 'UniformOutput' to true is equivalent to the default
behavior.

[b,...] = datasetfun(fun,A,...,'DatasetOutput',true)
specifies that the output(s) of fun are returned as variables in a dataset
array (or multiple dataset arrays). fun must return values with the
same number of rows each time it is called, but it may return values of
any type. The variables in the output dataset array(s) have the same
names as the variables in the input. Setting 'DatasetOutput' to false
(the default) specifies that the type of the output(s) from datasetfun is
determined by 'UniformOutput'.

[b,...] = datasetfun(fun,A,...,'DataVars',vars) allows you to
apply fun only to the dataset variables in A specified by vars. vars is
a positive integer, a vector of positive integers, a variable name, a cell
array containing one or more variable names, or a logical vector.

[b,...] = datasetfun(fun,A,...,'ObsNames',obsnames) specifies
observation names for the dataset output when 'DatasetOutput' is
true.

[b,...] = datasetfun(fun,A,...,'ErrorHandler',efun), where
efun is a function handle, specifies the MATLAB function to call if the
call to fun fails. The error-handling function is called with the following
input arguments:

• A structure with the fields identifier, message, and index,
respectively containing the identifier of the error that occurred, the
text of the error message, and the linear index into the input array(s)
at which the error occurred

• The set of input arguments at which the call to the function failed

The error-handling function should either re-throw an error, or return
the same number of outputs as fun. These outputs are then returned as
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the outputs of datasetfun. If 'UniformOutput' is true, the outputs of
the error handler must also be scalars of the same type as the outputs
of fun. For example, the following code could be saved in an M-file as
the error-handling function:

function [A,B] = errorFunc(S,varargin)

warning(S.identifier,S.message);
A = NaN;
B = NaN;

If an error-handling function is not specified, the error from the call
to fun is rethrown.

Examples Compute statistics on selected variables in the hospital dataset array:

load hospital

stats = ...
datasetfun(@mean,hospital,...

'DataVars',{'Weight','BloodPressure'},...
'UniformOutput',false)

stats =
[154] [1x2 double]

stats{2}
ans =

122.7800 82.9600

Display the blood pressure variable:

datasetfun(@hist,hospital,...
'DataVars','BloodPressure',...
'UniformOutput',false);

title('{\bf Blood Pressure}')
legend('Systolic','Diastolic','Location','N')
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See Also grpstats
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Purpose D-optimal augmentation

Syntax dCE2 = daugment(dCE,mruns)
[dCE2,X] = daugment(dCE,mruns)
[dCE2,X] = daugment(dCE,mruns,model)
[dCE2,X] = daugment(...,param1,val1,param2,val2,...)

Description dCE2 = daugment(dCE,mruns) uses a coordinate-exchange algorithm
to D-optimally add mruns runs to an existing experimental design dCE
for a linear additive model.

[dCE2,X] = daugment(dCE,mruns) also returns the design matrix X
associated with the augmented design.

[dCE2,X] = daugment(dCE,mruns,model) uses the linear regression
model specified in model. model is one of the following strings:

• 'linear'— Constant and linear terms. This is the default.

• 'interaction'— Constant, linear, and interaction terms

• 'quadratic'— Constant, linear, interaction, and squared terms

• 'purequadratic'— Constant, linear, and squared terms

The order of the columns of X for a full quadratic model with n terms is:

1 The constant term

2 The linear terms in order 1, 2, ..., n

3 The interaction terms in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n–1, n)

4 The squared terms in order 1, 2, ..., n

Other models use a subset of these terms, in the same order.

Alternatively, model can be a matrix specifying polynomial terms of
arbitrary order. In this case, model should have one column for each
factor and one row for each term in the model. The entries in any row
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of model are powers for the factors in the columns. For example, if a
model has factors X1, X2, and X3, then a row [0 1 2] in model specifies
the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model
specifies a constant term, which can be omitted.

[dCE2,X] = daugment(...,param1,val1,param2,val2,...) specifies
additional parameter/value pairs for the design. Valid parameters and
their values are listed in the following table.

Parameter Value

'bounds' Lower and upper bounds for each factor, specified
as a 2-by-nfactors matrix, where nfactors is the
number of factors. Alternatively, this value can be
a cell array containing nfactors elements, each
element specifying the vector of allowable values for
the corresponding factor.

'categorical' Indices of categorical predictors.

'display' Either 'on' or 'off' to control display of the
iteration counter. The default is 'on'.

'excludefun' Handle to a function that excludes undesirable
runs. If the function is f, it must support the syntax
b = f(S), where S is a matrix of treatments with
nfactors columns, where nfactors is the number
of factors, and b is a vector of Boolean values with
the same number of rows as S. b(i) is true if the ith
row S should be excluded.

'init' Initial design as an mruns-by-nfactors matrix,
where nfactors is the number of factors. The
default is a randomly selected set of points.

'levels' Vector of number of levels for each factor.
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Parameter Value

'maxiter' Maximum number of iterations. The default is 10.

'tries' Number of times to try to generate a design from
a new starting point. The algorithm uses random
points for each try, except possibly the first. The
default is 1.

Note The daugment function augments an existing design using a
coordinate-exchange algorithm; the 'start' parameter of the candexch
function provides the same functionality using a row-exchange
algorithm.

Examples The following eight-run design is adequate for estimating main effects
in a four-factor model:

dCEmain = cordexch(4,8)
dCEmain =

1 -1 -1 1
-1 -1 1 1
-1 1 -1 1
1 1 1 -1
1 1 1 1

-1 1 -1 -1
1 -1 -1 -1

-1 -1 1 -1

To estimate the six interaction terms in the model, augment the design
with eight additional runs:

dCEinteraction = daugment(dCEmain,8,'interaction')
dCEinteraction =

1 -1 -1 1
-1 -1 1 1
-1 1 -1 1
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1 1 1 -1
1 1 1 1

-1 1 -1 -1
1 -1 -1 -1

-1 -1 1 -1
-1 1 1 1
-1 -1 -1 -1
1 -1 1 -1
1 1 -1 1

-1 1 1 -1
1 1 -1 -1
1 -1 1 1
1 1 1 -1

The augmented design is full factorial, with the original eight runs in
the first eight rows.

See Also dcovary, cordexch, candexch
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Purpose D-optimal design with fixed covariates

Syntax dCV = dcovary(nfactors,fixed)
[dCV,X] = dcovary(nfactors,fixed)
[dCV,X] = dcovary(nfactors,fixed,model)
[dCV,X] = daugment(...,param1,val1,param2,val2,...)

Description dCV = dcovary(nfactors,fixed) uses a coordinate-exchange
algorithm to generate a D-optimal design for a linear additive model
with nfactors factors, subject to the constraint that the model include
the fixed covariate factors in fixed. The number of runs in the design
is the number of rows in fixed. The design dCV augments fixed with
initial columns for treatments of the model terms.

[dCV,X] = dcovary(nfactors,fixed) also returns the design matrix
X associated with the design.

[dCV,X] = dcovary(nfactors,fixed,model) uses the linear
regression model specified in model. model is one of the following
strings:

• 'linear'— Constant and linear terms. This is the default.

• 'interaction'— Constant, linear, and interaction terms

• 'quadratic'— Constant, linear, interaction, and squared terms

• 'purequadratic'— Constant, linear, and squared terms

The order of the columns of X for a full quadratic model with n terms is:

1 The constant term

2 The linear terms in order 1, 2, ..., n

3 The interaction terms in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n–1, n)

4 The squared terms in order 1, 2, ..., n

Other models use a subset of these terms, in the same order.
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Alternatively, model can be a matrix specifying polynomial terms of
arbitrary order. In this case, model should have one column for each
factor and one row for each term in the model. The entries in any row
of model are powers for the factors in the columns. For example, if a
model has factors X1, X2, and X3, then a row [0 1 2] in model specifies
the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model
specifies a constant term, which can be omitted.

[dCV,X] = daugment(...,param1,val1,param2,val2,...) specifies
additional parameter/value pairs for the design. Valid parameters and
their values are listed in the following table.

Parameter Value

'bounds' Lower and upper bounds for each factor, specified as
a 2-by-nfactors matrix. Alternatively, this value
can be a cell array containing nfactors elements,
each element specifying the vector of allowable
values for the corresponding factor.

'categorical' Indices of categorical predictors.

'display' Either 'on' or 'off' to control display of the
iteration counter. The default is 'on'.

'excludefun' Handle to a function that excludes undesirable
runs. If the function is f, it must support the syntax
b = f(S), where S is a matrix of treatments with
nfactors columns and b is a vector of Boolean
values with the same number of rows as S. b(i) is
true if the ith row S should be excluded.

'init' Initial design as an mruns-by-nfactors matrix. The
default is a randomly selected set of points.

'levels' Vector of number of levels for each factor.
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Parameter Value

'maxiter' Maximum number of iterations. The default is 10.

'tries' Number of times to try to generate a design from
a new starting point. The algorithm uses random
points for each try, except possibly the first. The
default is 1.

Examples Example 1

Suppose you want a design to estimate the parameters in a three-factor
linear additive model, with eight runs that necessarily occur at different
times. If the process experiences temporal linear drift, you may want
to include the run time as a variable in the model. Produce the design
as follows:

time = linspace(-1,1,8)';
[dCV1,X] = dcovary(3,time,'linear')
dCV1 =

-1.0000 1.0000 1.0000 -1.0000
1.0000 -1.0000 -1.0000 -0.7143

-1.0000 -1.0000 -1.0000 -0.4286
1.0000 -1.0000 1.0000 -0.1429
1.0000 1.0000 -1.0000 0.1429

-1.0000 1.0000 -1.0000 0.4286
1.0000 1.0000 1.0000 0.7143

-1.0000 -1.0000 1.0000 1.0000
X =

1.0000 -1.0000 1.0000 1.0000 -1.0000
1.0000 1.0000 -1.0000 -1.0000 -0.7143
1.0000 -1.0000 -1.0000 -1.0000 -0.4286
1.0000 1.0000 -1.0000 1.0000 -0.1429
1.0000 1.0000 1.0000 -1.0000 0.1429
1.0000 -1.0000 1.0000 -1.0000 0.4286
1.0000 1.0000 1.0000 1.0000 0.7143
1.0000 -1.0000 -1.0000 1.0000 1.0000
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The column vector time is a fixed factor, normalized to values between
±1. The number of rows in the fixed factor specifies the number of runs
in the design. The resulting design dCV gives factor settings for the
three controlled model factors at each time.

Example 2

The following example uses the dummyvar function to block an eight-run
experiment into 4 blocks of size 2 for estimating a linear additive model
with two factors:

fixed = dummyvar([1 1 2 2 3 3 4 4]);
dCV2 = dcovary(2,fixed(:,1:3),'linear')
dCV2 =

1 1 1 0 0
-1 -1 1 0 0
-1 1 0 1 0
1 -1 0 1 0
1 1 0 0 1

-1 -1 0 0 1
-1 1 0 0 0
1 -1 0 0 0

The first two columns of dCV2 contain the settings for the two factors;
the last three columns are dummy variable codings for the four blocks.

See Also daugment, cordexch, dummyvar
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CompactTreeBagger.DefaultYfit property

Purpose Default value returned by predict

Description The DefaultYfit property controls what predicted value
CompactTreeBagger returns when no prediction is possible, for example
when the predict method needs to predict for an observation which has
only false values in the matrix supplied through 'useifort' argument.

For classification, you can set this property to either '' or
'MostPopular'. If you choose 'MostPopular' (default), the property
value becomes the name of the most probable class in the training data.

For regression, you can set this property to any numeric scalar. The
default is the mean of the response for the training data.

See Also predict, setDefaultYfit, TreeBagger.DefaultYfit.
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Purpose Default value returned by predict and oobPredict

Description The DefaultYfit property controls what predicted value TreeBagger
returns when no prediction is possible, for example when the
oobPredict method needs to predict for an observation that is in-bag
for all trees in the ensemble.

For classification, you can set this property to either '' or
'MostPopular'. If you choose 'MostPopular' (default), the property
value becomes the name of the most probable class in the training data.

For regression, you can set this property to any numeric scalar. The
default is the mean of the response for the training data.

If you set this property to '' for classification or NaN for regression,
TreeBagger excludes the in-bag observations from computation of the
out-of-bagerror and margin.

See Also oobPredict, Predict, OOBIndices, CompactTreeBagger.DefaultYfit.
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Purpose Delete handle object

Syntax delete(h)

Description delete(h) deletes the handle object h, where h is a scalar handle. The
delete method deletes a handle object but does not clear the handle
from the workspace. A deleted handle is no longer valid.

See Also clear, isvalid, qrandstream
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CompactTreeBagger.DeltaCritDecisionSplit property

Purpose Split criterion contributions for each predictor

Description The DeltaCritDecisionSplit property is a numeric array of size
1-by-Nvars of changes in the split criterion summed over splits on each
variable, summed across the entire ensemble of grown trees.

See Also TreeBagger.DeltaCritDecisionSplit, classregtree.varimportance
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TreeBagger.DeltaCritDecisionSplit property

Purpose Split criterion contributions for each predictor

Description The DeltaCritDecisionSplit property is a numeric array of size
1-by-Nvars of changes in the split criterion summed over splits on each
variable, summed across the entire ensemble of grown trees.

See Also CompactTreeBagger.DeltaCritDecisionSplit,
classregtree.varimportance
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Purpose Dendrogram plot

Syntax H = dendrogram(Z)
H = dendrogram(Z,p)
[H,T] = dendrogram(...)
[H,T,perm] = dendrogram(...)
[...] = dendrogram(...,'colorthreshold',t)
[...] = dendrogram(...,'orientation','orient')
[...] = dendrogram(...,'labels',S)

Description H = dendrogram(Z) generates a dendrogram plot of the hierarchical,
binary cluster tree represented by Z. Z is an (m-1)-by-3 matrix, generated
by the linkage function, where m s the number of objects in the original
data set. The output, H, is a vector of handles to the lines in the
dendrogram.

A dendrogram consists of many U-shaped lines connecting objects in a
hierarchical tree. The height of each U represents the distance between
the two objects being connected. If there were 30 or fewer data points
in the original dataset, each leaf in the dendrogram corresponds to one
data point. If there were more than 30 data points, the complete tree can
look crowded, and dendrogram collapses lower branches as necessary,
so that some leaves in the plot correspond to more than one data point.

H = dendrogram(Z,p) generates a dendrogram with no more than p
leaf nodes, by collapsing lower branches of the tree. To display the
complete tree, set p = 0.

[H,T] = dendrogram(...) generates a dendrogram and returns T, a
vector of length m that contains the leaf node number for each object in
the original data set. T is useful when p is less than the total number of
objects, so some leaf nodes in the display correspond to multiple objects.
For example, to find out which objects are contained in leaf node k of
the dendrogram, use find(T==k). When there are fewer than p objects
in the original data, all objects are displayed in the dendrogram. In this
case, T is the identity map, i.e., T = (1:m)', where each node contains
only a single object.
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[H,T,perm] = dendrogram(...) generates a dendrogram and
returns the permutation vector of the node labels of the leaves of
the dendrogram. perm is ordered from left to right on a horizontal
dendrogram and bottom to top for a vertical dendrogram.

[...] = dendrogram(...,'colorthreshold',t) assigns a unique
color to each group of nodes in the dendrogram where the linkage is less
than the threshold t. t is a value in the interval [0,max(Z(:,3))].
Setting t to the string 'default' is the same as t = .7(max(Z(:,3))).
0 is the same as not specifying 'colorthreshold'. The value
max(Z(:,3)) treats the entire tree as one group and colors it all one
color.

[...] = dendrogram(...,'orientation','orient') orients the
dendrogram within the figure window. Acceptable values for ’orient’
are:

Value Description

'top' Top to bottom (default)

'bottom' Bottom to top

'left' Left to right

'right' Right to left

[...] = dendrogram(...,'labels',S) accepts a character array
or cell array of strings S with one label for each observation. Any
leaves in the tree containing a single observation are labeled with that
observation’s label.

Examples X = rand(100,2);
Y = pdist(X,'cityblock');
Z = linkage(Y,'average');
[H,T] = dendrogram(Z,'colorthreshold','default');
set(H,'LineWidth',2)
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find(T==20)
ans =

20
49
62
65
73
96

This output indicates that leaf node 20 in the dendrogram contains the
original data points 20, 49, 62, 65, 73, and 96.

See Also cluster, clusterdata, cophenet, inconsistent, linkage, silhouette
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dataset.description property

Purpose String describing data set

Description description is astring describing the data set. The default is an empty
string.
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Purpose Interactive distribution fitting

Syntax dfittool
dfittool(y)
dfittool(y,cens)
dfittool(y,cens,freq)
dfittool(y,cens,freq,dsname)

Description dfittool opens a graphical user interface for displaying fit distributions
to data. To fit distributions to your data and display them over plots
over plots of the empirical distributions, you can import data from the
workspace.

dfittool(y) displays the Distribution Fitting Tool and creates a data
set with data specified by the vector y.

dfittool(y,cens) uses the vector cens to specify whether the
observation y(j) is censored, (cens(j)==1) and/or observed, exactly
(cens(j)==0). If cens is omitted or empty, no y values are censored.

dfittool(y,cens,freq) uses the vector freq to specify the frequency
of each element of y. If freq is omitted or empty, all y values have a
frequency of 1.

dfittool(y,cens,freq,dsname) creates a data set with the name
dsname using the data vector y, censoring indicator cens, and frequency
vector freq.

For more information, see “Modeling Your Data Using the Distribution
Fitting GUI” on page 5-11.

See Also mle,randtool,disttool
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qrandset.Dimensions property

Purpose Number of dimensions

Description Number of dimensions in the point set. The Dimensions property of
a point set contains a positive integer that indicates the number of
dimensions for which the points have values. For example, a point set
with Dimensions=5 produces points that each have five values.

Set this property by specifying the number of dimensions when
constructing a new point set. After construction, you cannot change the
value. The default number of dimensions is 2.
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dataset.DimNames property

Purpose Cell array of strings giving units of variables in data set

Description A cell array of strings giving the units of the variables in the data set.
The number of strings must equal the number of variables. Strings may
be empty. The default is an empty cell array.

18-305



categorical.disp

Purpose Display categorical array

Syntax disp(A)

Description disp(A) prints the categorical array A without printing the array
name. In all other ways it’s the same as leaving the semicolon off an
expression, except that empty arrays don’t display.

See Also categorical, display
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Purpose Display classregtree object

Syntax display(t)

Description display(t) prints the classregtree object t.

See Also classregtree, view
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Purpose Display cvpartition object

Syntax disp(c)

Description disp(c) prints the cvpartition object c.

See Also cvpartition
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Purpose Display dataset array

Syntax disp(ds)

Description disp(ds) prints the dataset array ds, including variable names and
observation names (if present), without printing the dataset name. In
all other ways it’s the same as leaving the semicolon off an expression.

For numeric or categorical variables that are 2-D and have three or
fewer columns, disp prints the actual data using either short g or long
g format, depending on the current command line setting. Otherwise,
disp prints the size and type of each dataset element.

For character variables that are 2-D and 10 or fewer characters wide,
disp prints quoted strings. Otherwise, disp prints the size and type of
each dataset element.

For cell variables that are 2-D and have three or fewer columns,
disp prints the contents of each cell (or its size and type if too large).
Otherwise, disp prints the size of each dataset element.

For time series variables, disp prints columns for both the time and
the data. If the variable is 2-D and has three or fewer columns, disp
prints the actual data Otherwise, disp prints the size and type of each
dataset element.

For other types of variables, disp prints the size and type of each
dataset element.

See Also dataset, display, format
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gmdistribution.disp

Purpose Display Gaussian mixture distribution object

Syntax disp(obj)

Description disp(obj) prints a text representation of the gmdistribution object,
obj, without printing the object name. In all other ways it’s the same as
leaving the semicolon off an expression.

See Also gmdistribution, display
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NaiveBayes.disp

Purpose Display NaiveBayes classifier object

Syntax disp(nb)

Description disp(nb) prints a text representation of the NaiveBayes object nb,
without printing the object name. In all other ways it’s the same as
leaving the semicolon off an expression.

See Also NaiveBayes, display
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Purpose Display piecewisedistribution object

Syntax disp(A)

Description disp(A) prints a text representation of the piecewisedistribution object
A, without printing the object name. In all other ways it’s the same as
leaving the semicolon off an expression.

See Also piecewisedistribution
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Purpose Display qrandset object

Syntax disp(p)

Description disp(p) displays the properties of the quasi-random point set s,
without printing the variable name. disp prints out the number of
dimensions and points in the point-set, and follows this with the list of
all property values for the object.

See Also qrandset
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Purpose Display qrandstream object

Syntax disp(q)

Description disp(q) displays the quasi-random stream q, without printing the
variable name. disp prints the type and number of dimensions in the
stream, and follows it with the list of point set properties.

See Also qrandstream
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Purpose Display categorical array

Syntax display(A)

Description display(A) prints the categorical array A. categorical callsdisplay
when a you do not use a semicolon to terminate a statement.

See Also categorical, disp
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Purpose Display classregtree object

Syntax display(t)
display(A)

Description display(t) prints the classregtree object t. classregtree
callsdisplay when a you do not use a semicolon to terminate a
statement.

display(A) prints the categorical array A. categorical callsdisplay
when a you do not use a semicolon to terminate a statement.

See Also classregtree, eval, prune, test
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Purpose Display cvpartition object

Syntax display(c)

Description display(c) prints the cvpartition object c. cvpartition callsdisplay
when a you do not use a semicolon to terminate a statement.

See Also cvpartition
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Purpose Display dataset array

Syntax display(ds)

Description display(ds) prints the dataset array ds, including variable names and
observation names (if present). dataset callsdisplay when a you do
not use a semicolon to terminate a statement

For numeric or categorical variables that are 2-D and have three or
fewer columns, display prints the actual data. Otherwise, display
prints the size and type of each dataset element.

For character variables that are 2-D and 10 or fewer characters wide,
display prints quoted strings. Otherwise, display prints the size and
type of each dataset element.

For cell variables that are 2-D and have three or fewer columns,
display prints the contents of each cell (or its size and type if too large).
Otherwise, display prints the size of each dataset element.

For time series variables, display prints columns for both the time and
the data. If the variable is 2-D and has three or fewer columns, display
prints the actual data. Otherwise, display prints the size and type of
each dataset element.

For other types of variables, display prints the size and type of each
dataset element.

See Also dataset, display, format
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Purpose Display Gaussian mixture distribution object

Syntax display(obj)

Description display(obj) prints a text representation of the gmdistribution
object obj. gmdistribution callsdisplay when a you do not use a
semicolon to terminate a statement.

See Also gmdistribution, disp
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Purpose Display NaiveBayes classifier object

Syntax display(nb)

Description display(nb) prints a text representation of the NaiveBayes object
nb. NaiveBayes callsdisplay when a you do not use a semicolon to
terminate a statement.

See Also NaiveBayes, display
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piecewisedistribution.display

Purpose Display piecewisedistribution object

Syntax display(A)

Description display(A) prints a text representation of the piecewisedistribution
object A, without printing the object name. piecewisedistribution
callsdisplay when a you do not use a semicolon to terminate a
statement.

See Also piecewisedistribution
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ProbDist.DistName property

Purpose Read-only string containing probability distribution name of ProbDist
object

Description DistName is a read-only property of the ProbDist class. DistName is a
string containing the type of distribution used to create the object.

Values Possible values are:

• 'kernel'

• 'beta'

• 'binomial'

• 'birnbaumsaunders'

• 'exponential'

• 'extreme value'

• 'gamma'

• 'generalized extreme value'

• 'generalized pareto'

• 'inversegaussian'

• 'logistic'

• 'loglogistic'

• 'lognormal'

• 'nakagami'

• 'negative binomial'

• 'normal'

• 'poisson'

• 'rayleigh'

• 'rician'
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• 'tlocationscale'

• 'weibull'

Use this information to view and compare the type of distribution used
to create distribution objects.
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NaiveBayes.Dist property

Purpose Distribution names

Description The Dist property is a string or a 1-by-NDims cell array of strings
indicating the types of distributions for all the features. If all the
features use the same type of distribution, Dist is a single string.
Otherwise Dist(j) indicates the distribution type used for the jth
feature.

The valid strings for this property are the following:

'normal' Normal distribution.

'kernel' Kernel smoothing density
estimate.

'mvmn' Multivariate multinomial
distribution.

'mn' Multinomial bag-of-tokens model.
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gmdistribution.DistName property

Purpose Type of distribution

Description The string 'gaussian mixture distribution'.
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disttool

Purpose Interactive density and distribution plots

Syntax disttool

Description disttool is a graphical interface for exploring the effects of changing
parameters on the plot of a cdf or pdf.

See Also randtool, dfittool

18-326



categorical.double

Purpose Convert categorical array to double array

Syntax B = double(A)

Description B = double(A) converts the categorical array A to a double array.
Each element of B contains the internal categorical level code for the
corresponding element of A.

See Also single
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Purpose Convert dataset variables to double array

Syntax b = double(A)
b = double(a,vars)

Description b = double(A) returns the contents of the dataset A, converted to one
double array. The classes of the variables in the dataset must support
the conversion.

b = double(a,vars) returns the contents of the dataset variables
specified by vars. vars is a positive integer, a vector of positive
integers, a variable name, a cell array containing one or more variable
names, or a logical vector.

See Also dataset, single, replacedata
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Purpose Drop levels

Syntax B = droplevels(A)
B = droplevels(A,oldlevels)

Description B = droplevels(A) removes unused levels from the categorical array
A. B is a categorical array with the same size and values as A, but with a
list of potential levels that includes only those present in some element
of A.

B = droplevels(A,oldlevels) removes specified levels from the
categorical array A. oldlevels is a cell array of strings or a 2-D
character matrix specifying the levels to be removed.

droplevels removes levels, but does not remove elements. Elements
of B that correspond to elements of A having levels in oldlevels all
have an undefined level.

Examples Example 1

Drop unused age levels from the data in hospital.mat:

load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
AgeGroup = ordinal(hospital.Age,labels,[],edges);
AgeGroup = droplevels(AgeGroup);
getlabels(AgeGroup)
ans =

'20s' '30s' '40s' '50s'

Example 2

1 Load patient data from the CSV file hospital.dat and store the
information in a dataset array with observation names given by the
first column in the data (patient identification):

patients = dataset('file','hospital.dat',...
'delimiter',',',...
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'ReadObsNames',true);

2 Make the {0,1}-valued variable smoke nominal, and change the labels
to 'No' and 'Yes':

patients.smoke = nominal(patients.smoke,{'No','Yes'});

3 Add new levels to smoke as placeholders for more detailed histories
of smokers:

patients.smoke = addlevels(patients.smoke,...
{'0-5 Years','5-10 Years','LongTerm'});

4 Assuming the nonsmokers have never smoked, relabel the 'No' level:

patients.smoke = setlabels(patients.smoke,'Never','No');

5 Drop the undifferentiated 'Yes' level from smoke:

patients.smoke = droplevels(patients.smoke,'Yes');

Warning: OLDLEVELS contains categorical levels that
were present in A, caused some array elements to have
undefined levels.

Note that smokers now have an undefined level.

6 Set each smoker to one of the new levels, by observation name:

patients.smoke('YPL-320') = '5-10 Years';

See Also addlevels, getlabels, islevel, mergelevels, reorderlevels
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Purpose Create dummy variables

Syntax D = dummyvar(group)

Description D = dummyvar(group) creates {0,1}-valued dummy variables for each
of the unique values in group. Columns of group represent categorical
predictor variables, with values indicating categorical levels. Rows of
group represent observations across variables. Each column of D is a
dummy variable for one categorical level of one of the variables in group.

group can be a numeric vector or categorical column vector, representing
levels within a single variable, or a numeric matrix or cell array
of categorical column vectors, representing levels within multiple
variables. If group is a numeric vector or matrix, values in any column
must be positive integers in the range from 1 to the number of levels for
the corresponding variable.

If group is n-by-p, D is n-by-S, where S is the sum of the number of
levels in each of the columns of group. The number of levels s in any
column of group is the maximum positive integer in the column or the
number of categorical levels. Levels are considered distinct if they
appear in different columns of group, even if they have the same value.
Columns of D are, from left to right, dummy variables created from
the first column of group, followed by dummy variables created from
the second column of group, etc.

dummyvar treats NaN values or undefined categorical levels in group as
missing data and returns NaN values in D.

Dummy variables are used in regression analysis and ANOVA to
indicate values of categorical predictors.
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Note If a column of 1s is introduced in the matrix D, the resulting
matrix X = [ones(size(D,1),1) D] will be rank deficient. The
matrix D itself will be rank deficient if group has multiple columns.
This is because dummy variables produced from any column of group
always sum to a column of 1s. Regression and ANOVA calculations
often address this issue by eliminating one dummy variable (implicitly
setting the coefficients for dropped columns to zero) from each group of
dummy variables produced by a column of group.

Examples Suppose you are studying the effects of two machines and three
operators on a process. Use group to organize predictor data on
machine-operator combinations:

machine = [1 1 1 1 2 2 2 2]';
operator = [1 2 3 1 2 3 1 2]';
group = [machine operator]
group =

1 1
1 2
1 3
1 1
2 2
2 3
2 1
2 2

Use dummyvar to create dummy variables for a regression or ANOVA
calculation:

D = dummyvar(group)
D =

1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
1 0 1 0 0
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0 1 0 1 0
0 1 0 0 1
0 1 1 0 0
0 1 0 1 0

The first two columns of D represent observations of machine 1 and
machine 2, respectively; the remaining columns represent observations
of the three operators.

See Also “Grouped Data” on page 2-33

regress, anova1
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Purpose Durbin-Watson test

Syntax [P,DW] = dwtest(R,X)
[...] = dwtest(R,X,method)
[...] = dwtest(R,X,method,tail)

Description [P,DW] = dwtest(R,X) performs a Durbin-Watson test on the vector R
of residuals from a linear regression, where X is the design matrix from
that linear regression. P is the computed p-value for the test, and DW
is the Durbin-Watson statistic. The Durbin-Watson test is used to test
if the residuals are uncorrelated, against the alternative that there is
autocorrelation among them.

[...] = dwtest(R,X,method) specifies the method to be used in
computing the p-value. method can be either of the following:

• 'exact'— Calculates an exact p-value using the PAN algorithm (the
default if the sample size is less than 400).

• 'approximate' — Calculates the p-value using a normal
approximation (the default if the sample size is 400 or larger).

[...] = dwtest(R,X,method,tail) performs the test against one of
the following alternative hypotheses, specified by tail:

Tail Alternative Hypothesis

'both' Serial correlation is not 0.

'right' Serial correlation is greater than 0 (right-tailed test).

'left' Serial correlation is less than 0 (left-tailed test).

Examples Fit a straight line to the census data and note the autocorrelation in
the residuals:

load census
n = length(cdate);
X = [ones(n,1),cdate];
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[b,bint,r1] = regress(pop,X);
p1 = dwtest(r1,X)
plot(cdate,r1,'b-',cdate,zeros(n,1),'k:')

Adding a squared term reduces the autocorrelation but it is still
significantly different from zero:

X = [ones(n,1),cdate,cdate.^2];
[b,bint,r2] = regress(pop,X);
p2 = dwtest(r2,X)
line(cdate,r2,'color','r')

See Also regress
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Purpose Empirical cumulative distribution function

Syntax [f,x] = ecdf(y)
[f,x,flo,fup] = ecdf(y)
ecdf(...)
ecdf(ax,...)
[...] = ecdf(y,param1,val1,param2,val2,...)

Description [f,x] = ecdf(y) calculates the Kaplan-Meier estimate of the
cumulative distribution function (cdf), also known as the empirical cdf.
y is a vector of data values. f is a vector of values of the empirical cdf
evaluated at x.

[f,x,flo,fup] = ecdf(y) also returns lower and upper confidence
bounds for the cdf. These bounds are calculated using Greenwood’s
formula, and are not simultaneous confidence bounds.

ecdf(...) without output arguments produces a plot of the empirical
cdf.

ecdf(ax,...) plots into axes ax instead of gca.

[...] = ecdf(y,param1,val1,param2,val2,...) specifies
additional parameter/value pairs chosen from the following:

Parameter Value

'censoring' Boolean vector of the same size as x. Elements are
1 for observations that are right-censored and 0 for
observations that are observed exactly. Default is all
observations observed exactly.

'frequency' Vector of the same size as x containing nonnegative
integer counts. The jth element of this vector
gives the number of times the jth element of x was
observed. Default is 1 observation per element of x.

'alpha' Value between 0 and 1 for a confidence level of
100(1-alpha)%. Default is alpha=0.05 for 95%
confidence.
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Parameter Value

'function' Type of function returned as the f output argument,
chosen from 'cdf' (default), 'survivor', or
'cumulative hazard'.

'bounds' Either 'on' to include bounds, or 'off' (the default)
to omit them. Used only for plotting.

Examples Generate random failure times and random censoring times, and
compare the empirical cdf with the known true cdf:

y = exprnd(10,50,1); % Random failure times exponential(10)
d = exprnd(20,50,1); % Drop-out times exponential(20)
t = min(y,d); % Observe the minimum of these times
censored = (y>d); % Observe whether the subject failed

% Calculate and plot empirical cdf and confidence bounds
[f,x,flo,fup] = ecdf(t,'censoring',censored);
stairs(x,f,'LineWidth',2)
hold on
stairs(x,flo,'r:','LineWidth',2)
stairs(x,fup,'r:','LineWidth',2)

% Superimpose a plot of the known population cdf
xx = 0:.1:max(t);
yy = 1-exp(-xx/10);
plot(xx,yy,'g-','LineWidth',2)
legend('Empirical','LCB','UCB','Population',...

'Location','SE')
hold off
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References [1] Cox, D. R., and D. Oakes. Analysis of Survival Data. London:
Chapman & Hall, 1984.

See Also cdfplot, ecdfhist
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Purpose Empirical cumulative distribution function histogram

Syntax n = ecdfhist(f,x)
n = ecdfhist(f,x,m)
n = ecdfhist(f,x,c)
[n,c] = ecdfhist(...)
ecdfhist(...)

Description n = ecdfhist(f,x) takes a vector f of empirical cumulative
distribution function (cdf) values and a vector x of evaluation points,
and returns a vector n containing the heights of histogram bars for 10
equally spaced bins. The function computes the bar heights from the
increases in the empirical cdf, and normalizes them so that the area of
the histogram is equal to 1. In contrast, hist produces bars whose
heights represent bin counts.

n = ecdfhist(f,x,m), where m is a scalar, uses m bins.

n = ecdfhist(f,x,c), where c is a vector, uses bins with centers
specified by c.

[n,c] = ecdfhist(...) also returns the position of the bin centers
in c.

ecdfhist(...) without output arguments produces a histogram bar
plot of the results.

Examples The following code generates random failure times and random
censoring times, and compares the empirical pdf with the known true
pdf.

y = exprnd(10,50,1); % Random failure times
d = exprnd(20,50,1); % Drop-out times
t = min(y,d); % Observe the minimum of these times
censored = (y>d); % Observe whether the subject failed

% Calculate the empirical cdf and plot a histogram from it
[f,x] = ecdf(t,'censoring',censored);
ecdfhist(f,x)
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set(get(gca,'Children'),'FaceColor',[.8 .8 1])
hold on

% Superimpose a plot of the known population pdf
xx = 0:.1:max(t);
yy = exp(-xx/10)/10;
plot(xx,yy,'r-','LineWidth',2)
hold off

See Also ecdf, hist, histc
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Purpose Last index in indexing expression for categorical array

Syntax end(A,k,n)

Description end(A,k,n) indexes expressions involving the categorical array A
when end is part of the k-th index out of n indices. For example, the
expression A(end-1,:) calls A’s end method with end(A,1,2).

See Also single
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Purpose Last index in indexing expression for dataset array

Syntax end(A,k,n)

Description end(A,k,n) is called for indexing expressions involving the dataset A
when end is part of the k-th index out of n indices. For example, the
expression A(end-1,:) calls A’s end method with end(A,1,2).

See Also size
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Purpose Last index in indexing expression for point set

Syntax end(p,k,n)

Description end(p,k,n) is called for indexing expressions involving the point set
p when end is part of the k-th index out of n indices. For example, the
expression p(end-1,:) calls p’s end method with end(p,1,2).

See Also qrandset
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Purpose Extreme value cumulative distribution function

Syntax P = evcdf(X,mu,sigma)
[P,PLO,PUP] = evcdf(X,mu,sigma,pcov,alpha)

Description P = evcdf(X,mu,sigma) computes the cumulative distribution function
(cdf) for the type 1 extreme value distribution, with location parameter
mu and scale parameter sigma, at each of the values in X. X, mu, and
sigma can be vectors, matrices, or multidimensional arrays that all
have the same size. A scalar input is expanded to a constant array of
the same size as the other inputs. The default values for mu and sigma
are 0 and 1, respectively.

[P,PLO,PUP] = evcdf(X,mu,sigma,pcov,alpha) produces confidence
bounds for P when the input parameters mu and sigma are estimates.
pcov is a 2-by-2 covariance matrix of the estimated parameters. alpha
has a default value of 0.05, and specifies 100(1 - alpha)% confidence
bounds. PLO and PUP are arrays of the same size as P, containing the
lower and upper confidence bounds.

The function evcdf computes confidence bounds for P using a normal
approximation to the distribution of the estimate

and then transforming those bounds to the scale of the output P. The
computed bounds give approximately the desired confidence level when
you estimate mu, sigma, and pcov from large samples, but in smaller
samples other methods of computing the confidence bounds might be
more accurate.

The type 1 extreme value distribution is also known as the Gumbel
distribution. The version used here is suitable for modeling minima;
the mirror image of this distribution can be used to model maxima by
negating X. See “Extreme Value Distribution” on page B-19 for more
details. If x has a Weibull distribution, then X = log(x) has the type 1
extreme value distribution.
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See Also cdf, evpdf, evinv, evstat, evfit, evlike, evrnd

“Extreme Value Distribution” on page B-19
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Purpose Extreme value parameter estimates

Syntax parmhat = evfit(data)
[parmhat,parmci] = evfit(data)
[parmhat,parmci] = evfit(data,alpha)
[...] = evfit(data,alpha,censoring)
[...] = evfit(data,alpha,censoring,freq)
[...] = evfit(data,alpha,censoring,freq,options)

Description parmhat = evfit(data) returns maximum likelihood estimates of
the parameters of the type 1 extreme value distribution given the
data in the vector data. parmhat(1) is the location parameter, , and
parmhat(2) is the scale parameter, σ.

[parmhat,parmci] = evfit(data) returns 95% confidence intervals
for the parameter estimates on the and σ parameters in the 2-by-2
matrix parmci. The first column of the matrix of the extreme value
fit contains the lower and upper confidence bounds for the parameter
, and the second column contains the confidence bounds for the
parameter σ.

[parmhat,parmci] = evfit(data,alpha) returns 100(1 - alpha)%
confidence intervals for the parameter estimates, where alpha is a value
in the range [0 1] specifying the width of the confidence intervals. By
default, alpha is 0.05, which corresponds to 95% confidence intervals.

[...] = evfit(data,alpha,censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that
are right-censored and 0 for observations that are observed exactly.

[...] = evfit(data,alpha,censoring,freq) accepts a frequency
vector, freq of the same size as data. Typically, freq contains integer
frequencies for the corresponding elements in data, but can contain
any nonnegative values. Pass in [] for alpha, censoring, or freq to
use their default values.

[...] = evfit(data,alpha,censoring,freq,options) accepts
a structure, options, that specifies control parameters for the
iterative algorithm the function uses to compute maximum likelihood
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estimates. You can create options using the function statset.
Enter statset('evfit') to see the names and default values of the
parameters that evfit accepts in the options structure. See the
reference page for statset for more information about these options.

The type 1 extreme value distribution is also known as the Gumbel
distribution. The version used here is suitable for modeling minima;
the mirror image of this distribution can be used to model maxima by
negating X. See “Extreme Value Distribution” on page B-19 for more
details. If x has a Weibull distribution, then X = log(x) has the type 1
extreme value distribution.

See Also mle, evlike, evpdf, evcdf, evinv, evstat, evrnd

“Extreme Value Distribution” on page B-19
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Purpose Extreme value inverse cumulative distribution function

Syntax X = evinv(P,mu,sigma)
[X,XLO,XUP] = evinv(P,mu,sigma,pcov,alpha)

Description X = evinv(P,mu,sigma) returns the inverse cumulative distribution
function (cdf) for a type 1 extreme value distribution with location
parameter mu and scale parameter sigma, evaluated at the values in P.
P, mu, and sigma can be vectors, matrices, or multidimensional arrays
that all have the same size. A scalar input is expanded to a constant
array of the same size as the other inputs. The default values for mu and
sigma are 0 and 1, respectively.

[X,XLO,XUP] = evinv(P,mu,sigma,pcov,alpha) produces confidence
bounds for X when the input parameters mu and sigma are estimates.
pcov is the covariance matrix of the estimated parameters. alpha
is a scalar that specifies 100(1 - alpha)% confidence bounds for the
estimated parameters, and has a default value of 0.05. XLO and XUP are
arrays of the same size as X containing the lower and upper confidence
bounds.

The function evinv computes confidence bounds for P using a normal
approximation to the distribution of the estimate

where q is the Pth quantile from an extreme value distribution with
parameters and . The computed bounds give approximately
the desired confidence level when you estimate mu, sigma, and pcov
from large samples, but in smaller samples other methods of computing
the confidence bounds might be more accurate.

The type 1 extreme value distribution is also known as the Gumbel
distribution. The version used here is suitable for modeling minima;
the mirror image of this distribution can be used to model maxima by
negating X. See “Extreme Value Distribution” on page B-19 for more
details. If x has a Weibull distribution, then X = log(x) has the type 1
extreme value distribution.
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See Also icdf, evcdf, evpdf, evstat, evfit, evlike, evrnd
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Purpose Test handle equality

Syntax h1 == h2
tf = eq(h1, h2)

Description h1 == h2 performs element-wise comparisons between handle arrays
h1 and h2. h1 and h2 must be of the same dimensions unless one is a
scalar. The result is a logical array of the same dimensions, where each
element is an element-wise equality result. If one of h1 or h2 is scalar,
scalar expansion is performed and the result will match the dimensions
of the array that is not scalar.

tf = eq(h1, h2) stores the result in a logical array of the same
dimensions.

See Also qrandstream, ge, gt, le, lt, ne
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Purpose Error (misclassification probability or MSE)

Syntax err = error(B,X,Y)
err = error(B,X,Y,'param1',val1,'param2',val2,...)

Description err = error(B,X,Y) computes the misclassification probability (for
classification trees) or mean squared error (MSE, for regression trees)
for each tree, for predictors X given true response Y. For classification, Y
can be either a numeric vector, character matrix, cell array of strings,
categorical vector or logical vector. For regression, Y must be a numeric
vector. err is a vector with one error measure for each of the NTrees
trees in the ensemble B.

err = error(B,X,Y,'param1',val1,'param2',val2,...) specifies
optional parameter name/value pairs:

'mode' String indicating how the method computes errors.
If set to 'cumulative' (default), error computes
cumulative errors and err is a vector of length NTrees,
where the first element gives error from trees(1),
second element gives error fromtrees(1:2) etc, up
to trees(1:NTrees). If set to 'individual', err
is a vector of length NTrees, where each element is
an error from each tree in the ensemble. If set to
'ensemble', err is a scalar showing the cumulative
error for the entire ensemble.

'trees' Vector of indices indicating what trees to include
in this calculation. By default, this argument is set
to 'all' and the method uses all trees. If 'trees'
is a numeric vector, the method returns a vector of
length NTrees for 'cumulative' and 'individual'
modes, where NTrees is the number of elements in the
input vector, and a scalar for 'ensemble' mode. For
example, in the 'cumulative'mode, the first element
gives error from trees(1), the second element gives
error from trees(1:2) etc.
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'treeweights'Vector of tree weights. This vector must have the
same length as the 'trees' vector. The method uses
these weights to combine output from the specified
trees by taking a weighted average instead of the
simple non-weighted majority vote. You cannot use
this argument in the 'individual' mode.

'useifort' Logical matrix of size Nobs-by-NTrees indicating
which trees should be used to make predictions for
each observation. By default the method uses all trees
for all observations.

See Also TreeBagger.error
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Purpose Error (misclassification probability or MSE)

Syntax err = error(B,X,Y)
err = error(B,X,Y,'param1',val1,'param2',val2,...)

Description err = error(B,X,Y) computes the misclassification probability for
classification trees or mean squared error (MSE) for regression trees for
each tree, for predictors X given true response Y. For classification, Y
can be either a numeric vector, character matrix, cell array of strings,
categorical vector or logical vector. For regression, Y must be a numeric
vector. err is a vector with one error measure for each of the NTrees
trees in the ensemble B.

err = error(B,X,Y,'param1',val1,'param2',val2,...) specifies
optional parameter name/value pairs:

'mode' String indicating how the method computes errors.
If set to 'cumulative' (default), error computes
cumulative errors and err is a vector of length NTrees,
where the first element gives error from trees(1),
second element gives error fromtrees(1:2) etc, up
to trees(1:NTrees). If set to 'individual', err
is a vector of length NTrees, where each element is
an error from each tree in the ensemble. If set to
'ensemble', err is a scalar showing the cumulative
error for the entire ensemble.

'trees' Vector of indices indicating what trees to include
in this calculation. By default, this argument is set
to 'all' and the method uses all trees. If 'trees'
is a numeric vector, the method returns a vector of
length NTrees for 'cumulative' and 'individual'
modes, where NTrees is the number of elements in the
input vector, and a scalar for 'ensemble' mode. For
example, in the 'cumulative'mode, the first element
gives error from trees(1), the second element gives
error from trees(1:2) etc.
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'treeweights'Vector of tree weights. This vector must have the
same length as the 'trees' vector. The method uses
these weights to combine output from the specified
trees by taking a weighted average instead of the
simple non-weighted majority vote. You cannot use
this argument in the 'individual' mode.

'useifort' Logical matrix of size Nobs-by-NTrees indicating
which trees should be used to make predictions for
each observation. By default the method uses all trees
for all observations.

See Also CompactTreeBagger.error
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Purpose Predicted responses

Syntax yfit = eval(t,X)
yfit = eval(t,X,s)
[yfit,nodes] = eval(...)
[yfit,nodes,cnums] = eval(...)
[...] = t(X)
[...] = t(X,s)

Description yfit = eval(t,X) takes a classification or regression tree t and a
matrix X of predictors, and produces a vector yfit of predicted response
values. For a regression tree, yfit(i) is the fitted response value for
a point having the predictor values X(i,:). For a classification tree,
yfit(i) is the class into which the tree assigns the point with data
X(i,:).

yfit = eval(t,X,s) takes an additional vector s of pruning levels,
with 0 representing the full, unpruned tree. t must include a pruning
sequence as created by classregtree or by prune. If s has k elements
and X has n rows, the output yfit is an n-by-k matrix, with the jth
column containing the fitted values produced by the s(j) subtree. s
must be sorted in ascending order.

To compute fitted values for a tree that is not part of the optimal
pruning sequence, first use prune to prune the tree.

[yfit,nodes] = eval(...) also returns a vector nodes the same size
as yfit containing the node number assigned to each row of X. Use view
to display the node numbers for any node you select.

[yfit,nodes,cnums] = eval(...) is valid only for classification trees.
It returns a vector cnum containing the predicted class numbers.

NaN values in X are treated as missing. If eval encounters a missing
value when it attempts to evaluate the split rule at a branch node, it
cannot determine whether to proceed to the left or right child node.
Instead, it sets the corresponding fitted value equal to the fitted value
assigned to the branch node.

[...] = t(X) or [...] = t(X,s) also invoke eval.
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Examples Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})

t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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Find assigned class names:

sfit = eval(t,meas);

Compute that proportion is correctly classified:

pct = mean(strcmp(sfit,species))
pct =

0.9800
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References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also classregtree, prune, test, view
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Purpose Extreme value negative log-likelihood

Syntax nlogL = evlike(params,data)
[nlogL,AVAR] = evlike(params,data)
[...] = evlike(params,data,censoring)
[...] = evlike(params,data,censoring,freq)

Description nlogL = evlike(params,data) returns the negative of the
log-likelihood for the type 1 extreme value distribution. params(1) is
the tail location parameter, mu, and params(2) is the scale parameter,
sigma. nlogL is a scalar.

[nlogL,AVAR] = evlike(params,data) returns the inverse of Fisher’s
information matrix, AVAR. If the input parameter values in params are
the maximum likelihood estimates, the diagonal elements of AVAR are
their asymptotic variances. AVAR is based on the observed Fisher’s
information, not the expected information.

[...] = evlike(params,data,censoring) accepts a Boolean
vector of the same size as data, which is 1 for observations that are
right-censored and 0 for observations that are observed exactly.

[...] = evlike(params,data,censoring,freq) accepts a frequency
vector of the same size as data. freq typically contains integer
frequencies for the corresponding elements in data, but can contain any
nonnegative values. Pass in [] for censoring to use its default value.

The type 1 extreme value distribution is also known as the Gumbel
distribution. The version used here is suitable for modeling minima;
the mirror image of this distribution can be used to model maxima by
negating data. See “Extreme Value Distribution” on page B-19 for more
details. If x has a Weibull distribution, then X = log(x) has the type 1
extreme value distribution.

See Also evfit, evpdf, evcdf, evinv, evstat, evrnd

“Extreme Value Distribution” on page B-19
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Purpose Extreme value probability density function

Syntax Y = evpdf(X,mu,sigma)

Description Y = evpdf(X,mu,sigma) returns the pdf of the type 1 extreme value
distribution with location parameter mu and scale parameter sigma,
evaluated at the values in X. X, mu, and sigma can be vectors, matrices,
or multidimensional arrays that all have the same size. A scalar input
is expanded to a constant array of the same size as the other inputs.
The default values for mu and sigma are 0 and 1, respectively.

The type 1 extreme value distribution is also known as the Gumbel
distribution. The version used here is suitable for modeling minima;
the mirror image of this distribution can be used to model maxima by
negating X. See “Extreme Value Distribution” on page B-19 for more
details. If x has a Weibull distribution, then X = log(x) has the type 1
extreme value distribution.

See Also pdf, evcdf, evinv, evstat, evfit, evlike, evrnd

“Extreme Value Distribution” on page B-19
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Purpose Extreme value random numbers

Syntax R = evrnd(mu,sigma)
R = evrnd(mu,sigma,v)
R = evrnd(mu,sigma,m,n)

Description R = evrnd(mu,sigma) generates random numbers from the extreme
value distribution with parameters specified by location parameter mu
and scale parameter sigma. mu and sigma can be vectors, matrices, or
multidimensional arrays that have the same size, which is also the size
of R. A scalar input for mu or sigma is expanded to a constant array with
the same dimensions as the other input.

R = evrnd(mu,sigma,v) generates an array R of size v containing
random numbers from the extreme value distribution with parameters
mu and sigma, where v is a row vector. If v is a 1-by-2 vector, R is
a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an
n-dimensional array.

If mu and sigma are both scalars, R = evrnd(mu,sigma,m,n) returns an
m-by-n matrix.

The type 1 extreme value distribution is also known as the Gumbel
distribution. The version used here is suitable for modeling minima;
the mirror image of this distribution can be used to model maxima by
negating R. See “Extreme Value Distribution” on page B-19 for more
details. If x has a Weibull distribution, then X = log(x) has the type 1
extreme value distribution.

See Also random, evpdf, evcdf, evinv, evstat, evfit, evlike

“Extreme Value Distribution” on page B-19
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Purpose Extreme value mean and variance

Syntax [M,V] = evstat(mu,sigma)

Description [M,V] = evstat(mu,sigma) returns the mean of and variance for
the type 1 extreme value distribution with location parameter mu and
scale parameter sigma. mu and sigma can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array of the same size as the other input. The
default values for mu and sigma are 0 and 1, respectively.

The type 1 extreme value distribution is also known as the Gumbel
distribution. The version used here is suitable for modeling minima;
the mirror image of this distribution can be used to model maxima.
See “Extreme Value Distribution” on page B-19 for more details. If
x has a Weibull distribution, then X = log(x) has the type 1 extreme
value distribution.

See Also evpdf, evcdf, evinv, evfit, evlike, evrnd

“Extreme Value Distribution” on page B-19
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Purpose Exponential cumulative distribution function

Syntax P = expcdf(X,mu)
[P,PLO,PUP] = expcdf(X,mu,pcov,alpha)

Description P = expcdf(X,mu) computes the exponential cdf at each of the values
in X using the corresponding mean parameter mu. X and mu can be
vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array with the same
dimensions as the other input. The parameters in mu must be positive.

The exponential cdf is

p F x u e dt e
x t x

= = = −∫
− −

( | )
1

1
0


 

The result, p, is the probability that a single observation from an
exponential distribution will fall in the interval [0 x].

[P,PLO,PUP] = expcdf(X,mu,pcov,alpha) produces confidence
bounds for P when the input mean parameter mu is an estimate. pcov
is the variance of the estimated mu. alpha specifies 100(1 - alpha)%
confidence bounds. The default value of alpha is 0.05. PLO and PUP are
arrays of the same size as P containing the lower and upper confidence
bounds. The bounds are based on a normal approximation for the
distribution of the log of the estimate of mu. If you estimate mu from a set
of data, you can get a more accurate set of bounds by applying expfit to
the data to get a confidence interval for mu, and then evaluating expinv
at the lower and upper endpoints of that interval.

Examples The following code shows that the median of the exponential
distribution is *log(2).
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mu = 10:10:60;
p = expcdf(log(2)*mu,mu)
p =

0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

What is the probability that an exponential random variable is less
than or equal to the mean, µ?

mu = 1:6;
x = mu;
p = expcdf(x,mu)
p =

0.6321 0.6321 0.6321 0.6321 0.6321 0.6321

See Also , , , , , ,

See Also cdf | exppdf | expinv | expstat | expfit | explike | exprnd

How To • “Exponential Distribution” on page B-16

18-364



expfit

Purpose Exponential parameter estimates

Syntax muhat = expfit(data)
[muhat,muci] = expfit(data)
[muhat,muci] = expfit(data,alpha)
[...] = expfit(data,alpha,censoring)
[...] = expfit(data,alpha,censoring,freq)

Description muhat = expfit(data) estimates the mean of an exponentially
distributed sample data. Each entry of muhat corresponds to the data
in a column of data.

[muhat,muci] = expfit(data) returns 95% confidence intervals for
the mean parameter estimates in matrix muci. The first row of muci
contains the lower bounds of the confidence intervals, and the second
row contains the upper bounds.

[muhat,muci] = expfit(data,alpha) returns 100(1 - alpha)%
confidence intervals for the parameter estimates, where alpha is a value
in the range [0 1] specifying the width of the confidence intervals. By
default, alpha is 0.05, which corresponds to 95% confidence intervals.

[...] = expfit(data,alpha,censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that
are right-censored and 0 for observations that are observed exactly.
data must be a vector in order to pass in the argument censoring.

[...] = expfit(data,alpha,censoring,freq) accepts a frequency
vector, freq of the same size as data. Typically, freq contains integer
frequencies for the corresponding elements in data, but can contain
any nonnegative values. Pass in [] for alpha, censoring, or freq to
use their default values.

Examples The following estimates the mean mu of exponentially distributed data,
and returns a 95% confidence interval for the estimate:

mu = 3;
data = exprnd(mu,100,1); % Simulated data
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[muhat,muci] = expfit(data)
muhat =

2.7511
muci =

2.2826
3.3813

See Also mle, explike, exppdf, expcdf, expinv, expstat, exprnd
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Purpose Exponential inverse cumulative distribution function

Syntax X = expinv(P,mu)
[X,XLO,XUP] = expinv(X,mu,pcov,alpha)

Description X = expinv(P,mu) computes the inverse of the exponential cdf with
parameters specified by mean parameter mu for the corresponding
probabilities in P. P and mu can be vectors, matrices, or multidimensional
arrays that all have the same size. A scalar input is expanded to a
constant array with the same dimensions as the other input. The
parameters in mu must be positive and the values in P must lie on the
interval [0 1].

[X,XLO,XUP] = expinv(X,mu,pcov,alpha) produces confidence
bounds for X when the input mean parameter mu is an estimate. pcov
is the variance of the estimated mu. alpha specifies 100(1 - alpha)%
confidence bounds. The default value of alpha is 0.05. XLO and XUP are
arrays of the same size as X containing the lower and upper confidence
bounds. The bounds are based on a normal approximation for the
distribution of the log of the estimate of mu. If you estimate mu from a set
of data, you can get a more accurate set of bounds by applying expfit to
the data to get a confidence interval for mu, and then evaluating expinv
at the lower and upper end points of that interval.

The inverse of the exponential cdf is

The result, x, is the value such that an observation from an exponential
distribution with parameter µ will fall in the range [0 x] with
probability p.

Examples Let the lifetime of light bulbs be exponentially distributed with µ = 700
hours. What is the median lifetime of a bulb?

expinv(0.50,700)
ans =
485.2030
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Suppose you buy a box of “700 hour” light bulbs. If 700 hours is the
mean life of the bulbs, half of them will burn out in less than 500 hours.

See Also icdf | expcdf | exppdf | expstat | expfit | explike | exprnd

How To • “Exponential Distribution” on page B-16
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Purpose Exponential negative log-likelihood

Syntax nlogL = explike(param,data)
[nlogL,avar] = explike(param,data)
[...] = explike(param,data,censoring)
[...] = explike(param,data,censoring,freq)

Description nlogL = explike(param,data) returns the negative of the
log-likelihood for the exponential distribution. param is the mean
parameter, mu. nlogL is a scalar.

[nlogL,avar] = explike(param,data) returns the inverse of Fisher’s
information, avar, a scalar. If the input parameter value in param is
the maximum likelihood estimate, avar is its asymptotic variance.
avar is based on the observed Fisher’s information, not the expected
information.

[...] = explike(param,data,censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that
are right-censored and 0 for observations that are observed exactly.

[...] = explike(param,data,censoring,freq) accepts a frequency
vector, freq, of the same size as data. The vector freq typically
contains integer frequencies for the corresponding elements in data,
but can contain any nonnegative values. Pass in [] for censoring to
use its default value.

See Also expcdf | exppdf | expstat | expfit | expinv | exprnd

How To • “Exponential Distribution” on page B-16
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Purpose Write dataset array to file

Syntax export(DS,'file',filename)
export(DS)
export(DS,'file',filename,'Delimiter',delim)
export(DS,'XLSfile',filename)
export(DS,'XPTFile',filename)
export(DS,...,'WriteVarNames',false)
export(DS,...,'WriteObsNames',false)

Description export(DS,'file',filename) writes the dataset array DS to a
tab-delimited text file, including variable names and observation
names, if present. If the observation names exist, the name in the first
column of the first line of the file is the first dimension name for the
dataset (by default, 'Observations'). export overwrites any existing
file named filename.

export(DS) writes to a text file whose default name is the name of
the dataset array DS appended by '.txt'. If export cannot construct
the file name from the dataset array input, it writes to the file
'dataset.txt'. export overwrites any existing file.

export(DS,'file',filename,'Delimiter',delim) writes the dataset
array DS to a text file using the delimiter delim. delim must be one
of the following:

• ' ' or 'space'

• '\t' or 'tab'

• ',' or 'comma'

• ';' or 'semi'

• '|' or 'bar'

export(DS,'XLSfile',filename) writes the dataset array DS to an
Microsoft® Excel® spreadsheet file, including variable names and
observation names (if present). You may also specify the 'Sheet'
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and 'Range' parameter name/value pairs, with parameter values as
accepted by the xlsread function.

export(DS,'XPTFile',filename) writes the dataset array DS to a
SAS XPORT format file. When writing to an XPORT format file variables
must be scalar valued. export saves observation names to a variable
called obsnames unless the WriteObsNames parameter described below
is false. The XPORT format restricts the length of variable names to
eight characters; longer variable names will be truncated.

export(DS,...,'WriteVarNames',false) does not write the variable
names to the text file. export(DS,...,'WriteVarNames',true) is
the default, writing the names as column headings in the first line of
the file.

export(DS,...,'WriteObsNames',false) does
not write the observation names to the text file.
export(DS,...,'WriteObsNames',true) is the default, writing the
names as the first column of the file.

In some cases, export creates a text file that does not represent A
exactly, as described below. If you use dataset to read the file back
into MATLAB, the new dataset array may not have exactly the same
contents as the original dataset array. Save A as a MAT-file if you need
to import it again as a dataset array.

export writes out numeric variables using long g format, and
categorical or character variables as unquoted strings. For
non-character variables with more than one column, export writes out
multiple delimiter-separated fields on each line, and constructs suitable
column headings for the first line of the file. export writes out both the
time and the data fields of timeseries variables, as separate columns.
export writes out variables that have more than two dimensions as a
single empty field in each line of the file. For cell-valued variables,
export writes out the contents of each cell only when the cell contains a
single row, and writes out a single empty field otherwise.

In some cases, export may create a file that cannot be read back into
MATLAB using dataset. Writing a dataset array that contains a
cell-valued variable whose cell contents are not scalars will result in a
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mismatch in the file between the number of fields on each line and
the number of column headings on the first line. Writing a dataset
array that contains a cell-valued variable whose cell contents are not
all the same length will result in a different number of fields on each
line in the file.

Examples Move data between external text files and dataset arrays in the
MATLAB workspace:

A = dataset('file','sat2.dat','delimiter',',')
A =

Test Gender Score
'Verbal' 'Male' 470
'Verbal' 'Female' 530
'Quantitative' 'Male' 520
'Quantitative' 'Female' 480

export(A(A.Score > 500,:),'file','HighScores.txt')

B = dataset('file','HighScores.txt','delimiter','\t')
B =

Test Gender Score
'Verbal' 'Female' 530
'Quantitative' 'Male' 520

See Also dataset
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Purpose Exponential probability density function

Syntax Y = exppdf(X,mu)

Description Y = exppdf(X,mu) returns the pdf of the exponential distribution
with mean parameter mu, evaluated at the values in X. X and mu can
be vectors, matrices, or multidimensional arrays that have the same
size. A scalar input is expanded to a constant array with the same
dimensions as the other input. The parameters in mu must be positive.

The exponential pdf is

The exponential pdf is the gamma pdf with its first parameter equal to 1.

The exponential distribution is appropriate for modeling waiting
times when the probability of waiting an additional period of time is
independent of how long you have already waited. For example, the
probability that a light bulb will burn out in its next minute of use is
relatively independent of how many minutes it has already burned.

Examples y = exppdf(5,1:5)
y =

0.0067 0.0410 0.0630 0.0716 0.0736

y = exppdf(1:5,1:5)
y =

0.3679 0.1839 0.1226 0.0920 0.0736

See Also pdf | expcdf | expinv | expstat | expfit | explike | exprnd

How To • “Exponential Distribution” on page B-16
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Purpose Exponential random numbers

Syntax R = exprnd(mu)
R = exprnd(mu,v)
R = exprnd(mu,m,n)

Description R = exprnd(mu) generates random numbers from the exponential
distribution with mean parameter mu. mu can be a vector, a matrix, or a
multidimensional array. The size of R is the size of mu.

R = exprnd(mu,v) generates an array R of size v containing random
numbers from the exponential distribution with mean mu, where v is a
row vector. If v is a 1-by-2 vector, R is a matrix with v(1) rows and v(2)
columns. If v is 1-by-n, R is an n-dimensional array.

R = exprnd(mu,m,n) generates random numbers from the exponential
distribution with mean parameter mu, where scalars m and n are the
row and column dimensions of R.

Examples n1 = exprnd(5:10)
n1 =

7.5943 18.3400 2.7113 3.0936 0.6078 9.5841

n2 = exprnd(5:10,[1 6])
n2 =

3.2752 1.1110 23.5530 23.4303 5.7190 3.9876

n3 = exprnd(5,2,3)
n3 =

24.3339 13.5271 1.8788
4.7932 4.3675 2.6468

See Also random | expcdf | exppdf | expstat | expfit | explike | expinv

How To • “Exponential Distribution” on page B-16
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Purpose Exponential mean and variance

Syntax [m,v] = expstat(mu)

Description [m,v] = expstat(mu) returns the mean of and variance for the
exponential distribution with parameters mu. mu can be a vectors,
matrix, or multidimensional array. The mean of the exponential
distribution is µ, and the variance is µ2.

Examples [m,v] = expstat([1 10 100 1000])
m =

1 10 100 1000
v =

1 100 10000 1000000

See Also expinv | expcdf | exppdf | expstat | expfit | explike | exprnd

How To • “Exponential Distribution” on page B-16
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Purpose Factor analysis

Syntax lambda = factoran(X,m)
[lambda,psi] = factoran(X,m)
[lambda,psi,T] = factoran(X,m)
[lambda,psi,T,stats] = factoran(X,m)
[lambda,psi,T,stats,F] = factoran(X,m)
[...] = factoran(...,param1,val1,param2,val2,...)

Definition factoran computes the maximum likelihood estimate (MLE) of the
factor loadings matrix in the factor analysis model

where is a vector of observed variables, is a constant vector of
means, is a constant d-by-m matrix of factor loadings, is a vector
of independent, standardized common factors, and is a vector of
independent specific factors. , , and are of length d. is of length m.

Alternatively, the factor analysis model can be specified as

where is a d-by-d diagonal matrix of specific variances.

Description lambda = factoran(X,m) returns the maximum likelihood estimate,
lambda, of the factor loadings matrix, in a common factor analysis
model with m common factors. X is an n-by-d matrix where each row
is an observation of d variables. The (i,j)th element of the d-by-m
matrix lambda is the coefficient, or loading, of the jth factor for the ith
variable. By default, factoran calls the function rotatefactors to
rotate the estimated factor loadings using the 'varimax' option.

[lambda,psi] = factoran(X,m) also returns maximum likelihood
estimates of the specific variances as a column vector psi of length d.

[lambda,psi,T] = factoran(X,m) also returns the m-by-m factor
loadings rotation matrix T.
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[lambda,psi,T,stats] = factoran(X,m) also returns a structure
stats containing information relating to the null hypothesis, H0, that
the number of common factors is m. stats includes the following fields:

Field Description

loglike Maximized log-likelihood value

dfe Error degrees of freedom = ((d-m)^2 - (d+m))/2

chisq Approximate chi-squared statistic for the null hypothesis

p Right-tail significance level for the null hypothesis

factoran does not compute the chisq and p fields unless dfe is positive
and all the specific variance estimates in psi are positive (see “Heywood
Case” on page 18-383 below). If X is a covariance matrix, then you must
also specify the 'nobs' parameter if you want factoran to compute the
chisq and p fields.

[lambda,psi,T,stats,F] = factoran(X,m) also returns, in F,
predictions of the common factors, known as factor scores. F is an n-by-m
matrix where each row is a prediction of m common factors. If X is a
covariance matrix, factoran cannot compute F. factoran rotates F
using the same criterion as for lambda.

[...] = factoran(...,param1,val1,param2,val2,...) enables
you to specify optional parameter name/value pairs to control the model
fit and the outputs. The following are the valid parameter/value pairs.

Parameter Value

Type of input in the matrix X. 'xtype' can be one
of:

'data' Raw data (default)

'xtype'

'covariance'Positive definite covariance or
correlation matrix
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Parameter Value

Method for predicting factor scores. 'scores' is
ignored if X is not raw data.

'wls'
'Bartlett'

Synonyms for a weighted
least-squares estimate that
treats F as fixed (default)

'scores'

'regression'
'Thomson'

Synonyms for a minimum mean
squared error prediction that is
equivalent to a ridge regression

Starting point for the specific variances psi in
the maximum likelihood optimization. Can be
specified as:

'random' Chooses d uniformly distributed
values on the interval [0,1].

'Rsquared' Chooses the starting vector
as a scale factor times
diag(inv(corrcoef(X))) (default).
For examples, see Jöreskog [2][2].

Positive
integer

Performs the given number of
maximum likelihood fits, each
initialized as with 'random'.
factoran returns the fit with the
highest likelihood.

'start'

Matrix Performs one maximum likelihood
fit for each column of the specified
matrix. The ith optimization is
initialized with the values from the
ith column. The matrix must have
d rows.
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Parameter Value

'rotate' Method used to rotate factor loadings and scores.
'rotate' can have the same values as the
'Method' parameter of rotatefactors. See
the reference page for rotatefactors for a full
description of the available methods.

'none' Performs no rotation.

'equamax' Special case of the orthomax
rotation. Use the 'normalize',
'reltol', and 'maxit' parameters
to control the details of the rotation.

'orthomax' Orthogonal rotation that maximizes
a criterion based on the variance of
the loadings.

Use the 'coeff', 'normalize',
'reltol', and 'maxit' parameters
to control the details of the rotation.

'parsimax' Special case of the orthomax rotation
(default). Use the 'normalize',
'reltol', and ’maxit’ parameters
to control the details of the rotation.

'pattern' Performs either an oblique rotation
(the default) or an orthogonal
rotation to best match a specified
pattern matrix. Use the 'type'
parameter to choose the type
of rotation. Use the 'target'
parameter to specify the pattern
matrix.
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Parameter Value

'procrustes'Performs either an oblique (the
default) or an orthogonal rotation to
best match a specified target matrix
in the least squares sense.

Use the 'type' parameter to choose
the type of rotation. Use 'target'
to specify the target matrix.

'promax' Performs an oblique procrustes
rotation to a target matrix
determined by factoran as a
function of an orthomax solution.

Use the 'power' parameter to
specify the exponent for creating the
target matrix. Because 'promax'
uses 'orthomax' internally, you can
also specify the parameters that
apply to 'orthomax'.

'quartimax' Special case of the orthomax rotation
(default). Use the 'normalize',
'reltol', and ’maxit’ parameters
to control the details of the rotation.

'varimax' Special case of the orthomax rotation
(default). Use the 'normalize',
'reltol', and 'maxit' parameters
to control the details of the rotation.
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Parameter Value

Function Function handle to rotation function
of the form

[B,T] =
myrotation(A,...)

where A is a d-by-m matrix of
unrotated factor loadings, B is a
d-by-m matrix of rotated loadings,
and T is the corresponding m-by-m
rotation matrix.

Use the factoran parameter
'userargs' to pass additional
arguments to this rotation
function. See “Example 4” on page
18-388Example 4.

'coeff' Coefficient, often denoted as , defining the specific
'orthomax' criterion. Must be between 0 and 1.
The value 0 corresponds to quartimax, and 1
corresponds to varimax. Default is 1.

'normalize' Flag indicating whether the loading matrix should
be row-normalized (1) or left unnormalized (0) for
'orthomax' or 'varimax' rotation. Default is 1.

'reltol' Relative convergence tolerance for 'orthomax' or
'varimax' rotation. Default is sqrt(eps).

'maxit' Iteration limit for 'orthomax' or 'varimax'
rotation. Default is 250.

'target' Target factor loading matrix for 'procrustes'
rotation. Required for 'procrustes' rotation. No
default value.

'type' Type of 'procrustes' rotation. Can be 'oblique'
(default) or 'orthogonal'.
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Parameter Value

'power' Exponent for creating the target matrix in the
'promax' rotation. Must be ≥ 1. Default is 4.

'userargs' Denotes the beginning of additional input values
for a user-defined rotation function. factoran
appends all subsequent values, in order and
without processing, to the rotation function
argument list, following the unrotated factor
loadings matrix A. See “Example 4” on page 18-388.

'nobs' If X is a covariance or correlation matrix, indicates
the number of observations that were used in its
estimation. This allows calculation of significance
for the null hypothesis even when the original data
are not available. There is no default. 'nobs' is
ignored if X is raw data.

'delta' Lower bound for the specific variances psi during
the maximum likelihood optimization. Default is
0.005.

'optimopts' Structure that specifies control parameters for
the iterative algorithm the function uses to
compute maximum likelihood estimates. Create
this structure with the function statset. Enter
statset('factoran') to see the names and
default values of the parameters that factoran
accepts in the options structure. See the reference
page for statset for more information about these
options.

Remarks Observed Data Variables

The variables in the observed data matrix X must be linearly
independent, i.e., cov(X) must have full rank, for maximum likelihood
estimation to succeed. factoran reduces both raw data and a covariance
matrix to a correlation matrix before performing the fit.
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factoran standardizes the observed data X to zero mean and unit
variance before estimating the loadings lambda. This does not affect the
model fit, because MLEs in this model are invariant to scale. However,
lambda and psi are returned in terms of the standardized variables,
i.e., lambda*lambda'+diag(psi) is an estimate of the correlation
matrix of the original data X (although not after an oblique rotation).
See Examples “Example 1” on page 18-3831 and “Example 3” on page
18-3853.

Heywood Case

If elements of psi are equal to the value of the 'delta' parameter
(i.e., they are essentially zero), the fit is known as a Heywood case, and
interpretation of the resulting estimates is problematic. In particular,
there can be multiple local maxima of the likelihood, each with different
estimates of the loadings and the specific variances. Heywood cases
can indicate overfitting (i.e., m is too large), but can also be the result
of underfitting.

Rotation of Factor Loadings and Scores

Unless you explicitly specify no rotation using the 'rotate' parameter,
factoran rotates the estimated factor loadings, lambda, and the factor
scores, F. The output matrix T is used to rotate the loadings, i.e.,
lambda = lambda0*T, where lambda0 is the initial (unrotated) MLE of
the loadings. T is an orthogonal matrix for orthogonal rotations, and
the identity matrix for no rotation. The inverse of T is known as the
primary axis rotation matrix, while T itself is related to the reference
axis rotation matrix. For orthogonal rotations, the two are identical.

factoran computes factor scores that have been rotated by inv(T'),
i.e., F = F0 * inv(T'), where F0 contains the unrotated predictions.
The estimated covariance of F is inv(T'*T), which, for orthogonal or no
rotation, is the identity matrix. Rotation of factor loadings and scores
is an attempt to create a more easily interpretable structure in the
loadings matrix after maximum likelihood estimation.

Examples Example 1

Load the carbig data, and fit the default model with two factors.
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load carbig

X = [Acceleration Displacement Horsepower MPG Weight];
X = X(all(~isnan(X),2),:);
[Lambda,Psi,T,stats,F] = factoran(X,2,...

'scores','regression');
inv(T'*T) % Estimated correlation matrix of F, == eye(2)
Lambda*Lambda'+diag(Psi) % Estimated correlation matrix
Lambda*inv(T) % Unrotate the loadings
F*T' % Unrotate the factor scores

biplot(Lambda,... % Create biplot of two factors
'LineWidth',2,...
'MarkerSize',20)
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Example 2

Although the estimates are the same, the use of a covariance matrix
rather than raw data doesn’t let you request scores or significance level:

[Lambda,Psi,T] = factoran(cov(X),2,'xtype','cov')
[Lambda,Psi,T] = factoran(corrcoef(X),2,'xtype','cov')

Example 3

Use promax rotation:

[Lambda,Psi,T,stats,F] = factoran(X,2,'rotate','promax',...
'powerpm',4);
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inv(T'*T) % Est'd corr of F,
% no longer eye(2)

Lambda*inv(T'*T)*Lambda'+diag(Psi) % Est'd corr of X

Plot the unrotated variables with oblique axes superimposed.

invT = inv(T)
Lambda0 = Lambda*invT

line([-invT(1,1) invT(1,1) NaN -invT(2,1) invT(2,1)], ...
[-invT(1,2) invT(1,2) NaN -invT(2,2) invT(2,2)], ...
'Color','r','linewidth',2)

hold on
biplot(Lambda0,...

'LineWidth',2,...
'MarkerSize',20)

xlabel('Loadings for unrotated Factor 1')
ylabel('Loadings for unrotated Factor 2')
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Plot the rotated variables against the oblique axes:

biplot(Lambda,'LineWidth',2,'MarkerSize',20)
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Example 4

Syntax for passing additional arguments to a user-defined rotation
function:

[Lambda,Psi,T] = ...
factoran(X,2,'rotate',@myrotation,'userargs',1,'two');

References [1] Harman, H. H. Modern Factor Analysis. 3rd Ed. Chicago:
University of Chicago Press, 1976.

[2] Jöreskog, K. G. “Some Contributions to Maximum Likelihood Factor
Analysis.” Psychometrika. Vol. 32, Issue 4, 1967, pp. 443–482.
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[3] Lawley, D. N., and A. E. Maxwell. Factor Analysis as a Statistical
Method. 2nd Ed. New York: American Elsevier Publishing Co., 1971.

See Also biplot, princomp, procrustes, pcacov, rotatefactors, statset
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TreeBagger.FBoot property

Purpose Fraction of in-bag observations

Description The FBoot property is the fraction of observations to be randomly
selected with replacement for each bootstrap replica. The size of each
replica is given by n*FBoot, where n is the number of observations in
the training set. The default value is 1.
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Purpose F cumulative distribution function

Syntax P = fcdf(X,V1,V2)

Description P = fcdf(X,V1,V2) computes the F cdf at each of the values in X using
the corresponding numerator degrees of freedom V1 and denominator
degrees of freedom V2. X, V1, and V2 can be vectors, matrices, or
multidimensional arrays that are all the same size. A scalar input is
expanded to a constant matrix with the same dimensions as the other
inputs. The parameters in V1 and V2 must be positive integers.

The F cdf is

The result, p, is the probability that a single observation from an F
distribution with parameters ν1 and ν2 will fall in the interval [0 x].

Examples The following illustrates a useful mathematical identity for the F
distribution:

nu1 = 1:5;
nu2 = 6:10;
x = 2:6;

F1 = fcdf(x,nu1,nu2)
F1 =

0.7930 0.8854 0.9481 0.9788 0.9919

F2 = 1 - fcdf(1./x,nu2,nu1)
F2 =

0.7930 0.8854 0.9481 0.9788 0.9919

See Also cdf, fpdf, finv, fstat, frnd
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“F Distribution” on page B-25
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Purpose Two-level full factorial design

Syntax dFF2 = ff2n(n)

Description dFF2 = ff2n(n) gives factor settings dFF2 for a two-level full factorial
design with n factors. dFF2 is m-by-n, where m is the number of
treatments in the full-factorial design. Each row of dFF2 corresponds
to a single treatment. Each column contains the settings for a single
factor, with values of 0 and 1 for the two levels.

Examples dFF2 = ff2n(3)
dFF2 =

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

See Also fullfact

18-393



TreeBagger.fillProximities

Purpose Proximity matrix for training data

Syntax B = fillProximities(B)
B = fillProximities(B,'param1',val1,'param2',val2,...

Description B = fillProximities(B) computes a proximity matrix for the training
data and stores it in the Properties field of B.

B = fillProximities(B,'param1',val1,'param2',val2,...)
specifies optional parameter name/value pairs:

'trees' Either 'all' or a vector of indices of the trees in
the ensemble to be used in computing the proximity
matrix. Default is 'all'.

'nprint' Number of training cycles (grown trees) after which
TreeBagger displays a diagnostic message showing
training progress. Default is no diagnostic messages.

See Also CompactTreeBagger.outlierMeasure, CompactTreeBagger.proximity
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Purpose Find objects matching specified conditions

Syntax hm = findobj(h, 'conditions')

Description The findobj method of the handle class follows the same syntax as
the MATLAB findobj command, except that the first argument must
be an array of handles to objects.

hm = findobj(h, 'conditions') searches the handle object array
h and returns an array of handle objects matching the specified
conditions. Only the public members of the objects of h are considered
when evaluating the conditions.

See Also findobj, qrandstream
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Purpose Find property of MATLAB handle object

Syntax p = findprop(h,'propname')

Description p = findprop(h,'propname') finds and returns the meta.property
object associated with property name propname of scalar handle object
h. propname must be a string. It can be the name of a property defined
by the class of h or a dynamic property added to scalar object h.

If no property named propname exists for object h, an empty
meta.property array is returned.

See Also dynamicprops, findobj, meta.property, qrandstream
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Purpose F inverse cumulative distribution function

Syntax X = finv(P,V1,V2)

Description X = finv(P,V1,V2) computes the inverse of the F cdf with numerator
degrees of freedom V1 and denominator degrees of freedom V2 for the
corresponding probabilities in P. P, V1, and V2 can be vectors, matrices,
or multidimensional arrays that all have the same size. A scalar input
is expanded to a constant array with the same dimensions as the other
inputs.

The parameters in V1 and V2 must all be positive integers, and the
values in P must lie on the interval [0 1].

The F inverse function is defined in terms of the F cdf as

where

Examples Find a value that should exceed 95% of the samples from an F
distribution with 5 degrees of freedom in the numerator and 10 degrees
of freedom in the denominator.

x = finv(0.95,5,10)
x =

3.3258

You would observe values greater than 3.3258 only 5% of the time by
chance.

See Also icdf, fcdf, fpdf, fstat, frnd
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“F Distribution” on page B-25
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Purpose Gaussian mixture parameter estimates

Syntax obj = gmdistribution.fit(X,k)
obj = gmdistribution.fit(...,param1,val1,param2,val2,...)

Description obj = gmdistribution.fit(X,k) uses the Expectation Maximization
(EM) algorithm to construct an object obj of the gmdistribution
class containing maximum likelihood estimates of the parameters in
a Gaussian mixture model with k components for data in the n-by-d
matrix X, where n is the number of observations and d is the dimension
of the data.

gmdistribution treats NaN values as missing data. Rows of X with NaN
values are excluded from the fit.

obj = gmdistribution.fit(...,param1,val1,param2,val2,...)
provides control over the iterative EM algorithm. Parameters and
values are listed below.

Parameter Value

'Start' Method used to choose initial component parameters.
One of the following:

• 'randSample'— To select k observations from X at
random as initial component means. The mixing
proportions are uniform. The initial covariance
matrices for all components are diagonal, where
the element j on the diagonal is the variance of
X(:,j). This is the default.

• S — A structure array with fields mu, Sigma,
and PComponents. See gmdistribution for
descriptions of values.

• s— A vector of length n containing an initial guess
of the component index for each point.
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Parameter Value

'Replicates' A positive integer giving the number of times to
repeat the EM algorithm, each time with a new set of
parameters. The solution with the largest likelihood
is returned. A value larger than 1 requires the
'randSample' start method. The default is 1.

'CovType' 'diagonal' if the covariance matrices are restricted
to be diagonal; 'full' otherwise. The default is
'full'.

'SharedCov' Logical true if all the covariance matrices are
restricted to be the same (pooled estimate); logical
false otherwise.

'Regularize' A nonnegative regularization number added to
the diagonal of covariance matrices to make them
positive-definite. The default is 0.

'Options' Options structure for the iterative EM algorithm, as
created by statset. gmdistribution.fit uses the
parameters 'Display' with a default value of 'off',
'MaxIter' with a default value of 100, and 'TolFun'
with a default value of 1e6.

Examples Generate data from a mixture of two bivariate Gaussian distributions
using the mvnrnd function:

MU1 = [1 2];
SIGMA1 = [2 0; 0 .5];
MU2 = [-3 -5];
SIGMA2 = [1 0; 0 1];
X = [mvnrnd(MU1,SIGMA1,1000);mvnrnd(MU2,SIGMA2,1000)];

scatter(X(:,1),X(:,2),10,'.')
hold on
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Next, fit a two-component Gaussian mixture model:

options = statset('Display','final');
obj = gmdistribution.fit(X,2,'Options',options);
10 iterations, log-likelihood = -7046.78

h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);
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Among the properties of the fit are the parameter estimates:

ComponentMeans = obj.mu
ComponentMeans =

0.9391 2.0322
-2.9823 -4.9737

ComponentCovariances = obj.Sigma
ComponentCovariances(:,:,1) =

1.7786 -0.0528
-0.0528 0.5312

ComponentCovariances(:,:,2) =
1.0491 -0.0150

-0.0150 0.9816
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MixtureProportions = obj.PComponents
MixtureProportions =

0.5000 0.5000

The Akaike information is minimized by the two-component model:

AIC = zeros(1,4);
obj = cell(1,4);
for k = 1:4

obj{k} = gmdistribution.fit(X,k);
AIC(k)= obj{k}.AIC;

end

[minAIC,numComponents] = min(AIC);
numComponents
numComponents =

2

model = obj{2}
model =
Gaussian mixture distribution
with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean: 0.9391 2.0322
Component 2:
Mixing proportion: 0.500000
Mean: -2.9823 -4.9737

Both the Akaike and Bayes information are negative log-likelihoods for
the data with penalty terms for the number of estimated parameters.
They are often used to determine an appropriate number of components
for a model when the number of components is unspecified.

References [1] McLachlan, G., and D. Peel. Finite Mixture Models. Hoboken, NJ:
John Wiley & Sons, Inc., 2000.
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See Also gmdistribution, cluster
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Purpose Create Naive Bayes classifier object by fitting training data

Syntax nb = NaiveBayes.fit(training, class)
nb = NaiveBayes.fit(..., 'param1',val1, 'param2',val2, ...)

Description nb = NaiveBayes.fit(training, class) builds a NaiveBayes
classifier object nb. training is an N-by-D numeric matrix of training
data. Rows of training correspond to observations; columns correspond
to features. class is a classing variable for training (see “Grouped
Data” on page 2-33) taking K distinct levels. Each element of class
defines which class the corresponding row of training belongs to.
training and class must have the same number of rows.

nb = NaiveBayes.fit(..., 'param1',val1, 'param2',val2, ...)
specifies one or more of the following name/value pairs:

• 'Distribution' – a string or a 1-by-D cell vector of strings,
specifying which distributions fit uses to model the data. If the
value is a string, fit models all the features using one type of
distribution. fit can also model different features using different
types of distributions. If the value is a cell vector, its jth element
specifies the distribution fit uses for the jth feature. The available
types of distributions are:

'normal'
(default)

Normal (Gaussian) distribution.

'kernel' Kernel smoothing density estimate.
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'mvmn' Multivariate multinomial distribution for
discrete data. fit assumes each individual
feature follows a multinomial model within a
class. The parameters for a feature include
the probabilities of all possible values that the
corresponding feature can take.

'mn' Multinomial distribution for classifying the
count-based data such as the bag-of-tokens
model. In the bag-of-tokens model, the value of
the jth feature is the number of occurrences of
the jth token in this observation, so it must be
a non-negative integer. When 'mn' is used, fit
considers each observation as multiple trials of
a multinomial distribution, and considers each
occurrence of a token as one trial. The number
of categories (bins) in this multinomial model is
the number of distinct tokens, i.e., the number of
columns of training.

• 'Prior' – The prior probabilities for the classes, specified as one of
the following:

'empirical'
(default)

fit estimates the prior probabilities from the
relative frequencies of the classes in training.

'uniform' The prior probabilities are equal for all classes.
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vector A numeric vector of length K specifying the
prior probabilities in the class order of class.

structure A structure S containing class levels and their
prior probabilities. S must have two fields:

• S.prob: A numeric vector of prior
probabilities.

- S.class: A vector of the same type as class,
containing unique class levels indicating
the class for the corresponding element of
prob. S.class must contain all the K levels
in class. It can also contain classes that
do not appear in class. This can be useful
if training is a subset of a larger training
set. fit ignores any classes that appear in
S.class but not in class.

If the prior probabilities don’t sum to one, fit will normalize them.

• 'KSWidth' – The bandwidth of the kernel smoothing window. The
default is to select a default bandwidth automatically for each
combination of feature and class, using a value that is optimal for
a Gaussian distribution. You can specify the value as one of the
following:

scalar Width for all features in all classes.

row
vector

1-by-D vector where the jth element is the bandwidth for
the jth feature in all classes.

column
vector

K-by-1 vector where the ith element specifies the
bandwidth for all features in the ith class. K represents
the number of class levels.
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matrix K-by-D matrix M where M(i,j) specifies the bandwidth
for the jth feature in the ith class.

structure A structure S containing class levels and their
bandwidths. S must have two fields:

• S.width – A numeric array of bandwidths specified as
a row vector, or a matrix with D columns.

- S.class – A vector of the same type as class,
containing unique class levels indicating the class for
the corresponding row of width.

• 'KSSupport' – The regions where the density can be applied. It can
be a string, a two-element vector as shown below, or a 1-by-D cell
array of these values:

'unbounded'
(default)

The density can extend over the whole real
line.

'positive' The density is restricted to positive values.

[L,U] A two-element vector specifying the finite
lower bound L and upper bound U for the
support of the density.

• 'KSType' – The type of kernel smoother to use. It can be a string or
a 1-by-D cell array of strings. Each string can be 'normal' (default),
'box', 'triangle', or 'epanechnikov'.

See Also “Naive Bayes Classification” on page 12-6, “Grouped Data” on page 2-33
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Purpose Fit probability distribution to data

Syntax PD = fitdist(X, DistName)
[PDCA, GN, GL] = fitdist(X, DistName, 'By', GroupVar)
... = fitdist(..., param1, val1, param2, val2, ...)

Description PD = fitdist(X, DistName) fits the probability distribution specified
by DistName to the data in the column vector X, and returns PD, an
object representing the fitted distribution.

[PDCA, GN, GL] = fitdist(X, DistName, 'By', GroupVar) takes a
grouping variable, GroupVar, fits the specified distribution to the data in
X from each group, and returns PDCA, a cell array of the fitted probability
distribution objects. GroupVar can also be a cell array of multiple
grouping variables. GN is a cell array of group labels. GL is a cell array
of grouping variable levels, with one column for each grouping variable.

... = fitdist(..., param1, val1, param2, val2, ...)
specifies optional parameter name/value pairs, as described in the
Parameter/Values table. Parameter and value names are case
insensitive.

Inputs X A column vector of data.

Note Any NaN values in X are ignored by the
fitting calculations. Additionally, any NaN
values in the censoring vector or frequency
vector will cause the corresponding values in
X to be ignored by the fitting calculations.

DistName A string specifying a distribution. Choices are:

• 'kernel' — To fit a nonparametric
kernel-smoothing distribution.
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• Any of the following to fit a parametric
distribution:

- 'beta'

- 'binomial'

- 'birnbaumsaunders'

- 'exponential'

- 'extreme value' or 'ev'

- 'gamma'

- 'generalized extreme value' or
'gev'

- 'generalized pareto' or 'gp'

- 'inversegaussian'

- 'logistic'

- 'loglogistic'

- 'lognormal'

- 'nakagami'

- 'negative binomial' or 'nbin'

- 'normal'

- 'poisson'

- 'rayleigh'

- 'rician'

- 'tlocationscale'

- 'weibull' or 'wbl'
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For more information on these parametric
distributions, see Appendix B, “Distribution
Reference”.

GroupVar A grouping variable or a cell array of multiple
grouping variables. For more information on
grouping variables, see “Grouped Data” on
page 2-33.

Parameter Values

'censoring'A Boolean vector the same size as X, containing 1s when
the corresponding elements in X are right-censored
observations and 0s when the corresponding elements
are exact observations. Default is a vector of 0s.

Note Any NaN values in this censoring vector are
ignored by the fitting calculations. Additionally, any
NaN values in X or the frequency vector will cause
the corresponding values in the censoring vector to be
ignored by the fitting calculations.

'frequency'A vector the same size as X, containing nonnegative
integers specifying the frequencies for the corresponding
elements in X. Default is a vector of 1s.

Note Any NaN values in this frequency vector are
ignored by the fitting calculations. Additionally, any
NaN values in X or the censoring vector will cause
the corresponding values in the frequency vector to be
ignored by the fitting calculations.
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Parameter Values

'options' A structure created by the statset function to specify
control parameters for the iterative fitting algorithm.

'n' For 'binomial' distributions only, a positive integer
specifying the N parameter (number of trials).

'theta' For 'generalized pareto' distributions only, value
specifying the theta (threshold) parameter for the
generalized Pareto distribution. Default is 0.

'kernel' For 'kernel' distributions only, a string specifying the
type of kernel smoother to use. Choices are:

• 'normal' (default)

• 'box'

• 'triangle'

• 'epanechnikov'

'support' For 'kernel' distributions only, any of the following to
specify the support:

• 'unbounded' — Default. If the density can extend
over the whole real line.

• 'positive'— To restrict it to positive values.

• A two-element vector giving finite lower and upper
limits for the support of the density.

'width' For 'kernel' distributions only, a value specifying the
bandwidth of the kernel smoothing window. The default
is optimal for estimating normal densities, but you may
want to choose a smaller value to reveal features such as
multiple modes.
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Outputs PD An object in either the ProbDistUnivKernel
class or the ProbDistUnivParam class, which
are derived from the ProbDist class.

PDCA A cell array of the fitted probability
distribution objects.

GN A cell array of group labels.

GL A cell array of grouping variable levels, with
one column for each grouping variable.

Examples Creating a ProbDistUnivKernel Object

1 Load a MAT-file, included with the Statistics Toolbox software, which
contains MPG, a column vector of data.

load carsmall

2 Create a ProbDistUnivKernel object by fitting a nonparametric
kernel-smoothing distribution to the data:

ksd = fitdist(MPG,'kernel')

ksd =

kernel distribution

Kernel = normal
Bandwidth = 4.11428
Support = unbounded

Creating a ProbDistUnivParam Object

1 Load a MAT-file, included with the Statistics Toolbox software, which
contains MPG, a column vector of data, and Origin, a cell array of
seven grouping variables.
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load carsmall

2 Create a cell array of ProbDistUnivParam objects by fitting a
parametric distribution, namely a Weibull distribution, to the data,
and also grouping the data. Since there is only one car from Italy,
fitdist will return an error, since you cannot fit a distribution to a
single observation.

wd = fitdist(MPG,'weibull','by',Origin)

Algorithm The fitdist function fits most distributions using maximum likelihood.
Two exceptions are the normal and lognormal distributions with
uncensored data. For the uncensored normal distribution, the estimated
value of the sigma parameter is the square root of the unbiased
estimate of the variance. For the uncensored lognormal distribution,
the estimated value of the sigma parameter is the square root of the
unbiased estimate of the variance of the log of the data.

References [1] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous
Univariate Distributions. Vol. 1, Hoboken, NJ: Wiley-Interscience,
1993.

[2] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous
Univariate Distributions. Vol. 2, Hoboken, NJ: Wiley-Interscience,
1994.

[3] Bowman, A. W., and A. Azzalini. Applied Smoothing Techniques for
Data Analysis. New York: Oxford University Press, 1997.

Alternatives dfittool — Opens a graphical user interface for displaying fit
distributions to data, or for fitting distributions to your data and
displaying them over plots of the empirical distributions, by importing
data from the workspace.

See Also disttool
randtool
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statset — Function that creates a structure that specifies control
parameters for the iterative fitting algorithm
ProbDist class
ProbDistUnivKernel class
ProbDistUnivParam class
Appendix B, “Distribution Reference” — For more information on
parametric distributions
“Grouped Data” on page 2-33 — For more information on grouping
variables
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Purpose Flip categorical array along specified dimension

Syntax B = flipdim(A,dim)

Description B = flipdim(A,dim) returns the categorical array A with dimension
dim flipped.

See Also fliplr, flipud, permute, rot90
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Purpose Flip categorical matrix in left/right direction

Syntax B = fliplr(A)

Description B = fliplr(A) returns the 2-D categorical matrix A with rows
preserved and columns flipped in the left/right direction.

See Also flipdim, flipud, permute, rot90
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Purpose Flip categorical matrix in up/down direction

Syntax B = flipud(A)

Description B = flipud(A) returns the 2-D categorical matrix A with rows
preserved and columns flipped in the up/down direction.

See Also flipdim, fliplr, permute, rot90
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Purpose F probability density function

Syntax Y = fpdf(X,V1,V2)

Description Y = fpdf(X,V1,V2) computes the F pdf at each of the values in X using
the corresponding numerator degrees of freedom V1 and denominator
degrees of freedom V2. X, V1, and V2 can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array with the same dimensions as the other
inputs. The parameters in V1 and V2 must all be positive integers, and
the values in X must lie on the interval [0 ∞).

The probability density function for the F distribution is

Examples y = fpdf(1:6,2,2)
y =

0.2500 0.1111 0.0625 0.0400 0.0278 0.0204

z = fpdf(3,5:10,5:10)
z =

0.0689 0.0659 0.0620 0.0577 0.0532 0.0487

See Also pdf, fcdf, finv, fstat, frnd

“F Distribution” on page B-25
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Purpose Fractional factorial design

Syntax dfF = fracfact(generators)
[dfF,confounding] = fracfact(generators)

Description dfF = fracfact(generators) gives factor settings dfF for a two-level
Box-Hunter-Hunter fractional factorial design specified by the
generators in generators. generators is a string consisting of
words formed from the letters a-z, separated by spaces. For example,
generators = 'a b c ab ac'. Alternatively, generators is a cell
array of strings with one word per cell, as returned by fracfactgen.
Single-character words indicate basic factors, for which the design
includes all full-factorial treatments. Multiple-character words indicate
factors whose levels are limited by the design to products of the levels
of component basic factors. dfF is m-by-n, where m is the number
of treatments in the design and n is the number factors specified by
generators.

[dfF,confounding] = fracfact(generators) also returns a cell
array confounding that shows the confounding pattern among the
main effects and the two-factor interactions.

Examples Suppose you wish to determine the effects of four two-level factors, for
which there may be two-way interactions. A full-factorial design would
require 24 = 16 runs. The fracfactgen function finds generators for a
resolution IV (separating main effects) fractional-factorial design that
requires only 23 = 8 runs:

generators = fracfactgen('a b c d',3,4)
generators =

'a'
'b'
'c'
'abc'

The more economical design and the corresponding confounding pattern
are returned by fracfact:
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[dfF,confounding] = fracfact(generators)
dfF =

-1 -1 -1 -1
-1 -1 1 1
-1 1 -1 1
-1 1 1 -1
1 -1 -1 1
1 -1 1 -1
1 1 -1 -1
1 1 1 1

confounding =
'Term' 'Generator' 'Confounding'
'X1' 'a' 'X1'
'X2' 'b' 'X2'
'X3' 'c' 'X3'
'X4' 'abc' 'X4'
'X1*X2' 'ab' 'X1*X2 + X3*X4'
'X1*X3' 'ac' 'X1*X3 + X2*X4'
'X1*X4' 'bc' 'X1*X4 + X2*X3'
'X2*X3' 'bc' 'X1*X4 + X2*X3'
'X2*X4' 'ac' 'X1*X3 + X2*X4'
'X3*X4' 'ab' 'X1*X2 + X3*X4'

The confounding pattern shows, for example, that the two-way
interaction between X1 and X2 is confounded by the two-way interaction
between X3 and X4.

References [1] Box, G. E. P., W. G. Hunter, and J. S. Hunter. Statistics for
Experimenters. Hoboken, NJ: Wiley-Interscience, 1978.

See Also fracfactgen, hadamard
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Purpose Fractional factorial design generators

Syntax generators = fracfactgen(terms)
generators = fracfactgen(terms,k)
generators = fracfactgen(terms,k,R)
generators = fracfactgen(terms,k,R,basic)

Description generators = fracfactgen(terms) uses the Franklin-Bailey
algorithm to find generators for the smallest two-level
fractional-factorial design for estimating linear model terms specified
by terms. terms is a string consisting of words formed from the
letters a-z, separated by spaces. For example, terms = 'a b c ab
ac'. Single-character words indicate main effects to be estimated;
multiple-character words indicate interactions. Alternatively, terms
is an m-by-n matrix of 0s and 1s where m is the number of model
terms to be estimated and n is the number of factors. For example,
if terms contains rows [0 1 0 0] and [1 0 0 1], then the factor b
and the interaction between factors a and d are included in the model.
generators is a cell array of strings with one generator per cell. Pass
generators to fracfact to produce the fractional-factorial design and
corresponding confounding pattern.

generators = fracfactgen(terms,k) returns generators for a
two-level fractional-factorial design with 2k-runs, if possible. If k is [],
fracfactgen finds the smallest design.

generators = fracfactgen(terms,k,R) finds a design with resolution
R, if possible. The default resolution is 3.

A design of resolution R is one in which no n-factor interaction is
confounded with any other effect containing less than R – n factors.
Thus a resolution III design does not confound main effects with one
another but may confound them with two-way interactions, while a
resolution IV design does not confound either main effects or two-way
interactions but may confound two-way interactions with each other.

If fracfactgen is unable to find a design at the requested resolution, it
tries to find a lower-resolution design sufficient to calibrate the model.
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If it is successful, it returns the generators for the lower-resolution
design along with a warning. If it fails, it returns an error.

generators = fracfactgen(terms,k,R,basic) also accepts a vector
basic specifying the indices of factors that are to be treated as basic.
These factors receive full-factorial treatments in the design. The default
includes factors that are part of the highest-order interaction in terms.

Examples Suppose you wish to determine the effects of four two-level factors, for
which there may be two-way interactions. A full-factorial design would
require 24 = 16 runs. The fracfactgen function finds generators for a
resolution IV (separating main effects) fractional-factorial design that
requires only 23 = 8 runs:

generators = fracfactgen('a b c d',3,4)
generators =

'a'
'b'
'c'
'abc'

The more economical design and the corresponding confounding pattern
are returned by fracfact:

[dfF,confounding] = fracfact(generators)
dfF =

-1 -1 -1 -1
-1 -1 1 1
-1 1 -1 1
-1 1 1 -1
1 -1 -1 1
1 -1 1 -1
1 1 -1 -1
1 1 1 1

confounding =
'Term' 'Generator' 'Confounding'
'X1' 'a' 'X1'
'X2' 'b' 'X2'
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'X3' 'c' 'X3'
'X4' 'abc' 'X4'
'X1*X2' 'ab' 'X1*X2 + X3*X4'
'X1*X3' 'ac' 'X1*X3 + X2*X4'
'X1*X4' 'bc' 'X1*X4 + X2*X3'
'X2*X3' 'bc' 'X1*X4 + X2*X3'
'X2*X4' 'ac' 'X1*X3 + X2*X4'
'X3*X4' 'ab' 'X1*X2 + X3*X4'

The confounding pattern shows, for example, that the two-way
interaction between X1 and X2 is confounded by the two-way interaction
between X3 and X4.

References [1] Box, G. E. P., W. G. Hunter, and J. S. Hunter. Statistics for
Experimenters. Hoboken, NJ: Wiley-Interscience, 1978.

See Also fracfact, hadamard
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Purpose Friedman’s test

Syntax p = friedman(X,reps)
p = friedman(X,reps,displayopt)
[p,table] = friedman(...)
[p,table,stats] = friedman(...)

Description p = friedman(X,reps) performs the nonparametric Friedman’s test
to compare column effects in a two-way layout. Friedman’s test is
similar to classical balanced two-way ANOVA, but it tests only for
column effects after adjusting for possible row effects. It does not test
for row effects or interaction effects. Friedman’s test is appropriate
when columns represent treatments that are under study, and rows
represent nuisance effects (blocks) that need to be taken into account
but are not of any interest.

The different columns of X represent changes in a factor A. The different
rows represent changes in a blocking factor B. If there is more than one
observation for each combination of factors, input reps indicates the
number of replicates in each “cell,” which must be constant.

The matrix below illustrates the format for a set-up where column
factor A has three levels, row factor B has two levels, and there are two
replicates (reps=2). The subscripts indicate row, column, and replicate,
respectively.

Friedman’s test assumes a model of the form
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where is an overall location parameter, represents the column
effect, represents the row effect, and represents the error. This
test ranks the data within each level of B, and tests for a difference
across levels of A. The p that friedman returns is the p-value for the
null hypothesis that . If the p-value is near zero, this casts doubt
on the null hypothesis. A sufficiently small p-value suggests that at
least one column-sample median is significantly different than the
others; i.e., there is a main effect due to factor A. The choice of a critical
p-value to determine whether a result is “statistically significant” is left
to the researcher. It is common to declare a result significant if the
p-value is less than 0.05 or 0.01.

friedman also displays a figure showing an ANOVA table, which divides
the variability of the ranks into two or three parts:

• The variability due to the differences among the column effects

• The variability due to the interaction between rows and columns (if
reps is greater than its default value of 1)

• The remaining variability not explained by any systematic source

The ANOVA table has six columns:

• The first shows the source of the variability.

• The second shows the Sum of Squares (SS) due to each source.

• The third shows the degrees of freedom (df) associated with each
source.

• The fourth shows the Mean Squares (MS), which is the ratio SS/df.

• The fifth shows Friedman’s chi-square statistic.

• The sixth shows the p-value for the chi-square statistic.

p = friedman(X,reps,displayopt) enables the ANOVA table display
when displayopt is 'on' (default) and suppresses the display when
displayopt is 'off'.
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[p,table] = friedman(...) returns the ANOVA table (including
column and row labels) in cell array table. (You can copy a text version
of the ANOVA table to the clipboard by selecting Copy Text from the
Edit menu.

[p,table,stats] = friedman(...) returns a stats structure that
you can use to perform a follow-up multiple comparison test. The
friedman test evaluates the hypothesis that the column effects are
all the same against the alternative that they are not all the same.
Sometimes it is preferable to perform a test to determine which pairs of
column effects are significantly different, and which are not. You can
use the multcompare function to perform such tests by supplying the
stats structure as input.

Assumptions

Friedman’s test makes the following assumptions about the data in X:

• All data come from populations having the same continuous
distribution, apart from possibly different locations due to column
and row effects.

• All observations are mutually independent.

The classical two-way ANOVA replaces the first assumption with the
stronger assumption that data come from normal distributions.

Examples Let’s repeat the example from the anova2 function, this time applying
Friedman’s test. Recall that the data below come from a study of
popcorn brands and popper type (Hogg 1987). The columns of the
matrix popcorn are brands (Gourmet, National, and Generic). The
rows are popper type (Oil and Air). The study popped a batch of each
brand three times with each popper. The values are the yield in cups
of popped popcorn.

load popcorn
popcorn
popcorn =

5.5000 4.5000 3.5000
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5.5000 4.5000 4.0000
6.0000 4.0000 3.0000
6.5000 5.0000 4.0000
7.0000 5.5000 5.0000
7.0000 5.0000 4.5000

p = friedman(popcorn,3)
p =

0.0010

The small p-value of 0.001 indicates the popcorn brand affects the yield
of popcorn. This is consistent with the results from anova2.

References [1] Hogg, R. V., and J. Ledolter. Engineering Statistics. New York:
MacMillan, 1987.

[2] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods.
Hoboken, NJ: John Wiley & Sons, Inc., 1999.

See Also anova2, multcompare, kruskalwallis
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Purpose F random numbers

Syntax R = frnd(V1,V2)
R = frnd(V1,V2,v)
R = frnd(V1,V2,m,n)

Description R = frnd(V1,V2) generates random numbers from the F distribution
with numerator degrees of freedom V1 and denominator degrees of
freedom V2. V1 and V2 can be vectors, matrices, or multidimensional
arrays that all have the same size. A scalar input for V1 or V2 is
expanded to a constant array with the same dimensions as the other
input.

R = frnd(V1,V2,v) generates random numbers from the F distribution
with parameters V1 and V2, where v is a row vector. If v is a 1-by-2
vector, R is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R
is an n-dimensional array.

R = frnd(V1,V2,m,n) generates random numbers from the F
distribution with parameters V1 and V2, where scalars m and n are the
row and column dimensions of R.

Examples n1 = frnd(1:6,1:6)
n1 =

0.0022 0.3121 3.0528 0.3189 0.2715 0.9539

n2 = frnd(2,2,[2 3])
n2 =

0.3186 0.9727 3.0268
0.2052 148.5816 0.2191

n3 = frnd([1 2 3;4 5 6],1,2,3)
n3 =

0.6233 0.2322 31.5458
2.5848 0.2121 4.4955

See Also random, fpdf, fcdf, finv, fstat
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“F Distribution” on page B-25

18-430



fstat

Purpose F mean and variance

Syntax [M,V] = fstat(V1,V2)

Description [M,V] = fstat(V1,V2) returns the mean of and variance for the F
distribution with numerator degrees of freedom V1 and denominator
degrees of freedom V2. V1 and V2 can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the
size of M and V. A scalar input for V1 or V2 is expanded to a constant
arrays with the same dimensions as the other input.

The mean of the F distribution for values of ν2 greater than 2 is

The variance of the F distribution for values of ν2 greater than 4 is

The mean of the F distribution is undefined if ν2 is less than 3. The
variance is undefined for ν2 less than 5.

Examples fstat returns NaN when the mean and variance are undefined.

[m,v] = fstat(1:5,1:5)
m =

NaN NaN 3.0000 2.0000 1.6667
v =

NaN NaN NaN NaN 8.8889

See Also fpdf, fcdf, finv, frnd

“F Distribution” on page B-25
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Purpose Interactive contour plot

Syntax fsurfht(fun,xlims,ylims)
fsurfht(fun,xlims,ylims,p1,p2,p3,p4,p5)

Description fsurfht(fun,xlims,ylims) is an interactive contour plot of the
function specified by the text variable fun. The x-axis limits are
specified by xlims in the form [xmin xmax], and the y-axis limits are
specified by ylims in the form [ymin ymax].

fsurfht(fun,xlims,ylims,p1,p2,p3,p4,p5) allows for five optional
parameters that you can supply to the function fun.

The intersection of the vertical and horizontal reference lines on the plot
defines the current x-value and y-value. You can drag these reference
lines and watch the calculated z-values (at the top of the plot) update
simultaneously. Alternatively, you can type the x-value and y-value
into editable text fields on the x-axis and y-axis.

Examples Plot the Gaussian likelihood function for the gas.mat data.

load gas

Create a function containing the following commands, and name it
gauslike.m.

function z = gauslike(mu,sigma,p1)
n = length(p1);
z = ones(size(mu));
for i = 1:n
z = z .* (normpdf(p1(i),mu,sigma));
end

The gauslike function calls normpdf, treating the data sample as fixed
and the parameters µ and σ as variables. Assume that the gas prices
are normally distributed, and plot the likelihood surface of the sample.

fsurfht('gauslike',[112 118],[3 5],price1)
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The sample mean is the x-value at the maximum, but the sample
standard deviation is not the y-value at the maximum.

mumax = mean(price1)
mumax =
115.1500

sigmamax = std(price1)*sqrt(19/20)
sigmamax =

3.7719
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Purpose Full factorial design

Syntax dFF = fullfact(levels)

Description dFF = fullfact(levels) gives factor settings dFF for a full factorial
design with n factors, where the number of levels for each factor is given
by the vector levels of length n. dFF is m-by-n, where m is the number
of treatments in the full-factorial design. Each row of dFF corresponds
to a single treatment. Each column contains the settings for a single
factor, with integer values from one to the number of levels.

Examples The following generates an eight-run full-factorial design with two
levels in the first factor and four levels in the second factor:

dFF = fullfact([2 4])
dFF =

1 1
2 1
1 2
2 2
1 3
2 3
1 4
2 4

See Also ff2n
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Purpose Gage repeatability and reproducibility study

Syntax gagerr(y,{part,operator})
gagerr(y,GROUP)
gagerr(y,part)
gagerr(...,param1,val1,param2,val2,...)
[TABLE, stats] = gagerr(...)

Description gagerr(y,{part,operator}) performs a gage repeatability and
reproducibility study on measurements in y collected by operator on
part. y is a column vector containing the measurements on different
parts. part and operator are categorical variables, numeric vectors,
character matrices, or cell arrays of strings. The number of elements in
part and operator should be the same as in y.

gagerr prints a table in the command window in which the
decomposition of variance, standard deviation, study var (5.15 x
standard deviation) are listed with respective percentages for different
sources. Summary statistics are printed below the table giving the
number of distinct categories (NDC) and the percentage of Gage R&R
of total variations (PRR).

gagerr also plots a bar graph showing the percentage of different
components of variations. Gage R&R, repeatability, reproducibility, and
part-to-part variations are plotted as four vertical bars. Variance and
study var are plotted as two groups.

To determine the capability of a measurement system using NDC, use
the following guidelines:

• If NDC > 5, the measurement system is capable.

• If NDC < 2, the measurement system is not capable.

• Otherwise, the measurement system may be acceptable.

To determine the capability of a measurement system using PRR, use
the following guidelines:
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• If PRR < 10%, the measurement system is capable.

• If PRR > 30%, the measurement system is not capable.

• Otherwise, the measurement system may be acceptable.

gagerr(y,GROUP) performs a gage R&R study on measurements in
y with part and operator represented in GROUP. GROUP is a numeric
matrix whose first and second columns specify different parts and
operators, respectively. The number of rows in GROUP should be the
same as the number of elements in y. (See “Grouped Data” on page
2-33.)

gagerr(y,part) performs a gage R&R study on measurements in y
without operator information. The assumption is that all variability is
contributed by part.

gagerr(...,param1,val1,param2,val2,...) performs a gage R&R
study using one or more of the following parameter name/value pairs:

• 'spec' — A two-element vector that defines the lower and upper
limit of the process, respectively. In this case, summary statistics
printed in the command window include Precision-to-Tolerance
Ratio (PTR). Also, the bar graph includes an additional group, the
percentage of tolerance.

To determine the capability of a measurement system using PTR, use
the following guidelines:

- If PTR < 0.1, the measurement system is capable.

- If PTR > 0.3, the measurement system is not capable.

- Otherwise, the measurement system may be acceptable.

• 'printtable'— A string with a value 'on' or 'off' that indicates
whether the tabular output should be printed in the command
window or not. The default value is 'on'.

• 'printgraph'— A string with a value 'on' or 'off' that indicates
whether the bar graph should be plotted or not. The default value
is 'on'.
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• 'randomoperator'— A logical value, true or false, that indicates
whether the effect of operator is random or not. The default value
is true.

• 'model' — The model to use, specified by one of:

- 'linear' — Main effects only (default)

- 'interaction'— Main effects plus two-factor interactions

- 'nested' — Nest operator in part

The default value is 'linear'.

[TABLE, stats] = gagerr(...) returns a 6-by-5 matrix TABLE and
a structure stats. The columns of TABLE, from left to right, represent
variance, percentage of variance, standard deviations, study var,
and percentage of study var. The rows of TABLE, from top to bottom,
represent different sources of variations: gage R&R, repeatability,
reproducibility, operator, operator and part interactions, and part.
stats is a structure containing summary statistics for the performance
of the measurement system. The fields of stats are:

• ndc — Number of distinct categories

• prr— Percentage of gage R&R of total variations

• ptr— Precision-to-tolerance ratio. The value is NaN if the parameter
'spec' is not given.

Examples Conduct a gage R&R study for a simulated measurement system using
a mixed ANOVA model without interactions:

y = randn(100,1); % measurements

part = ceil(3*rand(100,1)); % parts

operator = ceil(4*rand(100,1)); % operators

gagerr(y,{part, operator},'randomoperator',true) % analysis
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Source Variance % Variance sigma 5.15*sigma % 5.15*sigma

===================================================================================

Gage R&R 0.77 100.00 0.88 4.51 100.00

Repeatability 0.76 99.08 0.87 4.49 99.54

Reproducibility 0.01 0.92 0.08 0.43 9.61

Operator 0.01 0.92 0.08 0.43 9.61

Part 0.00 0.00 0.00 0.00 0.00

Total 0.77 100.00 0.88 4.51

-----------------------------------------------------------------------------------

Number of distinct categories (NDC): 0

% of Gage R&R of total variations (PRR): 100.00

Note: The last column of the above table does not have to sum to 100%
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See Also “Grouped Data” on page 2-33
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Purpose Gamma cumulative distribution function

Syntax gamcdf(X,A,B)
[P,PLO,PUP] = gamcdf(X,A,B,pcov,alpha)

Description gamcdf(X,A,B) computes the gamma cdf at each of the values in X
using the corresponding shape parameters in A and scale parameters
in B. X, A, and B can be vectors, matrices, or multidimensional arrays
that all have the same size. A scalar input is expanded to a constant
array with the same dimensions as the other inputs. The parameters in
A and B must be positive.

The gamma cdf is
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The result, p, is the probability that a single observation from a gamma
distribution with parameters a and b will fall in the interval [0 x].

[P,PLO,PUP] = gamcdf(X,A,B,pcov,alpha) produces confidence
bounds for P when the input parameters A and B are estimates.
pcov is a 2-by-2 matrix containing the covariance matrix of the
estimated parameters. alpha has a default value of 0.05, and specifies
100(1-alpha)% confidence bounds. PLO and PUP are arrays of the same
size as P containing the lower and upper confidence bounds.

gammainc is the gamma distribution with b fixed at 1.

Examples a = 1:6;
b = 5:10;
prob = gamcdf(a.*b,a,b)
prob =

0.6321 0.5940 0.5768 0.5665 0.5595 0.5543
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The mean of the gamma distribution is the product of the parameters,
ab. In this example, the mean approaches the median as it increases
(i.e., the distribution becomes more symmetric).

See Also cdf, gampdf, gaminv, gamstat, gamfit, gamlike, gamrnd, gamma

“Gamma Distribution” on page B-27
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Purpose Gamma parameter estimates

Syntax phat = gamfit(data)
[phat,pci] = gamfit(data)
[phat,pci] = gamfit(data,alpha)
[...] = gamfit(data,alpha,censoring,freq,options)

Description phat = gamfit(data) returns the maximum likelihood estimates
(MLEs) for the parameters of the gamma distribution given the data
in vector data.

[phat,pci] = gamfit(data) returns MLEs and 95% percent
confidence intervals. The first row of pci is the lower bound of the
confidence intervals; the last row is the upper bound.

[phat,pci] = gamfit(data,alpha) returns 100(1 - alpha)%
confidence intervals. For example, alpha = 0.01 yields 99% confidence
intervals.

[...] = gamfit(data,alpha,censoring) accepts a Boolean vector of
the same size as data that is 1 for observations that are right-censored
and 0 for observations that are observed exactly.

[...] = gamfit(data,alpha,censoring,freq) accepts a frequency
vector of the same size as data. freq typically contains integer
frequencies for the corresponding elements in data, but may contain
any nonnegative values.

[...] = gamfit(data,alpha,censoring,freq,options) accepts a
structure, options, that specifies control parameters for the iterative
algorithm the function uses to compute maximum likelihood estimates.
The gamma fit function accepts an options structure which can be
created using the function statset. Enter statset('gamfit') to see
the names and default values of the parameters that gamfit accepts
in the options structure.

Examples Fit a gamma distribution to random data generated from a specified
gamma distribution:
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a = 2; b = 4;
data = gamrnd(a,b,100,1);

[p,ci] = gamfit(data)
p =

2.1990 3.7426
ci =

1.6840 2.8298
2.7141 4.6554

References [1] Hahn, Gerald J., and S. S. Shapiro. Statistical Models in
Engineering. Hoboken, NJ: John Wiley & Sons, Inc., 1994, p. 88.

See Also mle, gamlike, gampdf, gamcdf, gaminv, gamstat, gamrnd

“Gamma Distribution” on page B-27
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Purpose Gamma inverse cumulative distribution function

Syntax X = gaminv(P,A,B)
[X,XLO,XUP] = gamcdf(P,A,B,pcov,alpha)

Description X = gaminv(P,A,B) computes the inverse of the gamma cdf
with shape parameters in A and scale parameters in B for the
corresponding probabilities in P. P, A, and B can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array with the same dimensions as the other
inputs. The parameters in A and B must all be positive, and the values
in P must lie on the interval [0 1].

The gamma inverse function in terms of the gamma cdf is

where
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[X,XLO,XUP] = gamcdf(P,A,B,pcov,alpha) produces confidence
bounds for P when the input parameters A and B are estimates.
pcov is a 2-by-2 matrix containing the covariance matrix of the
estimated parameters. alpha has a default value of 0.05, and specifies
100(1-alpha)% confidence bounds. PLO and PUP are arrays of the same
size as P containing the lower and upper confidence bounds.

Algorithm There is no known analytical solution to the integral equation above.
gaminv uses an iterative approach (Newton’s method) to converge on
the solution.

Examples This example shows the relationship between the gamma cdf and its
inverse function.
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a = 1:5;
b = 6:10;
x = gaminv(gamcdf(1:5,a,b),a,b)
x =

1.0000 2.0000 3.0000 4.0000 5.0000

See Also icdf, gamcdf, gampdf, gamstat, gamfit, gamlike, gamrnd

“Gamma Distribution” on page B-27
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Purpose Gamma negative log-likelihood

Syntax nlogL = gamlike(params,data)
[nlogL,AVAR] = gamlike(params,data)

Description nlogL = gamlike(params,data) returns the negative of the gamma
log-likelihood of the parameters, params, given data. params(1)=A,
shape parameters, and params(2)=B, scale parameters.

[nlogL,AVAR] = gamlike(params,data) also returns AVAR, which is
the asymptotic variance-covariance matrix of the parameter estimates
when the values in params are the maximum likelihood estimates. AVAR
is the inverse of Fisher’s information matrix. The diagonal elements of
AVAR are the asymptotic variances of their respective parameters.

[...] = gamlike(params,data,censoring) accepts a Boolean
vector of the same size as data that is 1 for observations that are
right-censored and 0 for observations that are observed exactly.

[...] = gamfit(params,data,censoring,freq) accepts a frequency
vector of the same size as data. freq typically contains integer
frequencies for the corresponding elements in data, but may contain
any non-negative values.

gamlike is a utility function for maximum likelihood estimation of
the gamma distribution. Since gamlike returns the negative gamma
log-likelihood function, minimizing gamlike using fminsearch is the
same as maximizing the likelihood.

Examples Compute the negative log-likelihood of parameter estimates computed
by the gamfit function:

a = 2; b = 3;
r = gamrnd(a,b,100,1);

[nlogL,AVAR] = gamlike(gamfit(r),r)
nlogL =

267.5648
AVAR =
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0.0788 -0.1104
-0.1104 0.1955

See Also gamfit, gampdf, gamcdf, gaminv, gamstat, gamrnd

“Gamma Distribution” on page B-27
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Purpose Gamma probability density function

Syntax Y = gampdf(X,A,B)

Description Y = gampdf(X,A,B) computes the gamma pdf at each of the values in X
using the corresponding shape parameters in A and scale parameters in
B. X, A, and B can be vectors, matrices, or multidimensional arrays that
all have the same size. A scalar input is expanded to a constant array
with the same dimensions as the other inputs. The parameters in A and
B must all be positive, and the values in X must lie on the interval [0 ∞).

The gamma pdf is
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The gamma probability density function is useful in reliability models of
lifetimes. The gamma distribution is more flexible than the exponential
distribution in that the probability of a product surviving an additional
period may depend on its current age. The exponential and χ2 functions
are special cases of the gamma function.

Examples The exponential distribution is a special case of the gamma distribution.

mu = 1:5;

y = gampdf(1,1,mu)
y =

0.3679 0.3033 0.2388 0.1947 0.1637

y1 = exppdf(1,mu)
y1 =

0.3679 0.3033 0.2388 0.1947 0.1637

See Also pdf, gamcdf, gaminv, gamstat, gamfit, gamlike, gamrnd

“Gamma Distribution” on page B-27
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Purpose Gamma random numbers

Syntax R = gamrnd(A,B)
R = gamrnd(A,B,v)
R = gamrnd(A,B,m,n)

Description R = gamrnd(A,B) generates random numbers from the gamma
distribution with shape parameters in A and scale parameters in B. A
and B can be vectors, matrices, or multidimensional arrays that all have
the same size. A scalar input for A or B is expanded to a constant array
with the same dimensions as the other input.

R = gamrnd(A,B,v) generates random numbers from the gamma
distribution with parameters A and B, where v is a row vector. If v is a
1-by-2 vector, R is a matrix with v(1) rows and v(2) columns. If v is
1-by-n, R is an n-dimensional array.

R = gamrnd(A,B,m,n) generates gamma random numbers with
parameters A and B, where scalars m and n are the row and column
dimensions of R.

Examples n1 = gamrnd(1:5,6:10)
n1 =

9.1132 12.8431 24.8025 38.5960 106.4164

n2 = gamrnd(5,10,[1 5])
n2 =

30.9486 33.5667 33.6837 55.2014 46.8265

n3 = gamrnd(2:6,3,1,5)
n3 =

12.8715 11.3068 3.0982 15.6012 21.6739

See Also randg, random, gampdf, gamcdf, gaminv, gamstat, gamfit, gamlike

“Gamma Distribution” on page B-27
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Purpose Gamma mean and variance

Syntax [M,V] = gamstat(A,B)

Description [M,V] = gamstat(A,B) returns the mean of and variance for the
gamma distribution with shape parameters in A and scale parameters
in B. A and B can be vectors, matrices, or multidimensional arrays that
have the same size, which is also the size of M and V. A scalar input
for A or B is expanded to a constant array with the same dimensions
as the other input.

The mean of the gamma distribution with parameters a and b is ab.
The variance is ab2.

Examples [m,v] = gamstat(1:5,1:5)
m =

1 4 9 16 25
v =

1 8 27 64 125

[m,v] = gamstat(1:5,1./(1:5))
m =

1 1 1 1 1
v =

1.0000 0.5000 0.3333 0.2500 0.2000

See Also gampdf, gamcdf, gaminv, gamfit, gamlike, gamrnd

“Gamma Distribution” on page B-27

18-451
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Purpose Greater than or equal relation for handles

Syntax h1 >= h2

Description h1 >= h2 performs element-wise comparisons between handle arrays
h1 and h2. h1 and h2 must be of the same dimensions unless one is a
scalar. The result is a logical array of the same dimensions, where each
element is an element-wise >= result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result
will match the dimensions of the array that is not scalar.

tf = ge(h1, h2) stores the result in a logical array of the same
dimensions.

See Also qrandstream, eq, gt, le, lt, ne
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Purpose Geometric cumulative distribution function

Syntax Y = geocdf(X,P)

Description Y = geocdf(X,P) computes the geometric cdf at each of the values in
X using the corresponding probabilities in P. X and P can be vectors,
matrices, or multidimensional arrays that all have the same size. A
scalar input is expanded to a constant array with the same dimensions
as the other input. The parameters in P must lie on the interval [0 1].

The geometric cdf is

where .

The result, y, is the probability of observing up to x trials before a
success, when the probability of success in any given trial is p.

Examples Suppose you toss a fair coin repeatedly. If the coin lands face up (heads),
that is a success. What is the probability of observing three or fewer
tails before getting a heads?

p = geocdf(3,0.5)
p =

0.9375

See Also cdf, geopdf, geoinv, geostat, geornd, mle

“Geometric Distribution” on page B-41
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Purpose Geometric inverse cumulative distribution function

Syntax X = geoinv(Y,P)

Description X = geoinv(Y,P) returns the smallest positive integer X such that the
geometric cdf evaluated at X is equal to or exceeds Y. You can think of
Y as the probability of observing X successes in a row in independent
trials where P is the probability of success in each trial.

Y and P can be vectors, matrices, or multidimensional arrays that all
have the same size. A scalar input for P or Y is expanded to a constant
array with the same dimensions as the other input. The values in P
and Y must lie on the interval [0 1].

Examples The probability of correctly guessing the result of 10 coin tosses in a row
is less than 0.001 (unless the coin is not fair).

psychic = geoinv(0.999,0.5)
psychic =

9

The example below shows the inverse method for generating random
numbers from the geometric distribution.

rndgeo = geoinv(rand(2,5),0.5)
rndgeo =

0 1 3 1 0
0 1 0 2 0

See Also icdf, geocdf, geopdf, geostat, geornd

“Geometric Distribution” on page B-41
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Purpose Geometric mean

Syntax m = geomean(x)
geomean(X,dim)

Description m = geomean(x) calculates the geometric mean of a sample. For
vectors, geomean(x) is the geometric mean of the elements in x. For
matrices, geomean(X) is a row vector containing the geometric means of
each column. For N-dimensional arrays, geomean operates along the
first nonsingleton dimension of X.

geomean(X,dim) takes the geometric mean along the dimension dim
of X.

The geometric mean is

Examples The arithmetic mean is greater than or equal to the geometric mean.

x = exprnd(1,10,6);

geometric = geomean(x)
geometric =

0.7466 0.6061 0.6038 0.2569 0.7539 0.3478

average = mean(x)
average =

1.3509 1.1583 0.9741 0.5319 1.0088 0.8122

See Also mean, median, harmmean, trimmean

“Geometric Distribution” on page B-41
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Purpose Geometric probability density function

Syntax Y = geopdf(X,P)

Description Y = geopdf(X,P) computes the geometric pdf at each of the values in
X using the corresponding probabilities in P. X and P can be vectors,
matrices, or multidimensional arrays that all have the same size. A
scalar input is expanded to a constant array with the same dimensions
as the other input. The parameters in P must lie on the interval [0 1].

The geometric pdf is

where .

Examples Suppose you toss a fair coin repeatedly. If the coin lands face up
(heads), that is a success. What is the probability of observing exactly
three tails before getting a heads?

p = geopdf(3,0.5)
p =

0.0625

See Also pdf, geocdf, geoinv, geostat, geornd

“Geometric Distribution” on page B-41
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Purpose Geometric random numbers

Syntax R = geornd(P)
R = geornd(P,v)
R = geornd(P,m,n)

Description R = geornd(P) generates geometric random numbers with probability
parameter P. P can be a vector, a matrix, or a multidimensional array.
The size of R is the size of P. The geometric distribution is useful when
you want to model the number of successive failures preceding a success,
where the probability of success in any given trial is the constant P.

R = geornd(P,v) generates geometric random numbers with
probability parameter P, where v is a row vector. If v is a 1-by-2 vector,
R is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an
n-dimensional array.

R = geornd(P,m,n) generates geometric random numbers with
probability parameter P, where scalars m and n are the row and column
dimensions of R.

The parameters in P must lie on the interval [0 1].

Examples r1 = geornd(1 ./ 2.^(1:6))
r1 =

2 10 2 5 2 60

r2 = geornd(0.01,[1 5])
r2 =

65 18 334 291 63

r3 = geornd(0.5,1,6)
r3 =

0 7 1 3 1 0

See Also random, geopdf, geocdf, geoinv, geostat

“Geometric Distribution” on page B-41
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Purpose Geometric mean and variance

Syntax [M,V] = geostat(P)

Description [M,V] = geostat(P) returns the mean of and variance for the
geometric distribution with corresponding probabilities in P.

The mean of the geometric distribution with parameter p is q/p, where q
= 1-p. The variance is q/p2.

Examples [m,v] = geostat(1./(1:6))
m =

0 1.0000 2.0000 3.0000 4.0000 5.0000
v =

0 2.0000 6.0000 12.0000 20.0000 30.0000

See Also geopdf, geocdf, geoinv, geornd

“Geometric Distribution” on page B-41
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Purpose Access dataset array properties

Syntax get(A)
s = get(A)
p = get(A,PropertyName)
p = get(A,{PropertyName1,PropertyName2,...})

Description get(A) displays a list of property/value pairs for the dataset array A.

s = get(A) returns the values in a scalar structure s with field names
given by the properties.

p = get(A,PropertyName) returns the value of the property specified
by the string PropertyName.

p = get(A,{PropertyName1,PropertyName2,...}) allows multiple
property names to be specified and returns their values in a cell array.

Examples Create a dataset array from Fisher’s iris data and access the
information:

load fisheriris
NumObs = size(meas,1);
NameObs = strcat({'Obs'},num2str((1:NumObs)','%-d'));
iris = dataset({nominal(species),'species'},...

{meas,'SL','SW','PL','PW'},...
'ObsNames',NameObs);

get(iris)
Description: ''
Units: {}
DimNames: {'Observations' 'Variables'}
UserData: []
ObsNames: {150x1 cell}
VarNames: {'species' 'SL' 'SW' 'PL' 'PW'}

ON = get(iris,'ObsNames');
ON(1:3)
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ans =
'Obs1'
'Obs2'
'Obs3'

See Also set, summary
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Purpose Access categorical array labels

Syntax labels = getlabels(A)

Description labels = getlabels(A) returns the labels of the levels in the
categorical array A as a cell array of strings labels. For ordinal A, the
labels are returned in the order of the levels.

Examples Example 1

Display levels in a nominal and an ordinal array:

standings = nominal({'Leafs','Canadiens','Bruins'});
getlabels(standings)
ans =

'Bruins' 'Canadiens' 'Leafs'

standings = ordinal(1:3,{'Leafs','Canadiens','Bruins'});
getlabels(standings)
ans =

'Leafs' 'Canadiens' 'Bruins'

Example 2

Display age groups containing data in hospital.mat:

load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
AgeGroup = ordinal(hospital.Age,labels,[],edges);
AgeGroup = droplevels(AgeGroup);
getlabels(AgeGroup)
ans =

'20s' '30s' '40s' '50s'

See Also getlevels, setlabels
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Purpose Get categorical array levels

Syntax S = getlevels(A)

Description S = getlevels(A) returns the levels for the categorical array A. S is
a vector with the same type as A.

See Also getlabels
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Purpose Generalized extreme value cumulative distribution function

Syntax P = gevcdf(X,K,sigma,mu)

Description P = gevcdf(X,K,sigma,mu) returns the cdf of the generalized extreme
value (GEV) distribution with shape parameter K, scale parameter
sigma, and location parameter, mu, evaluated at the values in X. The
size of P is the common size of the input arguments. A scalar input
functions as a constant matrix of the same size as the other inputs.

Default values for K, sigma, and mu are 0, 1, and 0, respectively.

When K < 0, the GEV is the type III extreme value distribution. When
K > 0, the GEV distribution is the type II, or Frechet, extreme value
distribution. If w has a Weibull distribution as computed by the wblcdf
function, then -w has a type III extreme value distribution and 1/w has
a type II extreme value distribution. In the limit as K approaches 0, the
GEV is the mirror image of the type I extreme value distribution as
computed by the evcdf function.

The mean of the GEV distribution is not finite when K ≥ 1, and the
variance is not finite when K ≥ 1/2. The GEV distribution has positive
density only for values of X such that K*(X-mu)/sigma > -1.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal
Events for Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory
and Applications. London: Imperial College Press, 2000.

See Also cdf, gevpdf, gevinv, gevstat, gevfit, gevlike, gevrnd

“Generalized Extreme Value Distribution” on page B-32
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Purpose Generalized extreme value parameter estimates

Syntax parmhat = gevfit(X)
[parmhat,parmci] = gevfit(X)
[parmhat,parmci] = gevfit(X,alpha)
[...] = gevfit(X,alpha,options)

Description parmhat = gevfit(X) returns maximum likelihood estimates of the
parameters for the generalized extreme value (GEV) distribution given
the data in X. parmhat(1) is the shape parameter, K, parmhat(2) is the
scale parameter, sigma, and parmhat(3) is the location parameter, mu.

[parmhat,parmci] = gevfit(X) returns 95% confidence intervals for
the parameter estimates.

[parmhat,parmci] = gevfit(X,alpha) returns 100(1-alpha)%
confidence intervals for the parameter estimates.

[...] = gevfit(X,alpha,options) specifies control parameters for
the iterative algorithm used to compute ML estimates. This argument
can be created by a call to statset. See statset('gevfit') for
parameter names and default values. Pass in [] for alpha to use the
default values.

When K < 0, the GEV is the type III extreme value distribution. When
K > 0, the GEV distribution is the type II, or Frechet, extreme value
distribution. If w has a Weibull distribution as computed by the wblfit
function, then -w has a type III extreme value distribution and 1/w has
a type II extreme value distribution. In the limit as K approaches 0, the
GEV is the mirror image of the type I extreme value distribution as
computed by the evfit function.

The mean of the GEV distribution is not finite when K ≥ 1, and the
variance is not finite when K ≥ 1/2. The GEV distribution is defined
for K*(X-mu)/sigma > -1.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal
Events for Insurance and Finance. New York: Springer, 1997.
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[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory
and Applications. London: Imperial College Press, 2000.

See Also mle, gevlike, gevpdf, gevcdf, gevinv, gevstat, gevrnd

“Generalized Extreme Value Distribution” on page B-32

18-465



gevinv

Purpose Generalized extreme value inverse cumulative distribution function

Syntax X = gevinv(P,K,sigma,mu)

Description X = gevinv(P,K,sigma,mu) returns the inverse cdf of the generalized
extreme value (GEV) distribution with shape parameter K, scale
parameter sigma, and location parameter mu, evaluated at the values
in P. The size of X is the common size of the input arguments. A scalar
input functions as a constant matrix of the same size as the other inputs.

Default values for K, sigma, and mu are 0, 1, and 0, respectively.

When K < 0, the GEV is the type III extreme value distribution. When
K > 0, the GEV distribution is the type II, or Frechet, extreme value
distribution. If w has a Weibull distribution as computed by the wblinv
function, then -w has a type III extreme value distribution and 1/w has
a type II extreme value distribution. In the limit as K approaches 0, the
GEV is the mirror image of the type I extreme value distribution as
computed by the evinv function.

The mean of the GEV distribution is not finite when K ≥ 1, and the
variance is not finite when K ≥ 1/2. The GEV distribution has positive
density only for values of X such that K*(X-mu)/sigma > -1.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal
Events for Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory
and Applications. London: Imperial College Press, 2000.

See Also icdf, gevcdf, gevpdf, gevstat, gevfit, gevlike, gevrnd

“Generalized Extreme Value Distribution” on page B-32
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Purpose Generalized extreme value negative log-likelihood

Syntax nlogL = gevlike(params,data)
[nlogL,ACOV] = gevlike(params,data)

Description nlogL = gevlike(params,data) returns the negative of the
log-likelihood nlogL for the generalized extreme value (GEV)
distribution, evaluated at parameters params. params(1) is the shape
parameter, K, params(2) is the scale parameter, mu, and params(3)
is the location parameter, sigma.

[nlogL,ACOV] = gevlike(params,data) returns the inverse of
Fisher’s information matrix, ACOV. If the input parameter values in
params are the maximum likelihood estimates, the diagonal elements
of ACOV are their asymptotic variances. ACOV is based on the observed
Fisher’s information, not the expected information.

When K < 0, the GEV is the type III extreme value distribution. When
K > 0, the GEV distribution is the type II, or Frechet, extreme value
distribution. If w has a Weibull distribution as computed by the wbllike
function, then -w has a type III extreme value distribution and 1/w has
a type II extreme value distribution. In the limit as K approaches 0, the
GEV is the mirror image of the type I extreme value distribution as
computed by the evlike function.

The mean of the GEV distribution is not finite when K ≥ 1, and the
variance is not finite when K ≥ 1/2. The GEV distribution has positive
density only for values of X such that K*(X-mu)/sigma > -1.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal
Events for Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah.Extreme Value Distributions: Theory and
Applications. London: Imperial College Press, 2000.

See Also gevfit, gevpdf, gevcdf, gevinv, gevstat, gevrnd

“Generalized Extreme Value Distribution” on page B-32
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Purpose Generalized extreme value probability density function

Syntax Y = gevpdf(X,K,sigma,mu)

Description Y = gevpdf(X,K,sigma,mu) returns the pdf of the generalized extreme
value (GEV) distribution with shape parameter K, scale parameter
sigma, and location parameter, mu, evaluated at the values in X. The
size of Y is the common size of the input arguments. A scalar input
functions as a constant matrix of the same size as the other inputs.

Default values for K, sigma, and mu are 0, 1, and 0, respectively.

When K < 0, the GEV is the type III extreme value distribution. When
K > 0, the GEV distribution is the type II, or Frechet, extreme value
distribution. If w has a Weibull distribution as computed by the wblpdf
function, then -w has a type III extreme value distribution and 1/w has
a type II extreme value distribution. In the limit as K approaches 0, the
GEV is the mirror image of the type I extreme value distribution as
computed by the evcdf function.

The mean of the GEV distribution is not finite when K ≥ 1, and the
variance is not finite when K ≥ 1/2. The GEV distribution has positive
density only for values of X such that K*(X-mu)/sigma > -1.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal
Events for Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory
and Applications. London: Imperial College Press, 2000.

See Also pdf, gevcdf, gevinv, gevstat, gevfit, gevlike, gevrnd

“Generalized Extreme Value Distribution” on page B-32
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Purpose Generalized extreme value random numbers

Syntax R = gevrnd(K,sigma,mu)
R = gevrnd(K,sigma,mu,M,N,...)
R = gevrnd(K,sigma,mu,[M,N,...])

Description R = gevrnd(K,sigma,mu) returns an array of random numbers chosen
from the generalized extreme value (GEV) distribution with shape
parameter K, scale parameter sigma, and location parameter, mu. The
size of R is the common size of the input arguments if all are arrays.
If any parameter is a scalar, the size of R is the size of the other
parameters.

R = gevrnd(K,sigma,mu,M,N,...) or

R = gevrnd(K,sigma,mu,[M,N,...]) returns an m-by-n-by-... array.

When K < 0, the GEV is the type III extreme value distribution. When
K > 0, the GEV distribution is the type II, or Frechet, extreme value
distribution. If w has a Weibull distribution as computed by the wblrnd
function, then -w has a type III extreme value distribution and 1/w has
a type II extreme value distribution. In the limit as K approaches 0, the
GEV is the mirror image of the type I extreme value distribution as
computed by the evrnd function.

The mean of the GEV distribution is not finite when K ≥ 1, and the
variance is not finite when K ≥ 1/2. The GEV distribution has positive
density only for values of X such that K*(X-mu)/sigma > -1.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal
Events for Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory
and Applications. London: Imperial College Press, 2000.

See Also random, gevpdf, gevcdf, gevinv, gevstat, gevfit, gevlike

“Generalized Extreme Value Distribution” on page B-32

18-469



gevstat

Purpose Generalized extreme value mean and variance

Syntax [M,V] = gevstat(K,sigma,mu)

Description [M,V] = gevstat(K,sigma,mu) returns the mean of and variance for
the generalized extreme value (GEV) distribution with shape parameter
K, scale parameter sigma, and location parameter, mu. The sizes of M and
V are the common size of the input arguments. A scalar input functions
as a constant matrix of the same size as the other inputs.

Default values for K, sigma, and mu are 0, 1, and 0, respectively.

When K < 0, the GEV is the type III extreme value distribution. When
K > 0, the GEV distribution is the type II, or Frechet, extreme value
distribution. If w has a Weibull distribution as computed by the wblstat
function, then -w has a type III extreme value distribution and 1/w has
a type II extreme value distribution. In the limit as K approaches 0, the
GEV is the mirror image of the type I extreme value distribution as
computed by the evstat function.

The mean of the GEV distribution is not finite when K ≥ 1, and the
variance is not finite when K ≥ 1/2. The GEV distribution has positive
density only for values of X such that K*(X-mu)/sigma > -1.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal
Events for Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory
and Applications. London: Imperial College Press, 2000.

See Also gevpdf, gevcdf, gevinv, gevfit, gevlike, gevrnd

“Generalized Extreme Value Distribution” on page B-32
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Purpose Interactively add line to plot

Syntax gline(h)
gline
hline = gline(...)

Description gline(h) allows you to draw a line segment in the figure with handle h
by clicking the pointer at the two endpoints. A rubber-band line tracks
the pointer movement.

gline with no input arguments defaults to h = gcf and draws in the
current figure.

hline = gline(...) returns the handle hline to the line.

Examples Use gline to connect two points in a plot:

x = 1:10;

y = x + randn(1,10);
scatter(x,y,25,'b','*')

lsline

mu = mean(y);
hold on
plot([1 10],[mu mu],'ro')

hline = gline; % Connect circles
set(hline,'Color','r')
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See Also refline, refcurve, lsline
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Purpose Generalized linear model regression

Syntax b = glmfit(X,y,distr)
b = glmfit(X,y,distr,param1,val1,param2,val2,...)
[b,dev] = glmfit(...)
[b,dev,stats] = glmfit(...)

Description b = glmfit(X,y,distr) returns a p-by-1 vector b of coefficient
estimates for a generalized linear regression of the responses in y on the
predictors in X, using the distribution distr. X is an n-by-p matrix of p
predictors at each of n observations. distr can be any of the following
strings: 'binomial', 'gamma', 'inverse gaussian', 'normal' (the
default), and 'poisson'.

In most cases, y is an n-by-1 vector of observed responses. For the
binomial distribution, y can be a binary vector indicating success or
failure at each observation, or a two column matrix with the first
column indicating the number of successes for each observation and the
second column indicating the number of trials for each observation.

This syntax uses the canonical link (see below) to relate the distribution
to the predictors.

Note By default, glmfit adds a first column of 1s to X, corresponding
to a constant term in the model. Do not enter a column of 1s directly
into X. You can change the default behavior of glmfit using the
'constant' parameter, below.

glmfit treats NaNs in either X or y as missing values, and ignores them.

b = glmfit(X,y,distr,param1,val1,param2,val2,...) additionally
allows you to specify optional parameter name/value pairs to control the
model fit. Acceptable parameters are as follows:
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Parameter Value Description

'identity', default
for the distribution
'normal'

µ = Xb

'log', default for
the distribution
'poisson'

log(µ) = Xb

'logit', default
for the distribution
'binomial'

log(µ/(1–µ)) = Xb

'probit' norminv(µ) = Xb

'comploglog' log(-log(1–µ)) = Xb

'reciprocal' 1/µ = Xb

'loglog', default
for the distribution
'gamma'

log(-log(µ)) = Xb

p (a number), default
for the distribution
'inverse
gaussian' (with
p = -2)

µp = Xb

'link'

cell array of the
form {FL FD FI},
containing three
function handles,
created using @, that
define the link (FL),
the derivative of the
link (FD), and the
inverse link (FI).

User-specified link function
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Parameter Value Description

'on' Estimates a dispersion
parameter for the binomial
or Poisson distribution

'estdisp'

'off' (Default for
binomial or Poisson
distribution)

Uses the theoretical value
of 1.0 for those distributions

'offset' Vector Used as an additional
predictor variable, but with a
coefficient value fixed at 1.0

'weights' Vector of prior
weights, such as
the inverses of the
relative variance of
each observation

'on' (default) Includes a constant term in
the model. The coefficient of
the constant term is the first
element of b.

'constant'

'off' Omit the constant term

[b,dev] = glmfit(...)returns dev, the deviance of the fit at the
solution vector. The deviance is a generalization of the residual sum of
squares. It is possible to perform an analysis of deviance to compare
several models, each a subset of the other, and to test whether the model
with more terms is significantly better than the model with fewer terms.

[b,dev,stats] = glmfit(...) returns dev and stats.

stats is a structure with the following fields:

• beta — Coefficient estimates b

• dfe — Degrees of freedom for error

• s — Theoretical or estimated dispersion parameter
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• sfit — Estimated dispersion parameter

• se— Vector of standard errors of the coefficient estimates b

• coeffcorr — Correlation matrix for b

• covb — Estimated covariance matrix for B

• t — t statistics for b

• p — p-values for b

• resid — Vector of residuals

• residp — Vector of Pearson residuals

• residd — Vector of deviance residuals

• resida — Vector of Anscombe residuals

If you estimate a dispersion parameter for the binomial or Poisson
distribution, then stats.s is set equal to stats.sfit. Also, the
elements of stats.se differ by the factor stats.s from their theoretical
values.

Example Fit a probit regression model for y on x. Each y(i) is the number
of successes in n(i) trials.

x = [2100 2300 2500 2700 2900 3100 ...

3300 3500 3700 3900 4100 4300]';

n = [48 42 31 34 31 21 23 23 21 16 17 21]';

y = [1 2 0 3 8 8 14 17 19 15 17 21]';

b = glmfit(x,[y n],'binomial','link','probit');

yfit = glmval(b, x,'probit','size', n);

plot(x, y./n,'o',x,yfit./n,'-','LineWidth',2)
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References [1] Dobson, A. J. An Introduction to Generalized Linear Models. New
York: Chapman & Hall, 1990.

[2] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New
York: Chapman & Hall, 1990.

[3] Collett, D. Modeling Binary Data. New York: Chapman & Hall,
2002.

See Also glmval, regress, regstats
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Purpose Generalized linear model values

Syntax yhat = glmval(b,X,link)
[yhat,dylo,dyhi] = glmval(b,X,link,stats)
[...] = glmval(...,param1,val1,param2,val2,...)

Description yhat = glmval(b,X,link) computes predicted values for the
generalized linear model with link function link and predictors X.
Distinct predictor variables should appear in different columns of X. b
is a vector of coefficient estimates as returned by the glmfit function.
link can be any of the strings used as values for the link parameter in
the glmfit function.

Note By default, glmval adds a first column of 1s to X, corresponding
to a constant term in the model. Do not enter a column of 1s directly
into X. You can change the default behavior of glmval using the
'constant' parameter, below.

[yhat,dylo,dyhi] = glmval(b,X,link,stats) also computes 95%
confidence bounds for the predicted values. When the stats structure
output of the glmfit function is specified, dylo and dyhi are also
returned. dylo and dyhi define a lower confidence bound of yhat-dylo,
and an upper confidence bound of yhat+dyhi. Confidence bounds
are nonsimultaneous, and apply to the fitted curve, not to a new
observation.

[...] = glmval(...,param1,val1,param2,val2,...) specifies
optional parameter name/value pairs to control the predicted values.
Acceptable parameters are:

Parameter Value

'confidence' — the confidence
level for the confidence bounds

A scalar between 0 and 1
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Parameter Value

'size'— the size parameter (N)
for a binomial model

A scalar, or a vector with one
value for each row of X

'offset'—used as an additional
predictor variable, but with a
coefficient value fixed at 1.0

A vector

'constant' • 'on' — Includes a constant
term in the model. The
coefficient of the constant term
is the first element of b.

• 'off' — Omit the constant
term

Examples Fit a probit regression model for y on x. Each y(i) is the number
of successes in n(i) trials.

x = [2100 2300 2500 2700 2900 3100 ...

3300 3500 3700 3900 4100 4300]';

n = [48 42 31 34 31 21 23 23 21 16 17 21]';

y = [1 2 0 3 8 8 14 17 19 15 17 21]';

b = glmfit(x,[y n],'binomial','link','probit');

yfit = glmval(b,x,'probit','size',n);

plot(x, y./n,'o',x,yfit./n,'-','LineWidth',2)
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References [1] Dobson, A. J. An Introduction to Generalized Linear Models. New
York: Chapman & Hall, 1990.

[2] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New
York: Chapman & Hall, 1990.

[3] Collett, D. Modeling Binary Data. New York: Chapman & Hall,
2002.

See Also glmfit
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Purpose Glyph plot

Syntax glyphplot(X)
glyphplot(X,'glyph','face')
glyphplot(X,'glyph','face','features',f)
glyphplot(X,...,'grid',[rows,cols])
glyphplot(X,...,'grid',[rows,cols],'page',p)
glyphplot(X,...,'centers',C)
glyphplot,...,'centers',C,'radius',r)
glyphplot(X,...,'obslabels',labels)
glyphplot(X,...,'standardize',method)
glyphplot(X,...,prop1,val1,...)
h = glyphplot(X,...)

Description glyphplot(X) creates a star plot from the multivariate data in the
n-by-p matrix X. Rows of X correspond to observations, columns
to variables. A star plot represents each observation as a “star”
whose ith spoke is proportional in length to the ith coordinate of that
observation. glyphplot standardizes X by shifting and scaling each
column separately onto the interval [0,1] before making the plot, and
centers the glyphs on a rectangular grid that is as close to square as
possible. glyphplot treats NaNs in X as missing values, and does not
plot the corresponding rows of X. glyphplot(X,'glyph','star') is a
synonym for glyphplot(X).

glyphplot(X,'glyph','face') creates a face plot from X. A face plot
represents each observation as a “face,” whose ith facial feature is
drawn with a characteristic proportional to the ith coordinate of that
observation. The features are described in “Face Features” on page
18-483Face Features.

glyphplot(X,'glyph','face','features',f) creates a face plot
where the ith element of the index vector f defines which facial feature
will represent the ith column of X. f must contain integers from 0 to
17, where 0 indicate that the corresponding column of X should not be
plotted. See “Face Features” on page 18-483Face Features for more
information.
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glyphplot(X,...,'grid',[rows,cols]) organizes the glyphs into a
rows-by-cols grid.

glyphplot(X,...,'grid',[rows,cols],'page',p) organizes the
glyph into one or more pages of a rows-by-cols grid, and displays the
page p. If p is a vector, glyphplot displays multiple pages in succession.
If p is 'all', glyphplot displays all pages. If p is 'scroll', glyphplot
displays a single plot with a scrollbar.

glyphplot(X,...,'centers',C) creates a plot with each glyph
centered at the locations in the n-by-2 matrix C.

glyphplot,...,'centers',C,'radius',r) creates a plot with glyphs
positioned using C, and scale the glyphs so the largest has radius r.

glyphplot(X,...,'obslabels',labels) labels each glyph with the
text in the character array or cell array of strings labels. By default,
the glyphs are labelled 1:N. Use '' for blank labels.

glyphplot(X,...,'standardize',method) standardizes X before
making the plot. Choices for method are

• 'column' — Maps each column of X separately onto the interval
[0,1]. This is the default.

• 'matrix'— Maps the entire matrix X onto the interval [0,1].

• 'PCA'— Transforms X to its principal component scores, in order of
decreasing eigenvalue, and maps each one onto the interval [0,1].

• 'off'— No standardization. Negative values in X may make a star
plot uninterpretable.

glyphplot(X,...,prop1,val1,...) sets properties to the specified
property values for all line graphics objects created by glyphplot.

h = glyphplot(X,...) returns a matrix of handles to the graphics
objects created by glyphplot. For a star plot, h(:,1) and h(:,2)
contain handles to the line objects for each star’s perimeter and spokes,
respectively. For a face plot, h(:,1) and h(:,2) contain object handles

18-482



glyphplot

to the lines making up each face and to the pupils, respectively. h(:,3)
contains handles to the text objects for the labels, if present.

Face Features

The following table describes the correspondence between the columns
of the vector f, the value of the 'Features' input parameter, and the
facial features of the glyph plot. If X has fewer than 17 columns, unused
features are displayed at their default value.

Column Facial Feature

1 Size of face

2 Forehead/jaw relative arc length

3 Shape of forehead

4 Shape of jaw

5 Width between eyes

6 Vertical position of eyes

7 Height of eyes

8 Width of eyes (this also affects eyebrow width)

9 Angle of eyes (this also affects eyebrow angle)

10 Vertical position of eyebrows

11 Width of eyebrows (relative to eyes)

12 Angle of eyebrows (relative to eyes)

13 Direction of pupils

14 Length of nose

15 Vertical position of mouth

16 Shape of mouth

17 Mouth arc length
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Examples load carsmall

X = [Acceleration Displacement Horsepower MPG Weight];

glyphplot(X,'standardize','column',...

'obslabels',Model,...

'grid',[2 2],...

'page','scroll');

glyphplot(X,'glyph','face',...

'obslabels',Model,...

'grid',[2 3],...

'page',9);
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See Also andrewsplot, parallelcoords
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gmdistribution class

Purpose Gaussian mixture models

Description An object of the gmdistribution class defines a Gaussian mixture
distribution, which is a multivariate distribution that consists of a
mixture of one or more multivariate Gaussian distribution components.
The number of components for a given gmdistribution object is fixed.
Each multivariate Gaussian component is defined by its mean and
covariance, and the mixture is defined by a vector of mixing proportions.

Construction To create a Gaussian mixture distribution by specifying the distribution
parameters, use the gmdistribution constructor. To fit a Gaussian
mixture distribution model to data, use gmdistribution.fit.

fit Gaussian mixture parameter
estimates

gmdistribution Construct Gaussian mixture
distribution

Methods cdf Cumulative distribution function
for Gaussian mixture distribution

cluster Construct clusters from Gaussian
mixture distribution

disp Display Gaussian mixture
distribution object

display Display Gaussian mixture
distribution object

fit Gaussian mixture parameter
estimates

mahal Mahalanobis distance to
component means
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pdf Probability density function for
Gaussian mixture distribution

posterior Posterior probabilities of
components

random Random numbers from Gaussian
mixture distribution

subsasgn Subscripted reference for
Gaussian mixture distribution
object

subsref Subscripted reference for
Gaussian mixture distribution
object

Properties All objects of the class have the properties listed in the following table.

CovType Type of covariance matrices

DistName Type of distribution

Mu Input matrix of means MU

NComponents Number k of mixture components

NDimensions Dimension d of multivariate
Gaussian distributions

PComponents Input vector of mixing proportions

SharedCov true if all covariance matrices
are restricted to be the same

Sigma Input array of covariances

Objects constructed with fit have the additional properties listed in
the following table.
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AIC Akaike Information Criterion

BIC Bayes Information Criterion

Converged Determine if algorithm converged

Iters Number of iterations

NlogL Negative of log-likelihood

RegV Value of 'Regularize' parameter

Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.

References McLachlan, G., and D. Peel, Finite Mixture Models, John Wiley & Sons,
New York, 2000.

See Also “Normal Distribution” on page B-82
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Purpose Construct Gaussian mixture distribution

Syntax obj = gmdistribution(mu,sigma,p)

Description obj = gmdistribution(mu,sigma,p) constructs an object obj of the
gmdistribution class defining a Gaussian mixture distribution.

mu is a k-by-d matrix specifying the d-dimensional mean of each of the
k components.

sigma specifies the covariance of each component. The size of sigma is:

• d-by-d-by-k if there are no restrictions on the form of the covariance.
In this case, sigma(:,:,I) is the covariance of component I.

• 1-by-d-by-k if the covariance matrices are restricted to be diagonal,
but not restricted to be same across components. In this case,
sigma(:,:,I) contains the diagonal elements of the covariance of
component I.

• d-by-d matrix if the covariance matrices are restricted to be the same
across components, but not restricted to be diagonal. In this case,
sigma is the pooled estimate of covariance.

• 1-by-d if the covariance matrices are restricted to be diagonal and the
same across components. In this case, sigma contains the diagonal
elements of the pooled estimate of covariance.

p is an optional 1-by-k vector specifying the mixing proportions of each
component. If p does not sum to 1, gmdistribution normalizes it. The
default is equal proportions.

Examples Create a gmdistribution object defining a two-component mixture of
bivariate Gaussian distributions:

mu = [1 2;-3 -5];
sigma = cat(3,[2 0;0 .5],[1 0;0 1]);
p = ones(1,2)/2;
obj = gmdistribution(mu,sigma,p);
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ezsurf(@(x,y)pdf(obj,[x y]),[-10 10],[-10 10])

References [1] McLachlan, G., and D. Peel. Finite Mixture Models. Hoboken, NJ:
John Wiley & Sons, Inc., 2000.

See Also fit, pdf, cdf, random, cluster, posterior, mahal
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Purpose Add case names to plot

Syntax gname(cases)
gname
h = gname(cases,line_handle)

Description gname(cases) displays a figure window and waits for you to press
a mouse button or a keyboard key. The input argument cases is a
character array or a cell array of strings, in which each row of the
character array or each element of the cell array contains the case
name of a point. Moving the mouse over the graph displays a pair of
cross-hairs. If you position the cross-hairs near a point with the mouse
and click once, the graph displays the name of the city corresponding to
that point. Alternatively, you can click and drag the mouse to create a
rectangle around several points. When you release the mouse button,
the graph displays the labels for all points in the rectangle. Right-click
a point to remove its label. When you are done labelling points, press
the Enter or Escape key to stop labeling.

gname with no arguments labels each case with its case number.

h = gname(cases,line_handle) returns a vector of handles to the text
objects on the plot. Use the scalar line_handle to identify the correct
line if there is more than one line object on the plot.

You can use gname to label plots created by the plot, scatter,
gscatter, plotmatrix, and gplotmatrix functions.

Examples This example uses the city ratings data sets to find out which cities are
the best and worst for education and the arts.

load cities
education = ratings(:,6);
arts = ratings(:,7);
plot(education,arts,'+')
gname(names)

18-491



gname

Click the point at the top of the graph to display its label, “New York.”

See Also gtext, gscatter, gplotmatrix
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Purpose Generalized Pareto cumulative distribution function

Syntax P = gpcdf(X,K,sigma,theta)

Description P = gpcdf(X,K,sigma,theta) returns the cdf of the generalized
Pareto (GP) distribution with the tail index (shape) parameter K,
scale parameter sigma, and threshold (location) parameter, theta,
evaluated at the values in X. The size of P is the common size of the
input arguments. A scalar input functions as a constant matrix of the
same size as the other inputs.

Default values for K, sigma, and theta are 0, 1, and 0, respectively.

When K = 0 and theta = 0, the GP is equivalent to the exponential
distribution. When K > 0 and theta = sigma/K, the GP is equivalent
to the Pareto distribution. The mean of the GP is not finite when K ≥
1, and the variance is not finite when K ≥ 1/2. When K ≥ 0, the GP has
positive density for

X > theta, or, when

K < 0, 0
1

≤
−

≤−
X

K
θ

σ
.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal
Events for Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory
and Applications. London: Imperial College Press, 2000.

See Also cdf, gppdf, gpinv, gpstat, gpfit, gplike, gprnd

“Generalized Pareto Distribution” on page B-37
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Purpose Generalized Pareto parameter estimates

Syntax parmhat = gpfit(X)
[parmhat,parmci] = gpfit(X)
[parmhat,parmci] = gpfit(X,alpha)
[...] = gpfit(X,alpha,options)

Description parmhat = gpfit(X) returns maximum likelihood estimates of the
parameters for the two-parameter generalized Pareto (GP) distribution
given the data in X. parmhat(1) is the tail index (shape) parameter,
K and parmhat(2) is the scale parameter, sigma. gpfit does not fit
a threshold (location) parameter.

[parmhat,parmci] = gpfit(X) returns 95% confidence intervals for
the parameter estimates.

[parmhat,parmci] = gpfit(X,alpha) returns 100(1-alpha)%
confidence intervals for the parameter estimates.

[...] = gpfit(X,alpha,options) specifies control parameters for
the iterative algorithm used to compute ML estimates. This argument
can be created by a call to statset. See statset('gpfit') for
parameter names and default values.

Other functions for the generalized Pareto, such as gpcdf allow a
threshold parameter, theta. However, gpfit does not estimate theta.
It is assumed to be known, and subtracted from X before calling gpfit.

When K = 0 and theta = 0, the GP is equivalent to the exponential
distribution. When K > 0 and theta = sigma/K, the GP is equivalent
to the Pareto distribution. The mean of the GP is not finite when K ≥
1, and the variance is not finite when K ≥ 1/2. When K ≥ 0, the GP has
positive density for

X > theta, or, when

0
1

≤
−

≤−
X

K
θ

σ
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References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal
Events for Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory
and Applications. London: Imperial College Press, 2000.

See Also mle, gplike, gppdf, gpcdf, gpinv, gpstat, gprnd

“Generalized Pareto Distribution” on page B-37
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Purpose Generalized Pareto inverse cumulative distribution function

Syntax X = gpinv(P,K,sigma,theta)

Description X = gpinv(P,K,sigma,theta) returns the inverse cdf for a generalized
Pareto (GP) distribution with tail index (shape) parameter K, scale
parameter sigma, and threshold (location) parameter theta, evaluated
at the values in P. The size of X is the common size of the input
arguments. A scalar input functions as a constant matrix of the same
size as the other inputs.

Default values for K, sigma, and theta are 0, 1, and 0, respectively.

When K = 0 and theta = 0, the GP is equivalent to the exponential
distribution. When K > 0 and theta = sigma/K, the GP is equivalent
to the Pareto distribution. The mean of the GP is not finite when K ≥
1, and the variance is not finite when K ≥ 1/2. When K ≥ 0, the GP has
positive density for

X > theta, or, when

K < 0, 0
1

≤
−

≤−
X

K
θ

σ
.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal
Events for Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory
and Applications. London: Imperial College Press, 2000.

See Also icdf, gpcdf, gppdf, gpstat, gpfit, gplike, gprnd

“Generalized Pareto Distribution” on page B-37

18-496



gplike

Purpose Generalized Pareto negative log-likelihood

Syntax nlogL = gplike(params,data)
[nlogL,ACOV] = gplike(params,data)

Description nlogL = gplike(params,data) returns the negative of the
log-likelihood nlogL for the two-parameter generalized Pareto (GP)
distribution, evaluated at parameters params. params(1) is the tail
index (shape) parameter, K, params(2) is the scale parameter, sigma,
and params(3) is the threshold (location) parameter, mu.

[nlogL,ACOV] = gplike(params,data) returns the inverse of Fisher’s
information matrix, ACOV. If the input parameter values in params are
the maximum likelihood estimates, the diagonal elements of ACOV are
their asymptotic variances. ACOV is based on the observed Fisher’s
information, not the expected information.

When K = 0 and theta = 0, the GP is equivalent to the exponential
distribution. When K > 0 and theta = sigma/K, the GP is equivalent
to the Pareto distribution. The mean of the GP is not finite when K ≥
1, and the variance is not finite when K ≥ 1/2. When K ≥ 0, the GP has
positive density for

X > theta, or, when

K < 0, 0
1

≤
−

≤−
X

K
θ

σ
.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal
Events for Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory
and Applications. London: Imperial College Press, 2000.

See Also gpfit, gppdf, gpcdf, gpinv, gpstat, gprnd

“Generalized Pareto Distribution” on page B-37
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Purpose Generalized Pareto probability density function

Syntax P = gppdf(X,K,sigma,theta)

Description P = gppdf(X,K,sigma,theta) returns the pdf of the generalized
Pareto (GP) distribution with the tail index (shape) parameter K,
scale parameter sigma, and threshold (location) parameter, theta,
evaluated at the values in X. The size of P is the common size of the
input arguments. A scalar input functions as a constant matrix of the
same size as the other inputs.

Default values for K, sigma, and theta are 0, 1, and 0, respectively.

When K = 0 and theta = 0, the GP is equivalent to the exponential
distribution. When K > 0 and theta = sigma/K, the GP is equivalent
to the Pareto distribution. The mean of the GP is not finite when K ≥
1, and the variance is not finite when K ≥ 1/2. When K ≥ 0, the GP has
positive density for

X > theta, or, when

K < 0, 0
1

≤
−

≤−
X

K
θ

σ
.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal
Events for Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory
and Applications. London: Imperial College Press, 2000.

See Also pdf, gpcdf, gpinv, gpstat, gpfit, gplike, gprnd

“Generalized Pareto Distribution” on page B-37
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Purpose Matrix of scatter plots by group

Syntax gplotmatrix(x,y,group)
gplotmatrix(x,y,group,clr,sym,siz)
gplotmatrix(x,y,group,clr,sym,siz,doleg)
gplotmatrix(x,y,group,clr,sym,siz,doleg,dispopt)
gplotmatrix(x,y,group,clr,sym,siz,doleg,dispopt,xnam,ynam)
[h,ax,bigax] = gplotmatrix(...)

Description gplotmatrix(x,y,group) creates a matrix of scatter plots. Each
individual set of axes in the resulting figure contains a scatter plot of a
column of x against a column of y. All plots are grouped by the grouping
variable group. (See “Grouped Data” on page 2-33.)

x and y are matrices with the same number of rows. If x has p columns
and y has q columns, the figure contains a p-by-q matrix of scatter plots.
If you omit y or specify it as the empty matrix, [], gplotmatrix creates
a square matrix of scatter plots of columns of x against each other.

group is a grouping variable that can be a categorical variable, vector,
string array, or cell array of strings. group must have the same number
of rows as x and y. Points with the same value of group are placed
in the same group, and appear on the graph with the same marker
and color. Alternatively, group can be a cell array containing several
grouping variables (such as {g1 g2 g3}); in that case, observations are
in the same group if they have common values of all grouping variables.

gplotmatrix(x,y,group,clr,sym,siz) specifies the color, marker
type, and size for each group. clr is a string array of colors recognized
by the plot function. The default for clr is 'bgrcmyk'. sym is a string
array of symbols recognized by the plot command, with the default
value '.'. siz is a vector of sizes, with the default determined by
the DefaultLineMarkerSize property. If you do not specify enough
values for all groups, gplotmatrix cycles through the specified values
as needed.

gplotmatrix(x,y,group,clr,sym,siz,doleg) controls whether a
legend is displayed on the graph (doleg is 'on', the default) or not
(doleg is 'off').
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gplotmatrix(x,y,group,clr,sym,siz,doleg,dispopt) controls what
appears along the diagonal of a plot matrix of y versus x. Allowable
values are 'none', to leave the diagonals blank, 'hist' (the default), to
plot histograms, or 'variable', to write the variable names.

gplotmatrix(x,y,group,clr,sym,siz,doleg,dispopt,xnam,ynam)
specifies the names of the columns in the x and y arrays. These names
are used to label the x- and y-axes. xnam and ynam must be character
arrays or cell arrays of strings, with one name for each column of x
and y, respectively.

[h,ax,bigax] = gplotmatrix(...) returns three arrays of handles.
h is an array of handles to the lines on the graphs. The array’s third
dimension corresponds to groups in G. ax is a matrix of handles to the
axes of the individual plots. If dispopt is 'hist', ax contains one extra
row of handles to invisible axes in which the histograms are plotted.
bigax is a handle to big (invisible) axes framing the entire plot matrix.
bigax is fixed to point to the current axes, so a subsequent title,
xlabel, or ylabel command will produce labels that are centered with
respect to the entire plot matrix.

Examples Load the cities data. The ratings array has ratings of the cities in
nine categories (category names are in the array categories). group
is a code whose value is 2 for the largest cities. You can make scatter
plots of the first three categories against the other four, grouped by
the city size code:

load discrim
gplotmatrix(ratings(:,1:2),ratings(:,[4 7]),group)

The output figure (not shown) has an array of graphs with each city
group represented by a different color. The graphs are a little easier to
read if you specify colors and plotting symbols, label the axes with the
rating categories, and move the legend off the graphs:

gplotmatrix(ratings(:,1:2),ratings(:,[4 7]),group,...
'br','.o',[],'on','',categories(1:2,:),...
categories([4 7],:))

18-500



gplotmatrix

See Also “Grouped Data” on page 2-33

grpstats, gscatter, plotmatrix
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Purpose Generalized Pareto random numbers

Syntax R = gprnd(K,sigma,theta)
R = gprnd(K,sigma,theta,M,N,...)
R = gprnd(K,sigma,theta,[M,N,...])

Description R = gprnd(K,sigma,theta) returns an array of random numbers
chosen from the generalized Pareto (GP) distribution with tail index
(shape) parameter K, scale parameter sigma, and threshold (location)
parameter, theta. The size of R is the common size of the input
arguments if all are arrays. If any parameter is a scalar, the size of R is
the size of the other parameters.

Default values for K, sigma, and theta are 0, 1, and 0, respectively.

R = gprnd(K,sigma,theta,M,N,...) or R =
gprnd(K,sigma,theta,[M,N,...]) returns an m-by-n-by-... array.

When K = 0 and theta = 0, the GP is equivalent to the exponential
distribution. When K > 0 and theta = sigma/K, the GP is equivalent
to the Pareto distribution. The mean of the GP is not finite when K ≥
1, and the variance is not finite when K ≥ 1/2. When K ≥ 0, the GP has
positive density for

X > theta, or, when

0
1

≤
−

≤−
X

K
θ

σ

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal
Events for Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory
and Applications. London: Imperial College Press, 2000.

See Also random, gppdf, gpcdf, gpinv, gpstat, gpfit, gplike
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Purpose Generalized Pareto mean and variance

Syntax [M,V] = gpstat(K,sigma,theta)

Description [M,V] = gpstat(K,sigma,theta) returns the mean of and variance
for the generalized Pareto (GP) distribution with the tail index
(shape) parameter K, scale parameter sigma, and threshold (location)
parameter, theta.

The default value for theta is 0.

When K = 0 and theta = 0, the GP is equivalent to the exponential
distribution. When K > 0 and theta = sigma/K, the GP is equivalent
to the Pareto distribution. The mean of the GP is not finite when K ≥
1, and the variance is not finite when K ≥ 1/2. When K ≥ 0, the GP has
positive density for X > theta, or when

K < 0, 0
1

≤
−

≤−
X

K
θ

σ
.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal
Events for Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory
and Applications. London: Imperial College Press, 2000.

See Also gppdf, gpcdf, gpinv, gpfit, gplike, gprnd
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Purpose Train additional trees and add to ensemble

Syntax B = growTrees(B,ntrees)
B = growTrees(B,ntrees,’param1’,val1,’param2’,val2,...)

Description B = growTrees(B,ntrees) grows ntrees new trees and appends them
to those trees already stored in the ensemble B.

B = growTrees(B,ntrees,’param1’,val1,’param2’,val2,...)
pecifies optional parameter name/value pairs:

'nprint' Specifies that a diagnostic
message showing training
progress should display after
every value training cycles
(grown trees). Default is no
diagnostic messages.

'options' A struct that specifies options
that govern computation when
growing the ensemble of decision
trees. One option requests that
the computation of decision trees
on multiple bootstrap replicates
uses multiple processors, if the
Parallel Computing Toolbox is
available. Two options specify the
random number streams to use
in selecting bootstrap replicates.
You can create this argument
with a call to statset. You can
retrieve values of the individual
fields with a call to statget.
Applicable statset parameters
are:

• 'UseParallel'— If 'always'
and if a matlabpool of the
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Parallel Computing Toolbox
is open, compute decision
trees drawn on separate
boostrap replicates in parallel.
If the Parallel Computing
Toolbox is not installed, or
a matlabpool is not open,
computation occurs in serial
mode. Default is 'never', or
serial computation.

• 'UseSubstreams' — If
'always' select each bootstrap
replicate using a separate
Substream of the random
number generator (aka
Stream). This option is
available only with RandStream
types that support Substreams.
Default is 'never', do not use
a different Substream to
compute each bootstrap
replicate.

• 'Streams' — An object of the
RandStream class, or a cell
array of RandStream objects.
Default is an empty cell array.
If you do not supply a value for
this parameter, TreeBagger
uses the default RandStream on
each MATLAB executable in
selecting bootstrap replicates.
Otherwise, TreeBagger selects
bootstrap replicates using the
supplied RandStream object(s).
If you select 'UseSubstreams',
the Streams parameter, if
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present, must be a scalar
RandStream object. If you do
not select 'UseSubstreams',
then the Streams parameter,
if present, must match the
number of processors used for
the computation. For serial
computation, the Streams
parameter must be a scalar.
If computation is distributed
('UseParallel' is 'always'
and a matlabpool is open),
then the Streams parameter
must be a cell array of the
same length as the matlabpool
size. In this case, each element
of the cell array supplies the
random number generator for
bootstrap sampling on one of
the parallel workers.

See Also classregtree
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Purpose Create index vector from grouping variable

Syntax [G,GN]=grp2idx(S)
[indices,names] = grp2idx(group)
[G,GN,GL] = grp2idx(S)

Description [G,GN]=grp2idx(S) creates an index vector G from the grouping
variable S. S can be a categorical, numeric, or logical vector; a cell vector
of strings; or a character matrix with each row representing a group
label. The result G is a vector taking integer values from 1 up to the
number K of distinct groups. GN is a cell array of strings representing
group labels. If S is a character matrix, GN(G,:) reproduces S, otherwise
GN(G) reproduces S (aside from any differences in type).

The order of indices depends on the grouping variable:

• For numeric and logical grouping variables, the order is the sorted
order of group.

• For categorical grouping variables, the order is the order of
getlabels(group).

• For string grouping variables, the order is the order of first
appearance in group.

[indices,names] = grp2idx(group) also returns a cell array of
group names, so that names(indices) reproduces group, apart from
differences in type.

[G,GN,GL] = grp2idx(S) returns a column vector GL representing the
group levels. The set of groups and their order in GL and GN are the
same, except that GL has the same type as S. If S is a character matrix,
GL(G,:) reproduces S, otherwise GL(G) reproduces S.

grp2idx treats NaNs (numeric or logical), empty strings (char or cell
array of strings), or values (categorical) in S as missing values and
returns NaNs in the corresponding rows of G. GN and GL don’t include
entries for missing values.
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Examples Load the data in hospital.mat and create a categorical grouping
variable:

load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
AgeGroup = ordinal(hospital.Age,labels,[],edges);

ages = hospital.Age(1:5)
ages =

38
43
38
40
49

group = AgeGroup(1:5)
group =

30s
40s
30s
40s
40s

indices = grp2idx(group)
indices =

4
5
4
5
5

See Also “Grouped Data” on page 2-33

crosstab, getlabels, grpstats, gscatter
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Purpose Summary statistics by group

Syntax means = grpstats(X)
means = grpstats(X,group)
grpstats(X,group,alpha)
dsstats = grpstats(ds,groupvars)
[A,B,...] = grpstats(X,group,whichstats)
[...] = grpstats(...,whichstats,'Param1',VAL1,'Param2',VAL2,

...)

Description means = grpstats(X) computes the mean of the entire sample without
grouping, where X is a matrix of observations.

means = grpstats(X,group) returns the means of each column of X by
group. The array, group defines the grouping such that two elements
of X are in the same group if their corresponding group values are
the same. (See “Grouped Data” on page 2-33.) The grouping variable
group can be a categorical variable, vector, string array, or cell array
of strings. It can also be a cell array containing several grouping
variables (such as {g1 g2 g3}) to group the values in X by each unique
combination of grouping variable values.

grpstats(X,group,alpha) displays a plot of the means versus index
with 100(1-alpha)% confidence intervals around each mean.

dsstats = grpstats(ds,groupvars), when ds is a dataset array,
returns a dataset dsstats that contains the mean, computed by group,
for variables in ds. groupvars specifies the grouping variables in ds
that define the groups, and is a positive integer, a vector of positive
integers, the nam of a dataset variable, a cell array containing one or
more dataset variable names, or a logical vector. A grouping variable
may be a vector of categorical, logical, or numeric values, a character
array of strings, or a cell vector of strings. dsstats contains those
grouping variables, plus one variable giving the number of observations
in ds for each group, as well as one variable for each of the remaining
dataset variables in ds. These variables must be numeric or logical.
dsstats contains one observation for each group of observations in ds.
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groupvars can be [] or omitted to compute the mean of each variable
across the entire dataset without grouping.

grpstats treats NaNs as missing values, and removes them.

grpstats ignores empty group names.

[A,B,...] = grpstats(X,group,whichstats) returns the statistics
specified in whichstats. The input whichstats can be a single function
handle or name, or a cell array containing multiple function handles or
names. The number of outputs (A,B, ...) must match the number function
handles and names in whichstats. Acceptable names are as follows:

• 'mean' — mean

• 'sem' — standard error of the mean

• 'numel' — count, or number of non-NaN elements

• 'gname' — group name

• 'std' — standard deviation

• 'var' — variance

• 'min' — minimum

• 'max' — maximum

• 'range' — maximum - minimum

• 'meanci' — 95% confidence interval for the mean

• 'predci'— 95% prediction interval for a new observation

Each function included in whichstats must accept a column vector of
data and compute a descriptive statistic for it. For example, @median
and @skewness are suitable functions to apply to a numeric input. A
function must return the same size output each time grpstats calls
it, even if the input for some groups is empty. The function typically
returns a scalar value, but may return an nvals-by-1 column vector
if the descriptive statistic is not a scalar (a confidence interval, for
example). The size of each output A, B, ... is ngroups-by-ncols-by-nvals,
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where ngroups is the number of groups, ncols is the number of columns
in the data X, and nvals is the number of values returned by the function
for data from a single group in one column of X. If X is a vector of data,
then the size of each output A, B, .... is ngroups-by-nvals.

A function included in whichstats may also be written to accept a
matrix of data and compute a descriptive statistic for each column. The
function should return either a row vector, or an nvals-by-ncols matrix
if the descriptive statistic is not a scalar.

For the case when data are contained in a numeric matrix X, a function
specified in whichstats may also be written to accept a matrix of
data and ompute a descriptive statistic for each column. The function
should return either a row vector, or an nvals-by-ncols matrix if the
descriptive statistic is not a scalar.

[...] =
grpstats(...,whichstats,'Param1',VAL1,'Param2',VAL2,...)
specifies additional parameter name/value pairs chosen
from the following:

'Alpha' A value from 0 to 1 that
specifies the confidence level as
100(1-alpha)% for the 'meanci'
and 'predci' options. Default is
0.05.

'DataVars' The names of the variables in
ds to which the functions in
whichstats should be applied.
dsstats contains one summary
statistic variable for each of
these data variables. datavars
is a positive integer, a vector
of positive integers, a variable
name, a cell array containing
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one or more variable names, or a
logical vector.

'VarNames' The names of the variables in
dsstats. By default, grpstats
uses the names from ds for
the grouping variable names,
and constructs names for the
summary statistic variables
based on the function name and
the data variable names from ds.

dsstats contains ngroupvars + 1 + ndatavars*nfuns variables,
where ngroupvars is the number of variables specified in groupvars,
ndatavars is the number of variables specified in datavars, and nfuns
is the number of summary statistics specified in whichstats.

Examples load carsmall
[m,p,g] = grpstats(Weight,Model_Year,...

{'mean','predci','gname'})
n = length(m)
errorbar((1:n)',m,p(:,2)-m)
set(gca,'xtick',1:n,'xticklabel',g)
title('95% prediction intervals for mean weight by year')
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See Also “Grouped Data” on page 2-33

gscatter, grp2idx, dataset.grpstats
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Purpose Summary statistics by group for dataset arrays

Syntax B = grpstats(A,groupvars)
B = grpstats(A,groupvars,whichstats)
B = grpstats(A,groupvars,whichstats,...,'DataVars',vars)
B = grpstats(A,groupvars,whichstats,...,'VarNames',names)

Description B = grpstats(A,groupvars) returns a dataset array B that contains
the means, computed by group, for variables in the dataset array A.
The optional input groupvars specifies the variables in A that define
the groups. groupvars can be a positive integer, a vector of positive
integers, a variable name, a cell array containing one or more variable
names, or a logical vector. groupvars can also be [] or omitted to
compute the means of the variables in A without grouping. Grouping
variables can be vectors of categorical, logical, or numeric values, a
character array of strings, or a cell vector of strings. (See “Grouped
Data” on page 2-33.)

B contains the grouping variables, plus a variable giving the number
of observations in A for each group, plus a variable for each of the
remaining variables in A. B contains one observation for each group
of observations in A.

grpstats treats NaNs as missing values, and removes them.

B = grpstats(A,groupvars,whichstats) returns a dataset array B
with variables for each of the statistics specified in whichstats, applied
to each of the nongrouping variables in A. whichstats can be a single
function handle or name, or a cell array containing multiple function
handles or names. The names can be chosen from among the following:

• 'mean' — mean

• 'sem' — standard error of the mean

• 'numel' — count, or number of non-NaN elements

• 'gname' — group name

• 'std' — standard deviation

18-514



dataset.grpstats

• 'var' — variance

• 'meanci' — 95% confidence interval for the mean

• 'predci'— 95% prediction interval for a new observation

Each function included in whichstats must accept a subset of the rows
of a dataset variable, and compute column-wise descriptive statistics for
it. A function should typically return a value that has one row but is
otherwise the same size as its input data. For example, @median and
@skewness are suitable functions to apply to a numeric dataset variable.

A summary statistic function may also return values with more
than one row, provided the return values have the same number of
rows each time grpstats applies the function to different subsets of
data from a given dataset variable. For a dataset variable that is
nobs-by-m-by-... if a summary statistic function returns values that are
nvals-by-m-by-... then the corresponding summary statistic variable
in B is ngroups-by-m-by-...-by-nvals, where ngroups is the number of
groups in A.

B = grpstats(A,groupvars,whichstats,...,'DataVars',vars)
specifies the variables in A to which the functions in whichstats should
be applied. The output dataset arrays contain one summary statistic
variable for each of the specified variables. vars is a positive integer,
a vector of positive integers, a variable name, a cell array containing
one or more variable names, or a logical vector.

B = grpstats(A,groupvars,whichstats,...,'VarNames',names)
specifies the names of the variables in B. By default, grpstats uses
the names from A for the grouping variables, and constructs names for
the summary statistic variables based on the function name and the
data variable names. The number of variables in B is ngroupvars + 1
+ ndatavars*nfuns, where ngroupvars is the number of variables
specified in groupvars, ndatavars is the number of variables specified
in vars, and nfuns is the number of summary statistics specified in
whichstats.
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Examples Compute blood pressure statistics for the data in hospital.mat, by sex
and smoker status:

load hospital
grpstats(hospital,...

{'Sex','Smoker'},...
{@median,@iqr},...
'DataVars','BloodPressure')

ans =
Sex Smoker GroupCount

Female_0 Female false 40
Female_1 Female true 13
Male_0 Male false 26
Male_1 Male true 21

median_BloodPressure
Female_0 119.5 79
Female_1 129 91
Male_0 119 79
Male_1 129 92

iqr_BloodPressure
Female_0 6.5 5.5
Female_1 8 5.5
Male_0 7 6
Male_1 10.5 4.5

See Also grpstats, summary
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Purpose Scatter plot by group

Syntax gscatter(x,y,group)
gscatter(x,y,group,clr,sym,siz)
gscatter(x,y,group,clr,sym,siz,doleg)
gscatter(x,y,group,clr,sym,siz,doleg,xnam,ynam)
h = gscatter(...)

Description gscatter(x,y,group) creates a scatter plot of x and y, grouped by
group. x and y are vectors of the same size. group is a grouping variable
in the form of a categorical variable, vector, string array, or cell array of
strings. (See “Grouped Data” on page 2-33.) Alternatively, group can be
a cell array containing several grouping variables (such as {g1 g2 g3}),
in which case observations are in the same group if they have common
values of all grouping variables. Points in the same group and appear
on the graph with the same marker and color.

gscatter(x,y,group,clr,sym,siz) specifies the color, marker type,
and size for each group. clr is a string array of colors recognized by
the plot function. The default for clr is 'bgrcmyk'. sym is a string
array of symbols recognized by the plot command, with the default
value '.'. siz is a vector of sizes, with the default determined by the
'DefaultLineMarkerSize' property. If you do not specify enough
values for all groups, gscatter cycles through the specified values as
needed.

gscatter(x,y,group,clr,sym,siz,doleg) controls whether a
legend is displayed on the graph (doleg is 'on', the default) or not
(doleg is 'off').

gscatter(x,y,group,clr,sym,siz,doleg,xnam,ynam) specifies the
name to use for the x-axis and y-axis labels. If the x and y inputs are
simple variable names and xnam and ynam are omitted, gscatter labels
the axes with the variable names.

h = gscatter(...) returns an array of handles to the lines on the
graph.
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Examples Load the cities data and look at the relationship between the ratings
for climate (first column) and housing (second column) grouped by city
size. We’ll also specify the colors and plotting symbols.

load discrim
gscatter(ratings(:,1),ratings(:,2),group,'br','xo')

See Also “Grouped Data” on page 2-33

gplotmatrix, grpstats, scatter
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Purpose Greater than relation for handles

Syntax h1 > h2

Description h1 > h2 performs element-wise comparisons between handle arrays
h1 and h2. h1 and h2 must be of the same dimensions unless one is a
scalar. The result is a logical array of the same dimensions, where each
element is an element-wise > result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result
will match the dimensions of the array that is not scalar.

tf = gt(h1, h2) stores the result in a logical array of the same
dimensions.

See Also qrandstream, eq, ge, le, lt, ne
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Superclasses qrandset

Purpose Halton quasi-random point sets

Description haltonset is a quasi-random point set class that produces points from
the Halton sequence.

Construction haltonset Construct Halton quasi-random
point set

Methods Inherited Methods

Methods in the following table are inherited from qrandset.

disp Display qrandset object

end Last index in indexing expression
for point set

length Length of point set

ndims Number of dimensions in matrix

net Generate quasi-random point set

scramble Scramble quasi-random point set

size Number of dimensions in matrix

subsref Subscripted reference for
qrandset

Properties Inherited Properties

Properties in the following table are inherited from qrandset.

Dimensions Number of dimensions

Leap Interval between points
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ScrambleMethod Settings that control scrambling

Skip Number of initial points to omit
from sequence

Type Name of sequence on which point
set Pis based

Copy
Semantics

Handle. To learn how this affects your use of the class, see
Comparing Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.

References [1] Kocis, L., and W. J. Whiten, "Computational Investigations of
Low-Discrepancy Sequences," ACM Transactions on Mathematical
Software, Vol. 23, No. 2, pp. 266-294, 1997.

See Also “Quasi-Random Point Sets” on page 6-18

sobolset
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Purpose Construct Halton quasi-random point set

Syntax p = haltonset(d)
p = haltonset(d,prop1,val1,prop2,val2,...)

Description p = haltonset(d) constructs a d-dimensional point set p of the
haltonset class, with default property settings.

p = haltonset(d,prop1,val1,prop2,val2,...) specifies property
name/value pairs used to construct p.

The object p returned by haltonset encapsulates properties of a
specified quasi-random sequence. The point set is finite, with a length
determined by the Skip and Leap properties and by limits on the size
of point set indices (maximum value of 253). Values of the point set are
not generated and stored in memory until you access p using net or
parenthesis indexing.

Examples Generate a 3-D Halton point set, skip the first 1000 values, and then
retain every 101st point:

p = haltonset(3,'Skip',1e3,'Leap',1e2)
p =

Halton point set in 3 dimensions (8.918019e+013 points)
Properties:

Skip : 1000
Leap : 100

ScrambleMethod : none

Use scramble to apply reverse-radix scrambling:

p = scramble(p,'RR2')
p =

Halton point set in 3 dimensions (8.918019e+013 points)
Properties:

Skip : 1000
Leap : 100

ScrambleMethod : RR2
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Use net to generate the first four points:

X0 = net(p,4)
X0 =

0.0928 0.6950 0.0029
0.6958 0.2958 0.8269
0.3013 0.6497 0.4141
0.9087 0.7883 0.2166

Use parenthesis indexing to generate every third point, up to the 11th
point:

X = p(1:3:11,:)
X =

0.0928 0.6950 0.0029
0.9087 0.7883 0.2166
0.3843 0.9840 0.9878
0.6831 0.7357 0.7923

References [1] Kocis, L., and W. J. Whiten. “Computational Investigations of
Low-Discrepancy Sequences.” ACM Transactions on Mathematical
Software. Vol. 23, No. 2, 1997, pp. 266–294.

See Also net, scramble, sobolset
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Purpose Harmonic mean

Syntax m = harmmean(X)
harmmean(X,dim)

Description m = harmmean(X) calculates the harmonic mean of a sample. For
vectors, harmmean(x) is the harmonic mean of the elements in x. For
matrices, harmmean(X) is a row vector containing the harmonic means
of each column. For N-dimensional arrays, harmmean operates along the
first nonsingleton dimension of X.

harmmean(X,dim) takes the harmonic mean along dimension dim of X.

The harmonic mean is

Examples The arithmetic mean is greater than or equal to the harmonic mean.

x = exprnd(1,10,6);

harmonic = harmmean(x)
harmonic =

0.3382 0.3200 0.3710 0.0540 0.4936 0.0907

average = mean(x)
average =

1.3509 1.1583 0.9741 0.5319 1.0088 0.8122

See Also mean, median, geomean, trimmean
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Purpose Bivariate histogram

Syntax hist3(X)
hist3(X,nbins)
hist3(X,ctrs)
hist3(X,'Edges',edges)
N = hist3(X,...)
[N,C] = hist3(X,...)
hist3(...,param1,val1,param2,val2,...)

Description hist3(X) bins the elements of the m-by-2 matrix X into a 10-by-10 grid
of equally spaced containers, and plots a histogram. Each column of X
corresponds to one dimension in the bin grid.

hist3(X,nbins) plots a histogram using an nbins(1)-by-nbins(2) grid
of bins. hist3(X,'Nbins',nbins) is equivalent to hist3(X,nbins).

hist3(X,ctrs), where ctrs is a two-element cell array of numeric
vectors with monotonically non-decreasing values, uses a 2-D grid
of bins centered on ctrs{1} in the first dimension and on ctrs{2}
in the second. hist3 assigns rows of X falling outside the range of
that grid to the bins along the outer edges of the grid, and ignores
rows of X containing NaNs. hist3(X,'Ctrs',ctrs) is equivalent to
hist3(X,ctrs).

hist3(X,'Edges',edges), where edges is a two-element cell array
of numeric vectors with monotonically non-decreasing values, uses a
2-D grid of bins with edges at edges{1} in the first dimension and at
edges{2} in the second. The (i, j)th bin includes the value X(k,:) if

edges{1}(i) <= X(k,1) < edges{1}(i+1)
edges{2}(j) <= X(k,2) < edges{2}(j+1)

Rows of X that fall on the upper edges of the grid, edges{1}(end) or
edges{2}(end), are counted in the (I,j)th or (i,J)th bins, where I
and J are the lengths of edges{1} and edges{2}. hist3 does not count
rows of X falling outside the range of the grid. Use -Inf and Inf in
edges to include all non-NaN values.
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N = hist3(X,...) returns a matrix containing the number of elements
of X that fall in each bin of the grid, and does not plot the histogram.

[N,C] = hist3(X,...) returns the positions of the bin centers in a
1-by-2 cell array of numeric vectors, and does not plot the histogram.
hist3(ax,X,...) plots onto an axes with handle ax instead of the
current axes. See the axes reference page for more information about
handles to plots.

hist3(...,param1,val1,param2,val2,...) allows you to specify
graphics parameter name/value pairs to fine-tune the plot.

Examples Example 1

Make a 3-D figure using a histogram with a density plot underneath:

load seamount
dat = [-y,x]; % Grid corrected for negative y-values
hold on
hist3(dat) % Draw histogram in 2D

n = hist3(dat); % Extract histogram data;
% default to 10x10 bins

n1 = n';
n1( size(n,1) + 1 ,size(n,2) + 1 ) = 0;

Generate grid for 2-D projected view of intensities:

xb = linspace(min(dat(:,1)),max(dat(:,1)),size(n,1)+1);
yb = linspace(min(dat(:,2)),max(dat(:,2)),size(n,1)+1);

Make a pseudocolor plot:

h = pcolor(xb,yb,n1);

Set the z-level and colormap of the displayed grid:

set(h, 'zdata', ones(size(n1)) * -max(max(n)))
colormap(hot) % heat map
title('Seamount: ...

18-526



hist3

Data Point Density Histogram and Intensity Map');
grid on

Display the default 3-D perspective view:

view(3);

Example 2

Use the car data to make a histogram on a 7-by-7 grid of bins.
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load carbig
X = [MPG,Weight];
hist3(X,[7 7]);
xlabel('MPG'); ylabel('Weight');

Make a histogram with semi-transparent bars:

hist3(X,[7 7],'FaceAlpha',.65);
xlabel('MPG'); ylabel('Weight');
set(gcf,'renderer','opengl');
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Specify bin centers, different in each direction; get back counts, but
don’t make the plot.

cnt = hist3(X, {0:10:50 2000:500:5000});

Example 3

Make a histogram with bars colored according to height.

load carbig
X = [MPG,Weight];
hist3(X,[7 7]);
xlabel('MPG'); ylabel('Weight');
set(gcf,'renderer','opengl');
set(get(gca,'child'),'FaceColor','interp','CDataMode',...
'auto');
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See Also accumarray, bar, bar3, hist, histc
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Purpose Histogram with normal fit

Syntax histfit(data)
histfit(data,nbins)
histfit(data,nbins,dist)
h = histfit(...)

Description histfit(data) plots a histogram of the values in the vector data using
the number of bins equal to the square root of the number of elements
in data, then superimposes a fitted normal distribution.

histfit(data,nbins) uses nbins bins for the histogram.

histfit(data,nbins,dist) plots a histogram with a density from the
distribution specified by dist, one of the following strings:

• 'beta'

• 'birnbaumsaunders'

• 'exponential'

• 'extreme value' or ev'

• 'gamma'

• 'generalized extreme value' or 'gev'

• 'generalized pareto' or 'gp'

• 'inversegaussian'

• 'logistic'

• 'loglogistic'

• 'lognormal'

• 'nakagami'

• 'negative binomial' or 'nbin'

• 'normal' (default)

• 'poisson'
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• 'rayleigh'

• 'rician'

• 'tlocationscale'

• 'weibull' or 'wbl'

h = histfit(...) returns a vector of handles h, where h(1) is the
handle to the histogram and h(2) is the handle to the normal curve.

Examples r = normrnd(10,1,100,1);
histfit(r)
h = get(gca,'Children');
set(h(2),'FaceColor',[.8 .8 1])
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See Also hist, normfit
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Purpose Hidden Markov model posterior state probabilities

Syntax PSTATES = hmmdecode(seq,TRANS,EMIS)
[PSTATES,logpseq] = hmmdecode(...)
[PSTATES,logpseq,FORWARD,BACKWARD,S] = hmmdecode(...)
hmmdecode(...,'Symbols',SYMBOLS)

Description PSTATES = hmmdecode(seq,TRANS,EMIS) calculates the posterior state
probabilities, PSTATES, of the sequence seq, from a hidden Markov
model. The posterior state probabilities are the conditional probabilities
of being at state k at step i, given the observed sequence of symbols, sym.
You specify the model by a transition probability matrix, TRANS, and
an emissions probability matrix, EMIS. TRANS(i,j) is the probability of
transition from state i to state j. EMIS(k,sym) is the probability that
symbol sym is emitted from state k.

PSTATES is an array with the same length as seq and one row for each
state in the model. The (i, j)th element of PSTATES gives the probability
that the model is in state i at the jth step, given the sequence seq.

Note The function hmmdecode begins with the model in state 1 at step
0, prior to the first emission. hmmdecode computes the probabilities in
PSTATES based on the fact that the model begins in state 1.

[PSTATES,logpseq] = hmmdecode(...) returns logpseq, the
logarithm of the probability of sequence seq, given transition matrix
TRANS and emission matrix EMIS.

[PSTATES,logpseq,FORWARD,BACKWARD,S] = hmmdecode(...) returns
the forward and backward probabilities of the sequence scaled by S.

hmmdecode(...,'Symbols',SYMBOLS) specifies the symbols that are
emitted. SYMBOLS can be a numeric array or a cell array of the names of
the symbols. The default symbols are integers 1 through N, where N is
the number of possible emissions.
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References [1] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison. Biological
Sequence Analysis. Cambridge, UK: Cambridge University Press, 1998.

Examples trans = [0.95,0.05;
0.10,0.90];

emis = [1/6 1/6 1/6 1/6 1/6 1/6;
1/10 1/10 1/10 1/10 1/10 1/2];

[seq,states] = hmmgenerate(100,trans,emis);
pStates = hmmdecode(seq,tr,e);
[seq,states] = hmmgenerate(100,trans,emis,...

'Symbols',{'one','two','three','four','five','six'})
pStates = hmmdecode(seq,trans,emis,...

'Symbols',{'one','two','three','four','five','six'});

See Also hmmgenerate, hmmestimate, hmmviterbi, hmmtrain
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Purpose Hidden Markov model parameter estimates from emissions and states

Syntax [TRANS,EMIS] = hmmestimate(seq,states)
hmmestimate(...,'Symbols',SYMBOLS)
hmmestimate(...,'Statenames',STATENAMES)
hmmestimate(...,'Pseudoemissions',PSEUDOE)
hmmestimate(...,'Pseudotransitions',PSEUDOTR)

Description [TRANS,EMIS] = hmmestimate(seq,states) calculates the maximum
likelihood estimate of the transition, TRANS, and emission, EMIS,
probabilities of a hidden Markov model for sequence, seq, with known
states, states.

hmmestimate(...,'Symbols',SYMBOLS) specifies the symbols that are
emitted. SYMBOLS can be a numeric array or a cell array of the names of
the symbols. The default symbols are integers 1 through N, where N is
the number of possible emissions.

hmmestimate(...,'Statenames',STATENAMES) specifies the names of
the states. STATENAMES can be a numeric array or a cell array of the
names of the states. The default state names are 1 through M, where
M is the number of states.

hmmestimate(...,'Pseudoemissions',PSEUDOE) specifies
pseudocount emission values in the matrix PSEUDO. Use this argument
to avoid zero probability estimates for emissions with very low
probability that might not be represented in the sample sequence.
PSEUDOE should be a matrix of size m-by-n, where m is the number of
states in the hidden Markov model and n is the number of possible
emissions. If the emission does not occur in seq, you can set
PSEUDOE(i,k) to be a positive number representing an estimate of the
expected number of such emissions in the sequence seq.

hmmestimate(...,'Pseudotransitions',PSEUDOTR) specifies
pseudocount transition values. You can use this argument to avoid
zero probability estimates for transitions with very low probability that
might not be represented in the sample sequence. PSEUDOTR should be a
matrix of size m-by-m, where m is the number of states in the hidden
Markov model. If the transition does not occur in states, you can
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set PSEUDOTR(i,j) to be a positive number representing an estimate of
the expected number of such transitions in the sequence states.

Pseudotransitions and Pseudoemissions

If the probability of a specific transition or emission is very low, the
transition might never occur in the sequence states, or the emission
might never occur in the sequence seq. In either case, the algorithm
returns a probability of 0 for the given transition or emission in TRANS
or EMIS. You can compensate for the absence of transition with the
'Pseudotransitions' and 'Pseudoemissions' arguments. The
simplest way to do this is to set the corresponding entry of PSEUDO or
PSEUDOTR to 1. For example, if the transition does not occur in
states, set PSEUOTR(i,j) = 1. This forces TRANS(i,j) to be positive.
If you have an estimate for the expected number of transitions
in a sequence of the same length as states, and the actual number
of transitions that occur in seq is substantially less than what
you expect, you can set PSEUOTR(i,j) to the expected number. This
increases the value of TRANS(i,j). For transitions that do occur in
states with the frequency you expect, set the corresponding entry of
PSEUDOTR to 0, which does not increase the corresponding entry of TRANS.

If you do not know the sequence of states, use hmmtrain to estimate the
model parameters.

References [1] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison. Biological
Sequence Analysis. Cambridge, UK: Cambridge University Press, 1998.

Examples trans = [0.95,0.05; 0.10,0.90];
emis = [1/6 1/6 1/6 1/6 1/6 1/6;

1/10 1/10 1/10 1/10 1/10 1/2];

[seq,states] = hmmgenerate(1000,trans,emis);
[estimateTR,estimateE] = hmmestimate(seq,states);

See Also hmmgenerate, hmmdecode, hmmviterbi, hmmtrain

18-537



hmmgenerate

Purpose Hidden Markov model states and emissions

Syntax [seq,states] = hmmgenerate(len,TRANS,EMIS)
hmmgenerate(...,'Symbols',SYMBOLS)
hmmgenerate(...,'Statenames',STATENAMES)

Description [seq,states] = hmmgenerate(len,TRANS,EMIS) takes a known
Markov model, specified by transition probability matrix TRANS and
emission probability matrix EMIS, and uses it to generate

• A random sequence seq of emission symbols

• A random sequence states of states

The length of both seq and states is len. TRANS(i,j) is the probability
of transition from state i to state j. EMIS(k,l) is the probability that
symbol l is emitted from state k.

Note The function hmmgenerate begins with the model in state 1 at
step 0, prior to the first emission. The model then makes a transition
to state i1, with probability , and generates an emission with

probability . hmmgenerate returns i1 as the first entry of states,
and as the first entry of seq.

hmmgenerate(...,'Symbols',SYMBOLS) specifies the symbols that are
emitted. SYMBOLS can be a numeric array or a cell array of the names of
the symbols. The default symbols are integers 1 through N, where N is
the number of possible emissions.

hmmgenerate(...,'Statenames',STATENAMES) specifies the names of
the states. STATENAMES can be a numeric array or a cell array of the
names of the states. The default state names are 1 through M, where
M is the number of states.

Since the model always begins at state 1, whose transition probabilities
are in the first row of TRANS, in the following example, the first entry of
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the output states is be 1 with probability 0.95 and 2 with probability
0.05.

Examples trans = [0.95,0.05;
0.10,0.90];

emis = [1/6 1/6 1/6 1/6 1/6 1/6;
1/10 1/10 1/10 1/10 1/10 1/2];

[seq,states] = hmmgenerate(100,trans,emis)
[seq,states] = hmmgenerate(100,trans,emis,...

'Symbols',{'one','two','three','four','five','six'},...
'Statenames',{'fair';'loaded'})

See Also hmmviterbi, hmmdecode, hmmestimate, hmmtrain
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Purpose Hidden Markov model parameter estimates from emissions

Syntax [ESTTR,ESTEMIT] = hmmtrain(seq,TRGUESS,EMITGUESS)
hmmtrain(...,'Algorithm',algorithm)
hmmtrain(...,'Symbols',SYMBOLS)
hmmtrain(...,'Tolerance',tol)
hmmtrain(...,'Maxiterations',maxiter)
hmmtrain(...,'Verbose',true)
hmmtrain(...,'Pseudoemissions',PSEUDOE)
hmmtrain(...,'Pseudotransitions',PSEUDOTR)

Description [ESTTR,ESTEMIT] = hmmtrain(seq,TRGUESS,EMITGUESS) estimates
the transition and emission probabilities for a hidden Markov model
using the Baum-Welch algorithm. seq can be a row vector containing
a single sequence, a matrix with one row per sequence, or a cell array
with each cell containing a sequence. TRGUESS and EMITGUESS are
initial estimates of the transition and emission probability matrices.
TRGUESS(i,j) is the estimated probability of transition from state i to
state j. EMITGUESS(i,k) is the estimated probability that symbol k is
emitted from state i.

hmmtrain(...,'Algorithm',algorithm) specifies the training
algorithm. algorithm can be either 'BaumWelch' or 'Viterbi'. The
default algorithm is 'BaumWelch'.

hmmtrain(...,'Symbols',SYMBOLS) specifies the symbols that are
emitted. SYMBOLS can be a numeric array or a cell array of the names of
the symbols. The default symbols are integers 1 through N, where N is
the number of possible emissions.

hmmtrain(...,'Tolerance',tol) specifies the tolerance used for
testing convergence of the iterative estimation process. The default
tolerance is 1e-4.

hmmtrain(...,'Maxiterations',maxiter) specifies the maximum
number of iterations for the estimation process. The default maximum
is 100.
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hmmtrain(...,'Verbose',true) returns the status of the algorithm at
each iteration.

hmmtrain(...,'Pseudoemissions',PSEUDOE) specifies pseudocount
emission values for the Viterbi training algorithm. Use this argument to
avoid zero probability estimates for emissions with very low probability
that might not be represented in the sample sequence. PSEUDOE should
be a matrix of size m-by-n, where m is the number of states in the
hidden Markov model and n is the number of possible emissions. If the

emission does not occur in seq, you can set PSEUDOE(i,k) to be
a positive number representing an estimate of the expected number of
such emissions in the sequence seq.

hmmtrain(...,'Pseudotransitions',PSEUDOTR) specifies
pseudocount transition values for the Viterbi training algorithm. Use
this argument to avoid zero probability estimates for transitions with
very low probability that might not be represented in the sample
sequence. PSEUDOTR should be a matrix of size m-by-m, where m is the
number of states in the hidden Markov model. If the transition
does not occur in states, you can set PSEUDOTR(i,j) to be a positive
number representing an estimate of the expected number of such
transitions in the sequence states.

If you know the states corresponding to the sequences, use hmmestimate
to estimate the model parameters.

Tolerance

The input argument ’tolerance' controls how many steps the
hmmtrain algorithm executes before the function returns an answer.
The algorithm terminates when all of the following three quantities are
less than the value that you specify for tolerance:

• The log likelihood that the input sequence seq is generated by the
currently estimated values of the transition and emission matrices

• The change in the norm of the transition matrix, normalized by the
size of the matrix
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• The change in the norm of the emission matrix, normalized by the
size of the matrix

The default value of 'tolerance' is .0001. Increasing the tolerance
decreases the number of steps the hmmtrain algorithm executes before
it terminates.

maxiterations

The maximum number of iterations, 'maxiterations', controls the
maximum number of steps the algorithm executes before it terminates.
If the algorithm executes maxiter iterations before reaching the
specified tolerance, the algorithm terminates and the function returns a
warning. If this occurs, you can increase the value of 'maxiterations'
to make the algorithm reach the desired tolerance before terminating.

References [1] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison. Biological
Sequence Analysis. Cambridge, UK: Cambridge University Press, 1998.

Examples trans = [0.95,0.05;
0.10,0.90];

emis = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
1/10, 1/10, 1/10, 1/10, 1/10, 1/2];

seq1 = hmmgenerate(100,trans,emis);
seq2 = hmmgenerate(200,trans,emis);
seqs = {seq1,seq2};
[estTR,estE] = hmmtrain(seqs,trans,emis);

See Also hmmgenerate, hmmdecode, hmmestimate, hmmviterbi
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Purpose Hidden Markov model most probable state path

Syntax STATES = hmmviterbi(seq,TRANS,EMIS)
hmmviterbi(...,'Symbols',SYMBOLS)
hmmviterbi(...,'Statenames',STATENAMES)

Description STATES = hmmviterbi(seq,TRANS,EMIS) given a sequence, seq,
calculates the most likely path through the hidden Markov model
specified by transition probability matrix, TRANS, and emission
probability matrix EMIS. TRANS(i,j) is the probability of transition
from state i to state j. EMIS(i,k) is the probability that symbol k is
emitted from state i.

Note The function hmmviterbi begins with the model in state 1 at step
0, prior to the first emission. hmmviterbi computes the most likely path
based on the fact that the model begins in state 1.

hmmviterbi(...,'Symbols',SYMBOLS) specifies the symbols that are
emitted. SYMBOLS can be a numeric array or a cell array of the names of
the symbols. The default symbols are integers 1 through N, where N is
the number of possible emissions.

hmmviterbi(...,'Statenames',STATENAMES) specifies the names of
the states. STATENAMES can be a numeric array or a cell array of the
names of the states. The default state names are 1 through M, where
M is the number of states.

Examples trans = [0.95,0.05;
0.10,0.90];

emis = [1/6 1/6 1/6 1/6 1/6 1/6;
1/10 1/10 1/10 1/10 1/10 1/2];

[seq,states] = hmmgenerate(100,trans,emis);
estimatedStates = hmmviterbi(seq,trans,emis);
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[seq,states] = ...
hmmgenerate(100,trans,emis,...

'Statenames',{'fair';'loaded'});
estimatesStates = ...

hmmviterbi(seq,trans,eemis,...
'Statenames',{'fair';'loaded'});

References [1] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison. Biological
Sequence Analysis. Cambridge, UK: Cambridge University Press, 1998.

See Also hmmgenerate, hmmdecode, hmmestimate, hmmtrain
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Purpose Horizontal concatenation for categorical arrays

Syntax C = horzcat(dim,A,B,...)
C = horzcat(A,B)

Description C = horzcat(dim,A,B,...) horizontally concatenates the categorical
arrays A,B,... . For matrices, all inputs must have the same number
of rows. For n-D arrays, all inputs must have the same sizes except in
the second dimension. The set of categorical levels for C is the sorted
union of the sets of levels of the inputs, as determined by their labels.

C = horzcat(A,B) is called for the syntax [A B].

See Also cat, vertcat

18-545



dataset.horzcat

Purpose Horizontal concatenation for dataset arrays

Syntax ds = horzcat(ds1, ds2, ...)

Description ds = horzcat(ds1, ds2, ...) horizontally concatenates the dataset
arrays ds1, ds2, ... . You may concatenate dataset arrays that
have duplicate variable names, however, the variables must contain
identical data, and horzcat includes only one copy of the variable in
the output dataset.

Observation names for all dataset arrays that have them must
be identical except for order. horzcat concatenates by matching
observation names when present, or by position for datasets that do not
have observation names.

See Also cat, vertcat
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Purpose Hougen-Watson model

Syntax yhat = hougen(beta,x)

Description yhat = hougen(beta,x) returns the predicted values of the reaction
rate, yhat, as a function of the vector of parameters, beta, and the
matrix of data, X. beta must have 5 elements and X must have three
columns.

hougen is a utility function for rsmdemo.

The model form is:

ˆ /
y

x x
x x x

= −
+ + +

 
  

1 2 3 5

2 1 3 2 4 31

References [1] Bates, D. M., and D. G. Watts. Nonlinear Regression Analysis and
Its Applications. Hoboken, NJ: John Wiley & Sons, Inc., 1988.

See Also rsmdemo
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Purpose Hypergeometric cumulative distribution function

Syntax hygecdf(X,M,K,N)

Description hygecdf(X,M,K,N) computes the hypergeometric cdf at each of the
values in X using the corresponding size of the population, M, number of
items with the desired characteristic in the population, K, and number
of samples drawn, N. Vector or matrix inputs for X, M, K, and N must all
have the same size. A scalar input is expanded to a constant matrix
with the same dimensions as the other inputs.

The hypergeometric cdf is

The result, p, is the probability of drawing up to x of a possible K items
in N drawings without replacement from a group of M objects.

Examples Suppose you have a lot of 100 floppy disks and you know that 20 of them
are defective. What is the probability of drawing zero to two defective
floppies if you select 10 at random?

p = hygecdf(2,100,20,10)
p =

0.6812

See Also cdf, hygepdf, hygeinv, hygestat, hygernd
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Purpose Hypergeometric inverse cumulative distribution function

Syntax hygeinv(P,M,K,N)

Description hygeinv(P,M,K,N) returns the smallest integer X such that the
hypergeometric cdf evaluated at X equals or exceeds P. You can think of
P as the probability of observing X defective items in N drawings without
replacement from a group of M items where K are defective.

Examples Suppose you are the Quality Assurance manager for a floppy disk
manufacturer. The production line turns out floppy disks in batches of
1,000. You want to sample 50 disks from each batch to see if they have
defects. You want to accept 99% of the batches if there are no more
than 10 defective disks in the batch. What is the maximum number of
defective disks should you allow in your sample of 50?

x = hygeinv(0.99,1000,10,50)
x =

3

What is the median number of defective floppy disks in samples of 50
disks from batches with 10 defective disks?

x = hygeinv(0.50,1000,10,50)
x =

0

See Also icdf, hygecdf, hygepdf, hygestat, hygernd
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Purpose Hypergeometric probability density function

Syntax Y = hygepdf(X,M,K,N)

Description Y = hygepdf(X,M,K,N) computes the hypergeometric pdf at each
of the values in X using the corresponding size of the population, M,
number of items with the desired characteristic in the population, K,
and number of samples drawn, N. X, M, K, and N can be vectors, matrices,
or multidimensional arrays that all have the same size. A scalar input
is expanded to a constant array with the same dimensions as the other
inputs.

The parameters in M, K, and N must all be positive integers, with N ≤ M.
The values in X must be less than or equal to all the parameter values.

The hypergeometric pdf is

The result, y, is the probability of drawing exactly x of a possible K
items in n drawings without replacement from a group of M objects.

Examples Suppose you have a lot of 100 floppy disks and you know that 20 of them
are defective. What is the probability of drawing 0 through 5 defective
floppy disks if you select 10 at random?

p = hygepdf(0:5,100,20,10)
p =

0.0951 0.2679 0.3182 0.2092 0.0841 0.0215

See Also pdf, hygecdf, hygeinv, hygestat, hygernd
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Purpose Hypergeometric random numbers

Syntax R = hygernd(M,K,N)
R = hygernd(M,K,N,v)
R = hygernd(M,K,N,m,n)

Description R = hygernd(M,K,N) generates random numbers from the
hypergeometric distribution with corresponding size of the population,
M, number of items with the desired characteristic in the population, K,
and number of samples drawn, N. M, K, and N can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the
size of R. A scalar input for M, K, or N is expanded to a constant array
with the same dimensions as the other inputs.

R = hygernd(M,K,N,v) generates random numbers from the
hypergeometric distribution with parameters M, K, and N, where v is a
row vector. If v is a 1-by-2 vector, R is a matrix with v(1) rows and v(2)
columns. If v is 1-by-n, R is an n-dimensional array.

R = hygernd(M,K,N,m,n) generates random numbers from the
hypergeometric distribution with parameters M, K, and N, where scalars
m and n are the row and column dimensions of R.

Examples numbers = hygernd(1000,40,50)
numbers =

1

See Also random, hygepdf, hygecdf, hygeinv, hygestat
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Purpose Hypergeometric mean and variance

Syntax [MN,V] = hygestat(M,K,N)

Description [MN,V] = hygestat(M,K,N) returns the mean of and variance for the
hypergeometric distribution with corresponding size of the population,
M, number of items with the desired characteristic in the population, K,
and number of samples drawn, N. Vector or matrix inputs for M, K, and
N must have the same size, which is also the size of MN and V. A scalar
input for M, K, or N is expanded to a constant matrix with the same
dimensions as the other inputs.

The mean of the hypergeometric distribution with parameters M, K, and
N is NK/M, and the variance is NK(M-K)(M-N)/[M^2(M-1)].

Examples The hypergeometric distribution approaches the binomial distribution,
where p = K/M, as M goes to infinity.

[m,v] = hygestat(10.^(1:4),10.^(0:3),9)
m =

0.9000 0.9000 0.9000 0.9000
v =

0.0900 0.7445 0.8035 0.8094

[m,v] = binostat(9,0.1)
m =

0.9000
v =

0.8100

See Also hygepdf, hygecdf, hygeinv, hygernd
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Purpose Inverse cumulative distribution functions

Syntax Y = icdf(name,X,A)
Y = icdf(name,X,A,B)
Y = icdf(name,X,A,B,C)

Description Y = icdf(name,X,A) computes the inverse cumulative distribution
function for the one-parameter family of distributions specified by
name. Parameter values for the distribution are given in A. The inverse
cumulative distribution function is evaluated at the values in X and its
values are returned in Y.

If X and A are arrays, they must be the same size. If X is a scalar, it is
expanded to a constant matrix the same size as A. If A is a scalar, it is
expanded to a constant matrix the same size as X.

Y is the common size of X and A after any necessary scalar expansion.

Y = icdf(name,X,A,B) computes the inverse cumulative distribution
function for two-parameter families of distributions, where parameter
values are given in A and B.

If X, A, and B are arrays, they must be the same size. If X is a scalar, it is
expanded to a constant matrix the same size as A and B. If either A or B
are scalars, they are expanded to constant matrices the same size as X.

Y is the common size of X, A, and B after any necessary scalar expansion.

Y = icdf(name,X,A,B,C) computes the inverse cumulative distribution
function for three-parameter families of distributions, where parameter
values are given in A, B, and C.

If X, A, B, and C are arrays, they must be the same size. If X is a scalar,
it is expanded to a constant matrix the same size as A, B, and C. If
any of A, B or C are scalars, they are expanded to constant matrices
the same size as X.

Y is the common size of X, A, B and C after any necessary scalar
expansion.

Acceptable strings for name are:
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• 'beta' (Beta distribution)

• 'bino' (Binomial distribution)

• 'chi2' (Chi-square distribution)

• 'exp' (Exponential distribution)

• 'ev' (Extreme value distribution)

• 'f' (F distribution)

• 'gam' (Gamma distribution)

• 'gev' (Generalized extreme value distribution)

• 'gp' (Generalized Pareto distribution)

• 'geo' (Geometric distribution)

• 'hyge' (Hypergeometric distribution)

• 'logn' (Lognormal distribution)

• 'nbin' (Negative binomial distribution)

• 'ncf' (Noncentral F distribution)

• 'nct' (Noncentral tdistribution)

• 'ncx2' (Noncentral chi-square distribution)

• 'norm' (Normal distribution)

• 'poiss' (Poisson distribution)

• 'rayl' (Rayleigh distribution)

• 't' (t distribution)

• 'unif' (Uniform distribution)

• 'unid' (Discrete uniform distribution)

• 'wbl' (Weibull distribution)

Examples Compute the icdf of the normal distribution with mean 0 and standard
deviation 1 at inputs 0.1, 0.3, ..., 0.9:
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x1 = icdf('Normal',0.1:0.2:0.9,0,1)
x1 =

-1.2816 -0.5244 0 0.5244 1.2816

The order of the parameters is the same as for norminv.

Compute the icdfs of Poisson distributions with rate parameters 0, 1, ...,
4 at inputs 0.1, 0.3, ..., 0.9, respectively:

x2 = icdf('Poisson',0.1:0.2:0.9,0:4)
x2 =

NaN 0 2 4 7

The order of the parameters is the same as for poissinv.

See Also cdf, mle, pdf, random
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Purpose Return inverse cumulative distribution function (ICDF) for
ProbDistUnivKernel object

Syntax Y = icdf(PD, P)

Description Y = icdf(PD, P) returns Y, an array containing the inverse cumulative
distribution function (ICDF) for the ProbDistUnivKernel object PD,
evaluated at values in P.

Inputs PD An object of the class ProbDistUnivKernel.

P A numeric array of values from 0 to 1 where
you want to evaluate the ICDF.

Outputs Y An array containing the inverse cumulative
distribution function (ICDF) for the
ProbDistUnivKernel object PD.

See Also icdf
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Purpose Return inverse cumulative distribution function (ICDF) for
ProbDistUnivParam object

Syntax Y = icdf(PD, P)

Description Y = icdf(PD, P) returns Y, an array containing the inverse cumulative
distribution function (ICDF) for the ProbDistUnivParam object PD,
evaluated at values in P.

Inputs PD An object of the class ProbDistUnivParam.

P A numeric array of values from 0 to 1 where
you want to evaluate the ICDF.

Outputs Y An array containing the inverse cumulative
distribution function (ICDF) for the
ProbDistUnivParam object PD.

See Also icdf
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Purpose Inverse cumulative distribution function for piecewise distribution

Syntax X = icdf(obj,P)

Description X = icdf(obj,P) returns an array X of values of the inverse cumulative
distribution function for the piecewise distribution object obj, evaluated
at the values in the array P.

Examples Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and
0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
[p,q] = boundary(obj)
p =

0.1000
0.9000

q =
-1.7766
1.8432

icdf(obj,p)
ans =

-1.7766
1.8432

See Also paretotails, cdf

18-558



inconsistent

Purpose Inconsistency coefficient

Syntax Y = inconsistent(Z)
Y = inconsistent(Z,d)

Description Y = inconsistent(Z) computes the inconsistency coefficient for each
link of the hierarchical cluster tree Z, where Z is an (m-1)-by-3 matrix
generated by the linkage function. The inconsistency coefficient
characterizes each link in a cluster tree by comparing its height with
the average height of other links at the same level of the hierarchy.
The higher the value of this coefficient, the less similar the objects
connected by the link.

Y = inconsistent(Z,d) computes the inconsistency coefficient for
each link in the hierarchical cluster tree Z to depth d, where d is an
integer denoting the number of levels of the cluster tree that are
included in the calculation. By default, d=2.

The output, Y, is an (m-1)-by-4 matrix formatted as follows.

Column Description

1 Mean of the heights of all the links included in the
calculation.

2 Standard deviation of the heights of all the links included
in the calculation.

3 Number of links included in the calculation.

4 Inconsistency coefficient.

For each link, k, the inconsistency coefficient is calculated as:

For leaf nodes, nodes that have no further nodes under them, the
inconsistency coefficient is set to 0.
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Examples X = gallery('uniformdata',[10 2],12);
Y = pdist(X);
Z = linkage(Y,'single');
dendrogram(Z)

W = inconsistent(Z,3)
W =

0.1313 0 1.0000 0
0.1386 0 1.0000 0
0.1463 0.0109 2.0000 0.7071
0.2391 0 1.0000 0
0.1951 0.0568 4.0000 0.9425
0.2308 0.0543 4.0000 0.9320
0.2395 0.0748 4.0000 0.7636
0.2654 0.0945 4.0000 0.9203
0.3769 0.0950 3.0000 1.1040
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References [1] Jain, A., and R. Dubes. Algorithms for Clustering Data. Upper
Saddle River, NJ: Prentice-Hall, 1988.

[2] Zahn, C. T. “Graph-theoretical methods for detecting and describing
Gestalt clusters.” IEEE Transactions on Computers. Vol. C-20, Issue
1, 1971, pp. 68–86.

See Also cluster, cophenet, clusterdata, dendrogram, linkage, pdist,
squareform
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ProbDist.InputData property

Purpose Read-only structure containing information about input data to
ProbDist object

Description InputData is a read-only property of the ProbDist class. InputData
is a structure containing information about input data to a ProbDist
object. It includes the following fields:

• data

• cens

• freq

Values Possible values for the three fields in the structure are any data
supplied to the fitdist function:

• data — Data passed to the fitdist function when creating
the ProbDist object. This field is empty if the ProbDist object
was created without fitting to data, that is by using the
ProbDistUnivParam.ProbDistUnivParam constructor.

• cens— The vector supplied with the 'censoring' parameter when
creating the ProbDist object using the fitdist function. This field is
empty if the ProbDist object was created without fitting to data, that
is by using the ProbDistUnivParam.ProbDistUnivParam constructor.

• freq— The vector supplied with the 'frequency' parameter when
creating the ProbDist object using the fitdist function. This field is
empty if the ProbDist object was created without fitting to data, that
is by using the ProbDistUnivParam.ProbDistUnivParam constructor.

Use this information to view and compare the data supplied to create
distributions.
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categorical.int8

Purpose Convert categorical array to signed 8-bit integer array

Syntax B = int8(A)

Description B = int8(A) converts the categorical array A to a signed 8-bit integer
array. Each element of B contains the internal categorical level code for
the corresponding element of A.

Undefined elements of A are assigned the value 0 in B. If A contains
more than intmax('int8') levels, the internal codes will saturate to
intmax('int8') when cast to int8.

See Also For more information on signed integers, see “Integers” in the MATLAB
documentation.

double, uint8
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categorical.int16

Purpose Convert categorical array to signed 16-bit integer array

Syntax B = int16(A)

Description B = int16(A) converts the categorical array A to a signed 16-bit integer
array. Each element of B contains the internal categorical level code for
the corresponding element of A.

Undefined elements of A are assigned the value 0 in B.

See Also For more information on signed integers, see “Integers” in the MATLAB
documentation.

double, uint16
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categorical.int32

Purpose Convert categorical array to signed 32-bit integer array

Syntax B = int32(A)

Description B = int32(A) converts the categorical array A to a signed 32-bit integer
array. Each element of B contains the internal categorical level code for
the corresponding element of A.

Undefined elements of A are assigned the value 0 in B.

See Also For more information on signed integers, see “Integers” in the MATLAB
documentation.

double, uint32
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categorical.int64

Purpose Convert categorical array to signed 64-bit integer array

Syntax B = int64(A)

Description B = int64(A) converts the categorical array A to a signed 64-bit integer
array. Each element of B contains the internal categorical level code for
the corresponding element of A.

Undefined elements of A are assigned the value 0 in B.

See Also For more information on signed integers, see “Integers” in the MATLAB
documentation.

double, uint64
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interactionplot

Purpose Interaction plot for grouped data

Syntax interactionplot(Y,GROUP)
interactionplot(Y,GROUP,'varnames',VARNAMES)
[h,AX,bigax] = interactionplot(...)

Description interactionplot(Y,GROUP) displays the two-factor interaction plot
for the group means of matrix Y with groups defined by entries in the
cell array GROUP. Y is a numeric matrix or vector. If Y is a matrix,
the rows represent different observations and the columns represent
replications of each observation. If Y is a vector, the rows give the
means of each entry in the cell array GROUP. Each cell of GROUP must
contain a grouping variable that can be a categorical variable, numeric
vector, character matrix, or a single-column cell array of strings. (See
“Grouped Data” on page 2-33.) GROUP can also be a matrix whose
columns represent different grouping variables. Each grouping variable
must have the same number of rows as Y. The number of grouping
variables must be greater than 1.

The interaction plot is a matrix plot, with the number of rows and
columns both equal to the number of grouping variables. The grouping
variable names are printed on the diagonal of the plot matrix. The
plot at off-diagonal position (i,j) is the interaction of the two variables
whose names are given at row diagonal (i,i) and column diagonal (j,j),
respectively.

interactionplot(Y,GROUP,'varnames',VARNAMES) displays the
interaction plot with user-specified grouping variable names VARNAMES.
VARNAMES is a character matrix or a cell array of strings, one per
grouping variable. Default names are 'X1', 'X2', ... .

[h,AX,bigax] = interactionplot(...) returns a handle h to the
figure window, a matrix AX of handles to the subplot axes, and a handle
bigax to the big (invisible) axes framing the subplots.

Examples Display interaction plots for data with four 3-level factors named 'A',
'B','C', and 'D':

18-567



interactionplot

y = randn(1000,1); % response
group = ceil(3*rand(1000,4)); % four 3-level factors
interactionplot(y,group,'varnames',{'A','B','C','D'})

See Also “Grouped Data” on page 2-33

maineffectsplot, multivarichart
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categorical.intersect

Purpose Set intersection for categorical arrays

Syntax C = intersect(A,B)

Description C = intersect(A,B) when A and B are categorical arrays returns a
categorical vector C containing the values common to both A and B. The
result C is sorted. The set of categorical levels for C is the sorted union
of the sets of levels of the inputs, as determined by their labels.

[C,IA,IB] = UNION(A,B) also returns index vectors IA and IB such
that C = A(IA) and C = B(IB).

See Also ismember, setdiff, setxor, union, unique
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Purpose Inverse prediction

Syntax X0 = invpred(X,Y,Y0)
[X0,DXLO,DXUP] = invpred(X,Y,Y0)
[X0,DXLO,DXUP] = invpred(X,Y,Y0,name1,val1,name2,val2,...)

Description X0 = invpred(X,Y,Y0) accepts vectors X and Y of the same length, fits
a simple regression, and returns the estimated value X0 for which the
height of the line is equal to Y0. The output, X0, has the same size as Y0,
and Y0 can be an array of any size.

[X0,DXLO,DXUP] = invpred(X,Y,Y0) also computes 95% inverse
prediction intervals. DXLO and DXUP define intervals with lower bound
X0 DXLO and upper bound X0+DXUP. Both DXLO and DXUP have the same
size as Y0.

The intervals are not simultaneous and are not necessarily finite. Some
intervals may extend from a finite value to -Inf or +Inf, and some may
extend over the entire real line.

[X0,DXLO,DXUP] = invpred(X,Y,Y0,name1,val1,name2,val2,...)
specifies optional argument name/value pairs chosen from the following
list. Argument names are case insensitive and partial matches are
allowed.

Name Value

'alpha' A value between 0 and 1 specifying a
confidence level of 100*(1-alpha)%. Default
is alpha=0.05 for 95% confidence.

'predopt' Either 'observation', the default value to
compute the intervals for X0 at which a new
observation could equal Y0, or 'curve' to
compute intervals for the X0 value at which
the curve is equal to Y0.
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Examples x = 4*rand(25,1);
y = 10 + 5*x + randn(size(x));
scatter(x,y)
x0 = invpred(x,y,20)

See Also polyfit, polyval, polyconf, polytool
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categorical.ipermute

Purpose Inverse permute dimensions of categorical array

Syntax A = ipermute(B,order)

Description A = ipermute(B,order) is the inverse of permute. ipermute
rearranges the dimensions of the categorical array B so that
permute(A,order) will produce B. The array produced has the same
values of A but the order of the subscripts needed to access any
particular element are rearranged as specified by order. The elements
of order must be a rearrangement of the numbers from 1 to n.

See Also permute
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Purpose Interquartile range

Syntax y = iqr(X)
iqr(X,dim)

Description y = iqr(X) returns the interquartile range of the values in X. For vector
input, y is the difference between the 75th and the 25th percentiles
of the sample in X. For matrix input, y is a row vector containing the
interquartile range of each column of X. For N-dimensional arrays, iqr
operates along the first nonsingleton dimension of X.

iqr(X,dim) calculates the interquartile range along the dimension
dim of X.

Remarks The IQR is a robust estimate of the spread of the data, since changes in
the upper and lower 25% of the data do not affect it. If there are outliers
in the data, then the IQR is more representative than the standard
deviation as an estimate of the spread of the body of the data. The IQR
is less efficient than the standard deviation as an estimate of the spread
when the data is all from the normal distribution.

Multiply the IQR by 0.7413 to estimate σ (the second parameter of the
normal distribution.)

Examples This Monte Carlo simulation shows the relative efficiency of the IQR to
the sample standard deviation for normal data.

x = normrnd(0,1,100,100);
s = std(x);
s_IQR = 0.7413*iqr(x);
efficiency = (norm(s-1)./norm(s_IQR-1)).^2
efficiency =

0.3297

See Also std, mad, range
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ProbDistUnivKernel.iqr

Purpose Return interquartile range (IQR) for ProbDistUnivKernel object

Syntax Y = iqr(PD)

Description Y = iqr(PD) returns Y, the interquartile range for the
ProbDistUnivKernel object PD. The interquartile range is the distance
between the 75th and 25th percentiles.

Inputs PD An object of the class ProbDistUnivKernel.

Outputs Y The value of the interquartile range for the
ProbDistUnivKernel object PD.

See Also iqr
ProbDistUnivKernel.icdf
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ProbDistUnivParam.iqr

Purpose Return interquartile range (IQR) for ProbDistUnivParam object

Syntax Y = iqr(PD)

Description Y = iqr(PD) returns Y, the interquartile range for the
ProbDistUnivParam object PD. The interquartile range is the distance
between the 75th and 25th percentiles.

Inputs PD An object of the class ProbDistUnivParam.

Outputs Y The value of the interquartile range for the
ProbDistUnivParam object PD.

See Also iqr
ProbDistUnivParam.icdf
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classregtree.isbranch

Purpose Test node for branch

Syntax ib = isbranch(t)
ib = isbranch(t,nodes)

Description ib = isbranch(t) returns an n-element logical vector ib that is true
for each branch node and false for each leaf node.

ib = isbranch(t,nodes) takes a vector nodes of node numbers and
returns a vector of logical values for the specified nodes.

Examples Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})

t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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ib = isbranch(t)
ib =

1
0
1
1
0
1
0
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0
0

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also classregtree, cutvar, numnodes
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categorical.isempty

Purpose True for empty categorical array

Syntax TF = isempty(A)

Description TF = isempty(A) returns true (1) if A is an empty categorical array
and false (0) otherwise. An empty array has no elements, that is
numel(A)==0.

See Also numel, size
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Purpose True for empty dataset array

Syntax tf = isempty(A)

Description tf = isempty(A) returns true (1) if A is an empty dataset and false (0)
otherwise. An empty array has no elements, that is prod(size(A))==0.

See Also size
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categorical.isequal

Purpose True if categorical arrays are equal

Syntax TF = isequal(A,B)
TF = isequal(A,B,C,...)

Description TF = isequal(A,B) is true (1) if the categorical arrays A and B are the
same class, have the same size and the same sets of levels, and contain
the same values, and false (0) otherwise.

TF = isequal(A,B,C,...) is true (1) if all the input arguments are
equal.

Elements with undefined levels are not considered equal to each other.

See Also getlabels

18-581



categorical.islevel

Purpose Test for levels

Syntax I = islevel(levels,A)

Description I = islevel(levels,A) returns a logical array I the same size as
the string, cell array of strings, or 2-D character matrix levels. I is
true (1) where the corresponding element of levels is the label of a
level in the categorical array A, even if the level contains no elements.
I is false (0) otherwise.

Examples Display age levels in the data in hospitl.mat, before and after dropping
occupied levels:

load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
disp(labels')
'0s' '10s' '20s' '30s' '40s' '50s' '60s' '70s' '80s' '90s'

AgeGroup = ordinal(hospital.Age,labels,[],edges);
I = islevel(labels,AgeGroup);
disp(I')
1 1 1 1 1 1 1 1 1 1

AgeGroup = droplevels(AgeGroup);
I = islevel(labels,AgeGroup);
disp(I')
0 0 1 1 1 1 0 0 0 0

See Also ismember, isundefined
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Purpose Test for membership

Syntax I = ismember(A,levels)
[I,IDX] = ismember(A,levels)

Description I = ismember(A,levels) returns a logical array I the same size as the
categorical array A. I is true (1) where the corresponding element of A
is one of the levels specified by the labels in the categorical array, cell
array of strings, or 2-D character array levels. I is false (0) otherwise.

[I,IDX] = ismember(A,levels) also returns an array of indices IDX
containing the highest absolute index in levels for each element in A
whose level is a member of levels, and 0 if there is no such index.

Examples Example 1

For nominal data:

load hospital
sex = hospital.Sex; % Nominal
smokers = hospital.Smoker; % Logical
I = ismember(sex(smokers),'Female');
I(1:5)
ans =

0
1
0
0
0

The use of ismember above is equivalent to:

I = (sex(smokers) == 'Female');

Example 2

For ordinal data:

load hospital
edges = 0:10:100;
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labels = strcat(num2str((0:10:90)','%d'),{'s'});
AgeGroup = ordinal(hospital.Age,labels,[],edges);
I = ismember(AgeGroup(1:5),{'20s','30s'})
I =

1
0
1
0
0

See Also islevel, isundefined
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Purpose True for elements of categorical array in set

Syntax TF = ismember(A,levels)
[TF,LOC] = ismember(A,levels)

Description TF = ismember(A,levels) returns a logical array the same size as
the categorical array A, containing true (1) where the level of the
corresponding element of A is equal to one of the levels specified in
levels, and false (0) otherwise. levels is a categorical array, or a cell
array of strings or 2-D character array containing level labels.

[TF,LOC] = ismember(A,levels) also returns an index array LOC
containing the highest absolute index in levels for each element in A
whose level is a member of levels, and 0 if there is no such index.

See Also intersect, islevel, setdiff, setxor, union, unique
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categorical.isscalar

Purpose True if categorical array is scalar

Syntax TF = isscalar(A)

Description TF = isscalar(A) returns true (1) if the categorical array A is a 1-by-1
matrix, and false (0) otherwise.

See Also isempty, isvector, size
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categorical.isundefined

Purpose Test for undefined elements

Syntax I = isundefined(A)

Description I = isundefined(A) returns a logical array I the same size as the
categorical array A. I is true (1) where the corresponding element of
A is not assigned to any level. I is false (0) where the corresponding
element of A is assigned to a level.

Examples Create and display undefined levels in an ordinal array:

A = ordinal([1 2 3 2 1],{'lo','med','hi'})
A =

lo med hi med lo

A = droplevels(A,{'med','hi'})
Warning: OLDLEVELS contains categorical levels that
were present in A, caused some array elements to
have undefined levels.
A =

lo <undefined> <undefined> <undefined> lo

I = isundefined(A)
I =

0 1 1 1 0

See Also islevel, ismember
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qrandstream.isvalid

Purpose Test handle validity

Syntax tf = isvalid(h)

Description tf = isvalid(h) performs an element-wise check for validity on
the handle elements of h. The result is a logical array of the same
dimensions as h, where each element is the element-wise validity result.

A handle is invalid if it has been deleted or if it is an element of a
handle array and has not yet been initialized.

See Also delete, qrandstream
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categorical.isvector

Purpose True if categorical array is vector

Syntax TF = isvector(A)

Description TF = isvector(A) returns true (1) if the categorical array A is a 1-by-n
or n-by-1 vector, where n >= 0, and false (0) otherwise.

See Also isempty, isscalar, size
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gmdistribution.Iters property

Purpose Number of iterations

Description The number of iterations of the algorithm.

Note This property applies only to gmdistribution objects constructed
with fit.
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iwishrnd

Purpose Inverse Wishart random numbers

Syntax W = iwishrnd(Tau,df)
W = iwishrnd(Tau,df,DI)
[W,DI] = iwishrnd(Tau,df)

Description W = iwishrnd(Tau,df) generates a random matrix W from the inverse
Wishart distribution with parameters Tau and df. The inverse of W has
the Wishart distribution with covariance matrix Sigma = inv(Tau)
and with df degrees of freedom. Tau is a symmetric and positive
definite matrix.

W = iwishrnd(Tau,df,DI) expects DI to be the transpose of the inverse
of the Cholesky factor of Tau, so that DI'*DI = inv(Tau), where inv is
the MATLAB inverse function. DI is lower-triangular and the same size
as Tau. If you call iwishrnd multiple times using the same value of Tau,
it is more efficient to supply DI instead of computing it each time.

[W,DI] = iwishrnd(Tau,df) returns DI so you can use it as an input
in future calls to iwishrnd.

Note that different sources use different parametrizations for the
inverse Wishart distribution. This function defines the parameter tau
so that the mean of the output matrix is Tau/(df-d-1) where d is the
dimension of Tau.

See Also wishrnd

“Inverse Wishart Distribution” on page B-46

18-591



jackknife

Purpose Jackknife sampling

Syntax jackstat = jackknife(jackfun,X)
jackstat = jackknife(jackfun,X,Y,...)
jackstat = jackknife(jackfun,...,'Options',option)

Description jackstat = jackknife(jackfun,X) draws jackknife data samples
from the n-by-p data array X, computes statistics on each sample
using the function jackfun, and returns the results in the matrix
jackstat. jackfun is a function handle specified with @. Each of the
n rows of jackstat contains the results of applying jackfun to one
jackknife sample. Row i of jackstat contains the results for the sample
consisting of X with the ith row omitted:

s = x;
s(i,:) = [];
jackstat(i,:) = jackfun(s);

If jackfun returns a matrix or array, then this output is converted to a
row vector for storage in jackstat. If X is a row vector, it is converted
to a column vector.

jackstat = jackknife(jackfun,X,Y,...) accepts additional
arguments to be supplied as inputs to jackfun. They may be scalars,
column vectors, or matrices. jackknife creates each jackknife sample
by sampling with replacement from the rows of the non-scalar data
arguments (these must have the same number of rows). Scalar data
are passed to jackfun unchanged. Non-scalar arguments must have
the same number of rows, and each jackknife sample omits the same
row from these arguments.

jackstat = jackknife(jackfun,...,'Options',option) provides
an option to perform jackknife iterations in parallel, if the Parallel
Computing Toolbox is available. This argument is a struct that you can
create with a call to statset. You can retrieve values of the individual
fields with a call to statget. jackknife uses the following field in
the struct:
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'UseParallel' If 'always' and if a matlabpool of the Parallel
Computing Toolbox is open, use multiple processors
to compute jackknife iterations. If the Parallel
Computing Toolbox is not installed, or a matlabpool
is not open, computation occurs in serial mode.
Default is 'never', or serial computation.

Examples Estimate the bias of the MLE variance estimator of random samples
taken from the vector y using jackknife. The bias has a known
formula in this problem, so you can compare the jackknife value to
this formula.

y = exprnd(5,100,1);
m = jackknife(@var,y,1);
n = length(y);

bias = var(y,1)-var(y,0) % Bias formula
bias =

-0.2069

jbias = (n-1)*(mean(m)-var(y,1)) % Jackknife estimate
jbias =

-0.2069

See Also bootstrp, random, randsample, hist, ksdensity
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Purpose Jarque-Bera test

Syntax h = jbtest(x)
h = jbtest(x,alpha)
[h,p] = jbtest(...)
[h,p,jbstat] = jbtest(...)
[h,p,jbstat,critval] = jbtest(...)
[h,p,...] = jbtest(x,alpha,mctol)

Description h = jbtest(x) performs a Jarque-Bera test of the null hypothesis
that the sample in vector x comes from a normal distribution with
unknown mean and variance, against the alternative that it does not
come from a normal distribution. The test is specifically designed for
alternatives in “Generating Data Using the Pearson System” on page
6-27 of distributions. The test returns the logical value h = 1 if it rejects
the null hypothesis at the 5% significance level, and h = 0 if it cannot.
The test treats NaN values in x as missing values, and ignores them.

The Jarque-Bera test is a two-sided goodness-of-fit test suitable when a
fully-specified null distribution is unknown and its parameters must
be estimated. The test statistic is

JB
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where n is the sample size, s is the sample skewness, and k is the
sample kurtosis. For large sample sizes, the test statistic has a
chi-square distribution with two degrees of freedom.

Jarque-Bera tests often use the chi-square distribution to estimate
critical values for large samples, deferring to the Lilliefors test (see
lillietest) for small samples. jbtest, by contrast, uses a table of
critical values computed using Monte-Carlo simulation for sample sizes
less than 2000 and significance levels between 0.001 and 0.50. Critical
values for a test are computed by interpolating into the table, using the
analytic chi-square approximation only when extrapolating for larger
sample sizes.
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h = jbtest(x,alpha) performs the test at significance level alpha.
alpha is a scalar in the range [0.001, 0.50]. To perform the test at a
significance level outside of this range, use the mctol input argument.

[h,p] = jbtest(...) returns the p-value p, computed using inverse
interpolation into the table of critical values. Small values of p cast
doubt on the validity of the null hypothesis. jbtest warns when p is
not found within the tabulated range of [0.001, 0.50], and returns either
the smallest or largest tabulated value. In this case, you can use the
mctol input argument to compute a more accurate p-value.

[h,p,jbstat] = jbtest(...) returns the test statistic jbstat.

[h,p,jbstat,critval] = jbtest(...) returns the critical value
critval for the test. When jbstat > critval, the null hypothesis is
rejected at significance level alpha.

[h,p,...] = jbtest(x,alpha,mctol) computes a Monte-Carlo
approximation for p directly, rather than interpolating into the table
of pre-computed values. This is useful when alpha or p lie outside
the range of the table. jbtest chooses the number of Monte Carlo
replications, mcreps, large enough to make the Monte Carlo standard
error for p, sqrt(p*(1-p)/mcreps), less than mctol.

Examples Use jbtest to determine if car mileage, in miles per gallon (MPG),
follows a normal distribution across different makes of cars:

load carbig
[h,p] = jbtest(MPG)
h =

1
p =

0.0022

The p-value is below the default significance level of 5%, and the test
rejects the null hypothesis that the distribution is normal.

With a log transformation, the distribution becomes closer to normal,
but the p-value is still well below 5%:
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[h,p] = jbtest(log(MPG))
h =

1
p =

0.0078

Decreasing the significance level makes it harder to reject the null
hypothesis:

[h,p] = jbtest(log(MPG),0.0075)
h =

0
p =

0.0078

References [1] Jarque, C. M., and A. K. Bera. “A test for normality of observations
and regression residuals.” International Statistical Review. Vol. 55,
No. 2, 1987, pp. 163–172.

[2] Deb, P., and M. Sefton. “The Distribution of a Lagrange Multiplier
Test of Normality.” Economics Letters. Vol. 51, 1996, pp. 123–130.
This paper proposed a Monte Carlo simulation for determining the
distribution of the test statistic. The results of this function are based on
an independent Monte Carlo simulation, not the results in this paper.
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Purpose Johnson system random numbers

Syntax r = johnsrnd(quantiles,m,n)
r = johnsrnd(quantiles)
[r,type] = johnsrnd(...)
[r,type,coefs] = johnsrnd(...)

Description r = johnsrnd(quantiles,m,n) returns an m-by-n matrix of random
numbers drawn from the distribution in the Johnson system that
satisfies the quantile specification given by quantiles. quantiles is
a four-element vector of quantiles for the desired distribution that
correspond to the standard normal quantiles [–1.5 –0.5 0.5 1.5]. In other
words, you specify a distribution from which to draw random values by
designating quantiles that correspond to the cumulative probabilities
[0.067 0.309 0.691 0.933]. quantiles may also be a 2-by-4 matrix whose
first row contains four standard normal quantiles, and whose second
row contains the corresponding quantiles of the desired distribution.
The standard normal quantiles must be spaced evenly.

Note Because r is a random sample, its sample quantiles typically
differ somewhat from the specified distribution quantiles.

r = johnsrnd(quantiles) returns a scalar value.

r = johnsrnd(quantiles,m,n,...) or r =
johnsrnd(quantiles,[m,n,...]) returns an m-by-n-by-... array.

[r,type] = johnsrnd(...) returns the type of the specified
distribution within the Johnson system. type is 'SN', 'SL', 'SB',
or 'SU'. Set m and n to zero to identify the distribution type without
generating any random values.

The four distribution types in the Johnson system correspond to the
following transformations of a normal random variate:

• 'SN'— Identity transformation (normal distribution)
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• 'SL'— Exponential transformation (lognormal distribution)

• 'SB' — Logistic transformation (bounded)

• 'SU'— Hyperbolic sine transformation (unbounded)

[r,type,coefs] = johnsrnd(...) returns coefficients coefs of
the transformation that defines the distribution. coefs is [gamma,
eta, epsilon, lambda]. If z is a standard normal random
variable and h is one of the transformations defined above, r =
lambda*h((z-gamma)/eta)+epsilon is a random variate from the
distribution type corresponding to h.

Examples Generate random values with longer tails than a standard normal:

r = johnsrnd([-1.7 -.5 .5 1.7],1000,1);
qqplot(r);
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Generate random values skewed to the right:

r = johnsrnd([-1.3 -.5 .5 1.7],1000,1);
qqplot(r);
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Generate random values that match some sample data well in the
right-hand tail:

load carbig;
qnorm = [.5 1 1.5 2];
q = quantile(Acceleration, normcdf(qnorm));
r = johnsrnd([qnorm;q],1000,1);
[q;quantile(r,normcdf(qnorm))]
ans =

16.7000 18.2086 19.5376 21.7263
16.8190 18.2474 19.4492 22.4156
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Determine the distribution type and the coefficients:

[r,type,coefs] = johnsrnd([qnorm;q],0)
r =

[]
type =

SU
coefs =

1.0920 0.5829 18.4382 1.4494

See Also random, pearsrnd

“Johnson System” on page B-48
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Purpose Merge observations

Syntax C = join(A,B)
C = join(A,B,key)
C = join(A,B,param1,val1,param2,val2,...)
[C,IB] = join(...)
C = join(A,B,'Type',TYPE,...)
[C,IA,IB] = join(A,B,'Type',TYPE,...)

Description C = join(A,B) creates a dataset array C by merging observations from
the two dataset arrays A and B. join performs the merge by first finding
key variables, that is, a pair of dataset variables, one in A and one in
B, that share the same name. The key from B must contain unique
values, and must contain all the values that are present in the key
from A. join then uses these key variables to define a many-to-one
correspondence between observations in A and those in B. join uses this
correspondence to replicate the observations in B and combine them
with the observations in A to create C.

C = join(A,B,key) performs the merge using the variable specified
by key as the key variable in both A and B. key is a positive integer, a
variable name, a cell array containing a variable name, or a logical
vector with one true entry.

C contains one observation for each observation in A. Variables in C
include all of the variables from A, as well as one variable corresponding
to each variable in B (except for the key from B). If A and B contain
variables with identical names, join adds the suffix '_left' and
'_right' to the corresponding variables in C.

C = join(A,B,param1,val1,param2,val2,...) specifies optional
parameter name/value pairs to control how the dataset variables in A
and B are used in the merge. Parameters are:

• 'Keys'— Specifies the variable to use as a keys in both A and B.

• 'LeftKeys'— Specifies the variable to use as a keys in A.

• 'RightKeys'— Specifies the variable to use as a keys in B.
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You may provide either the 'Keys' parameter, or both the 'LeftKeys'
and 'RightKeys' parameters. The value for these parameters
is a positive integer, a variable name, a cell array containing a
variable name, or a logical vector with one true entry. 'LeftKeys' or
'RightKeys' must both specify the same number of key variables, and
join pairs the left and right keys are paired in the order specified.

• 'LeftVars' — Specifies the variables from A to include in C. By
default, join includes all variables from A.

• 'RightVars' — Specifies the variables from B to include in C. By
default, join includes all variables from B except the key variable.

The value for these parameters is a positive integer, a vector of positive
integers, a variable name, a cell array containing one or more variable
names, or a logical vector.

[C,IB] = join(...)returns an index vector IB, where join constructs
C by horizontally concatenating A(:,LeftVars) and B(IB,RightVars).
join can also perform more complicated inner and outer join operations
that allow a many-to-many correspondence between A and B, and allow
unmatched observations in either A or B.

C = join(A,B,'Type',TYPE,...)performs the join operation specified
by TYPE. TYPE is one of 'inner', 'leftouter', 'rightouter',
'fullouter', or 'outer' (which is a synonym for 'fullouter'). For an
inner join, C only contains observations corresponding to a combination
of key values that occurred in both A and B. For a left (or right) outer
join, C also contains observations corresponding to keys in A (or B) that
did not match any in B (or A). Variables in C taken from A (or B) contain
null values in those observations. A full outer join is equivalent to a
left and right outer join. C contains variables corresponding to the key
variables from both A and B, and join sorts the observations in C by
the key values.

For inner and outer joins, C contains variables corresponding to the key
variables from both A and B by default, as well as all the remaining
variables. join sorts the observations in the result C by the key values.
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[C,IA,IB] = join(A,B,'Type',TYPE,...) returns index vectors IA
and IB indicating the correspondence between observations in C and
those in A and B. For an inner join, join constructs C by horizontally
concatenating A(IA,LeftVars) and B(IB,RightVars). For an outer
join, IA or IB may also contain zeros, indicating the observations in C
that do not correspond to observations in A or B, respectively.

Examples Create a dataset array from Fisher’s iris data:

load fisheriris
NumObs = size(meas,1);
NameObs = strcat({'Obs'},num2str((1:NumObs)','%-d'));
iris = dataset({nominal(species),'species'},...

{meas,'SL','SW','PL','PW'},...
'ObsNames',NameObs);

Create a separate dataset array with the diploid chromosome counts for
each species of iris:

snames = nominal({'setosa';'versicolor';'virginica'});
CC = dataset({snames,'species'},{[38;108;70],'cc'})
CC =

species cc
setosa 38
versicolor 108
virginica 70

Broadcast the data in CC to the rows of iris using the key variable
species in each dataset:

iris2 = join(iris,CC);
iris2([1 2 51 52 101 102],:)
ans =

species SL SW PL PW cc
Obs1 setosa 5.1 3.5 1.4 0.2 38
Obs2 setosa 4.9 3 1.4 0.2 38
Obs51 versicolor 7 3.2 4.7 1.4 108
Obs52 versicolor 6.4 3.2 4.5 1.5 108
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Obs101 virginica 6.3 3.3 6 2.5 70
Obs102 virginica 5.8 2.7 5.1 1.9 70

See Also sortrows
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ProbDistKernel.Kernel property

Purpose Read-only string specifying name of kernel smoothing function for
ProbDistKernel object

Description Kernel is a read-only property of the ProbDistKernel class. Kernel is
a string specifying the name of the kernel smoothing function used
to create a ProbDistKernel object.

Values 'normal'
'box'
'triangle'
'epanechnikov'

Use this information to view and compare the kernel smoothing
function used to create distributions.

See Also ksdensity
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Purpose K-means clustering

Syntax IDX = kmeans(X,k)
[IDX,C] = kmeans(X,k)
[IDX,C,sumd] = kmeans(X,k)
[IDX,C,sumd,D] = kmeans(X,k)
[...] = kmeans(...,param1,val1,param2,val2,...)

Description IDX = kmeans(X,k) partitions the points in the n-by-p data matrix X
into k clusters. This iterative partitioning minimizes the sum, over
all clusters, of the within-cluster sums of point-to-cluster-centroid
distances. Rows of X correspond to points, columns correspond to
variables. kmeans returns an n-by-1 vector IDX containing the cluster
indices of each point. By default, kmeans uses squared Euclidean
distances.

[IDX,C] = kmeans(X,k) returns the k cluster centroid locations in
the k-by-p matrix C.

[IDX,C,sumd] = kmeans(X,k) returns the within-cluster sums of
point-to-centroid distances in the 1-by-k vector sumd.

[IDX,C,sumd,D] = kmeans(X,k) returns distances from each point to
every centroid in the n-by-k matrix D.

[...] = kmeans(...,param1,val1,param2,val2,...) enables
you to specify optional parameter/value pairs to control the iterative
algorithm used by kmeans. Valid parameter strings are listed in the
following table.

Parameter Value

'distance' Distance measure, in p-dimensional space. kmeans
minimizes with respect to this parameter. kmeans
computes centroid clusters differently for the
different supported distance measures.
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Parameter Value

'sqEuclidean' Squared Euclidean distance
(default). Each centroid is the
mean of the points in that cluster.

'cityblock' Sum of absolute differences, i.e.,
the L1 distance. Each centroid
is the component-wise median of
the points in that cluster.

'cosine' One minus the cosine of the
included angle between points
(treated as vectors). Each
centroid is the mean of the points
in that cluster, after normalizing
those points to unit Euclidean
length.

'correlation' One minus the sample correlation
between points (treated as
sequences of values). Each
centroid is the component-wise
mean of the points in that cluster,
after centering and normalizing
those points to zero mean and
unit standard deviation.

'Hamming' Percentage of bits that differ (only
suitable for binary data). Each
centroid is the component-wise
median of points in that cluster.
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Parameter Value

Action to take if a cluster loses all its member
observations.

'error' Treat an empty cluster as an
error (default).

'drop' Remove any clusters that
become empty. kmeans sets the
corresponding return values in C
and D to NaN.

'emptyaction'

'singleton' Create a new cluster consisting
of the one point furthest from its
centroid.

Flag indicating whether kmeans should perform an
online update phase in addition to a batch update
phase. The online phase can be time consuming
for large data sets, but guarantees a solution that
is a local minimum of the distance criterion, that
is, a partition of the data where moving any single
point to a different cluster increases the total sum
of distances.

'on' Perform online update (default).

'onlinephase'

'off' Do not perform online update.

'options' Options for the iterative algorithm used to minimize
the fitting criterion, as created by statset.

'replicates' Number of times to repeat the clustering, each
with a new set of initial cluster centroid positions.
kmeans returns the solution with the lowest value
for sumd. You can supply 'replicates' implicitly
by supplying a 3D array as the value for the
'start' parameter.
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Parameter Value

Method used to choose the initial cluster centroid
positions, sometimes known as seeds.

'sample' Select k observations from X at
random (default).

'uniform' Select k points uniformly at
random from the range of X. Not
valid with Hamming distance.

'cluster' Perform a preliminary clustering
phase on a random 10%
subsample of X. This preliminary
phase is itself initialized using
’sample’.

'start'

Matrix k-by-p matrix of centroid starting
locations. In this case, you can
pass in [] for k, and kmeans infers
k from the first dimension of the
matrix. You can also supply a 3-D
array, implying a value for the
'replicates' parameter from
the array’s third dimension.

Algorithm kmeans uses a two-phase iterative algorithm to minimize the sum of
point-to-centroid distances, summed over all k clusters:

1 The first phase uses batch updates, where each iteration consists
of reassigning points to their nearest cluster centroid, all at once,
followed by recalculation of cluster centroids. This phase occasionally
does not converge to solution that is a local minimum, that is, a
partition of the data where moving any single point to a different
cluster increases the total sum of distances. This is more likely
for small data sets. The batch phase is fast, but potentially only
approximates a solution as a starting point for the second phase.
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2 The second phase uses online updates, where points are individually
reassigned if doing so will reduce the sum of distances, and cluster
centroids are recomputed after each reassignment. Each iteration
during the second phase consists of one pass though all the points.
The second phase will converge to a local minimum, although there
may be other local minima with lower total sum of distances. The
problem of finding the global minimum can only be solved in general
by an exhaustive (or clever, or lucky) choice of starting points, but
using several replicates with random starting points typically results
in a solution that is a global minimum.

References [1] Seber, G. A. F.Multivariate Observations. Hoboken, NJ: John Wiley
& Sons, Inc., 1984.

[2] Spath, H. Cluster Dissection and Analysis: Theory, FORTRAN
Programs, Examples. Translated by J. Goldschmidt. New York:
Halsted Press, 1985.

Examples The following creates two clusters from separated random data:

X = [randn(100,2)+ones(100,2);...
randn(100,2)-ones(100,2)];

opts = statset('Display','final');

[idx,ctrs] = kmeans(X,2,...
'Distance','city',...
'Replicates',5,...
'Options',opts);

5 iterations, total sum of distances = 284.671
4 iterations, total sum of distances = 284.671
4 iterations, total sum of distances = 284.671
3 iterations, total sum of distances = 284.671
3 iterations, total sum of distances = 284.671

plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12)
hold on
plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',12)
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plot(ctrs(:,1),ctrs(:,2),'kx',...
'MarkerSize',12,'LineWidth',2)

plot(ctrs(:,1),ctrs(:,2),'ko',...
'MarkerSize',12,'LineWidth',2)

legend('Cluster 1','Cluster 2','Centroids',...
'Location','NW')

See Also linkage, clusterdata, silhouette
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Purpose Kruskal-Wallis test

Syntax p = kruskalwallis(X)
p = kruskalwallis(X,group)
p = kruskalwallis(X,group,displayopt)
[p,table] = kruskalwallis(...)
[p,table,stats] = kruskalwallis(...)

Description p = kruskalwallis(X) performs a Kruskal-Wallis test to compare
samples from two or more groups. Each column of the m-by-n matrix X
represents an independent sample containing m mutually independent
observations. The function compares the medians of the samples in
X, and returns the p-value for the null hypothesis that all samples
are drawn from the same population (or equivalently, from different
populations with the same distribution). Note that the Kruskal-Wallis
test is a nonparametric version of the classical one-way ANOVA, and an
extension of the Wilcoxon rank sum test to more than two groups.

If the p-value is near zero, this casts doubt on the null hypothesis and
suggests that at least one sample median is significantly different from
the others. The choice of a critical p-value to determine whether the
result is judged statistically significant is left to the researcher. It is
common to declare a result significant if the p-value is less than 0.05
or 0.01.

The kruskalwallis function displays two figures. The first figure is a
standard ANOVA table, calculated using the ranks of the data rather
than their numeric values. Ranks are found by ordering the data from
smallest to largest across all groups, and taking the numeric index of
this ordering. The rank for a tied observation is equal to the average
rank of all observations tied with it. For example, the following table
shows the ranks for a small sample.

X value 1.4 2.7 1.6 1.6 3.3 0.9 1.1

Rank 3 6 4.5 4.5 7 1 2
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The entries in the ANOVA table are the usual sums of squares, degrees
of freedom, and other quantities calculated on the ranks. The usual F
statistic is replaced by a chi-square statistic. The p-value measures the
significance of the chi-square statistic.

The second figure displays box plots of each column of X (not the ranks
of X).

p = kruskalwallis(X,group) uses the values in group (a character
array or cell array) as labels for the box plot of the samples in X, when
X is a matrix. Each row of group contains the label for the data in the
corresponding column of X, so group must have length equal to the
number of columns in X. (See “Grouped Data” on page 2-33.)

When X is a vector, kruskalwallis performs a Kruskal-Wallis test on
the samples contained in X, as indexed by input group (a categorical
variable, vector, character array, or cell array). Each element in group
identifies the group (i.e., sample) to which the corresponding element in
vector X belongs, so group must have the same length as X. The labels
contained in group are also used to annotate the box plot.

It is not necessary to label samples sequentially (1, 2, 3, ...). For
example, if X contains measurements taken at three different
temperatures, -27°, 65°, and 110°, you could use these numbers as the
sample labels in group. If a row of group contains an empty cell or
empty string, that row and the corresponding observation in X are
disregarded. NaNs in either input are similarly ignored.

p = kruskalwallis(X,group,displayopt) enables the table and box
plot displays when displayopt is 'on' (default) and suppresses the
displays when displayopt is 'off'.

[p,table] = kruskalwallis(...) returns the ANOVA table
(including column and row labels) in cell array table.

[p,table,stats] = kruskalwallis(...) returns a stats structure
that you can use to perform a follow-up multiple comparison test. The
kruskalwallis test evaluates the hypothesis that all samples come
from populations that have the same median, against the alternative
that the medians are not all the same. Sometimes it is preferable to
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perform a test to determine which pairs are significantly different, and
which are not. You can use the multcompare function to perform such
tests by supplying the stats structure as input.

Assumptions

The Kruskal-Wallis test makes the following assumptions about the
data in X:

• All samples come from populations having the same continuous
distribution, apart from possibly different locations due to group
effects.

• All observations are mutually independent.

The classical one-way ANOVA test replaces the first assumption with
the stronger assumption that the populations have normal distributions.

Examples This example compares the material strength study used with the
anova1 function, to see if the nonparametric Kruskal-Wallis procedure
leads to the same conclusion. The example studies the strength of
beams made from three alloys:

strength = [82 86 79 83 84 85 86 87 74 82 ...
78 75 76 77 79 79 77 78 82 79];

alloy = {'st','st','st','st','st','st','st','st',...
'al1','al1','al1','al1','al1','al1',...
'al2','al2','al2','al2','al2','al2'};

This example uses both classical and Kruskal-Wallis ANOVA, omitting
displays:

anova1(strength,alloy,'off')
ans =
1.5264e-004

kruskalwallis(strength,alloy,'off')
ans =
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0.0018

Both tests find that the three alloys are significantly different, though
the result is less significant according to the Kruskal-Wallis test. It
is typical that when a data set has a reasonable fit to the normal
distribution, the classical ANOVA test is more sensitive to differences
between groups.

To understand when a nonparametric test may be more appropriate,
let’s see how the tests behave when the distribution is not normal. You
can simulate this by replacing one of the values by an extreme value
(an outlier).

strength(20)=120;
anova1(strength,alloy,'off')
ans =

0.2501

kruskalwallis(strength,alloy,'off')
ans =

0.0060

Now the classical ANOVA test does not find a significant difference, but
the nonparametric procedure does. This illustrates one of the properties
of nonparametric procedures - they are often not severely affected by
changes in a small portion of the data.

References [1] Gibbons, J. D. Nonparametric Statistical Inference. New York:
Marcel Dekker, 1985.

[2] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods.
Hoboken, NJ: John Wiley & Sons, Inc., 1999.

See Also “Grouped Data” on page 2-33

anova1, boxplot, friedman, multcompare, ranksum
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Purpose Kernel smoothing density estimate

Syntax [f,xi] = ksdensity(x)
f = ksdensity(x,xi)
ksdensity(...)
ksdensity(ax,...)
[f,xi,u] = ksdensity(...)
[...] = ksdensity(...,param1,val1,param2,val2,...)

Description [f,xi] = ksdensity(x) computes a probability density estimate of
the sample in the vector x. f is the vector of density values evaluated
at the points in xi. The estimate is based on a normal kernel function,
using a window parameter ('width') that is a function of the number of
points in x. The density is evaluated at 100 equally spaced points that
cover the range of the data in x.

f = ksdensity(x,xi) specifies the vector xi of values, where the
density estimate is to be evaluated.

ksdensity(...) without output arguments produces a plot of the
results.

ksdensity(ax,...) plots into axes ax instead of gca.

[f,xi,u] = ksdensity(...) also returns the width of the
kernel-smoothing window.

[...] = ksdensity(...,param1,val1,param2,val2,...) specifies
parameter/value pairs to control the density estimation. Valid
parameter strings and their possible values are as follows:

Parameter Value

'censoring' A logical vector of the same length as x, indicating
which entries are censoring times. Default is no
censoring.
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Parameter Value

'kernel' The type of kernel smoother to use. Choose the
value as 'normal' (default), 'box', 'triangle', or
'epanechnikov'.

Alternatively, you can specify some other function,
as a function handle or as a string, e.g., @normpdf
or 'normpdf'. The function must take a single
argument that is an array of distances between data
values and places where the density is evaluated. It
must return an array of the same size containing
corresponding values of the kernel function.

'npoints' The number of equally spaced points in xi. Default
is 100.

'support' • 'unbounded' allows the density to extend over the
whole real line (default).

• 'positive' restricts the density to positive
values.

• A two-element vector gives finite lower and upper
bounds for the support of the density.

'weights' Vector of the same length as x, assigning weight to
each x value.

'width' The bandwidth of the kernel-smoothing window. The
default is optimal for estimating normal densities,
but you may want to choose a smaller value to reveal
features such as multiple modes.

'function' The function type to estimate, chosen from among
'pdf', 'cdf', 'icdf', 'survivor', or 'cumhazard'
for the density, cumulative probability, inverse
cumulative probability, survivor, or cumulative
hazard functions, respectively.

For 'icdf',
f=ksdensity(x,yi,...,'function','icdf')
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Parameter Value

computes the estimated inverse CDF of the values
in x, and evaluates it at the probability values
specified in yi.

In place of the kernel functions listed above, you can specify another
kernel function by using @ (such as @normpdf) or quotes (such as
'normpdf'). ksdensity calls the function with a single argument that
is an array containing distances between data values in x and locations
in xi where the density is evaluated. The function must return an array
of the same size containing corresponding values of the kernel function.
When the 'function' parameter value is 'pdf', this kernel function
returns density values, otherwise it returns cumulative probability
values. Specifying a custom kernel when the 'function' parameter
value is 'icdf' returns an error.

If the 'support' parameter is 'positive', ksdensity transforms x
using a log function, estimates the density of the transformed values,
and transforms back to the original scale. If 'support' is a vector
[L U], ksdensity uses the transformation log((X-L)/(U-X)). The
'width' parameter and u outputs are on the scale of the transformed
values.

Examples Generate a mixture of two normal distributions and plots the estimated
density:

x = [randn(30,1); 5+randn(30,1)];
[f,xi] = ksdensity(x);
plot(xi,f);
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Generate a mixture of two normal distributions, and plot the estimated
cumulative distribution at a specified set of values:

x = [randn(30,1); 5+randn(30,1)];
xi = linspace(-10,15,201);
f = ksdensity(x,xi,'function','cdf');
plot(xi,f);
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Generate a mixture of two normal distributions, and plot the estimated
inverse cumulative distribution function at a specified set of values:

x = [randn(30,1); 5+randn(30,1)];
yi = linspace(.01,.99,99);
g = ksdensity(x,yi,'function','icdf');
plot(yi,g);
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References [1] Bowman, A. W., and A. Azzalini. Applied Smoothing Techniques for
Data Analysis. New York: Oxford University Press, 1997.

See Also hist, @ (function handle)
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Purpose One-sample Kolmogorov-Smirnov test

Syntax h = kstest(x)
h = kstest(x,CDF)
h = kstest(x,CDF,alpha)
h = kstest(x,CDF,alpha,type)
[h,p,ksstat,cv] = kstest(...)

Description h = kstest(x) performs a Kolmogorov-Smirnov test to compare the
values in the data vector x to a standard normal distribution. The null
hypothesis is that x has a standard normal distribution. The alternative
hypothesis is that x does not have that distribution. The result h is 1
if the test rejects the null hypothesis at the 5% significance level, 0
otherwise.

The test statistic is:

where is the empirical cdf and is the standard normal cdf.

h = kstest(x,CDF) compares the distribution of x to the hypothesized
continuous distribution defined by CDF, which is either a two-column
matrix or a ProbDist object of the ProbDistUnivParam class or
ProbDistUnivKernel class. When CDF is a matrix, column 1 contains
a set of possible x values, and column 2 contains the corresponding
hypothesized cumulative distribution function values . If possible,
define CDF so that column 1 contains the values in x. If there are
values in x not found in column 1 of CDF, kstest approximates
by interpolation. All values in x must lie in the interval between the
smallest and largest values in the first column of CDF. If the second
argument is empty ([]), kstest uses the standard normal distribution.

The Kolmogorov-Smirnov test requires that CDF be predetermined. It
is not accurate if CDF is estimated from the data. To test x against a
normal distribution without specifying the parameters, use lillietest
instead.
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h = kstest(x,CDF,alpha) specifies the significance level alpha for the
test. The default is 0.05.

h = kstest(x,CDF,alpha,type) specifies the type of test using one of
the following values for the string type:

• 'unequal' — Tests the alternative hypothesis that the population
cdf is unequal to the specified CDF. This is the default.

• 'larger'— Tests the alternative hypothesis that the population cdf
is larger than the specified CDF. The test statistic does not use the
absolute value.

• 'smaller' — Tests the alternative hypothesis that the population
cdf is smaller than the specified CDF. The test statistic does not use
the absolute value.

[h,p,ksstat,cv] = kstest(...) also returns the p-value p, the test
statistic ksstat, and the cutoff value cv for determining if ksstat is
significant.

Examples Generate evenly spaced numbers and perform a Kolmogorov-Smirnov
test to see if they come from a standard normal distribution:

x = -2:1:4
x =

-2 -1 0 1 2 3 4

[h,p,k,c] = kstest(x,[],0.05,0)
h =

0
p =

0.13632
k =

0.41277
c =

0.48342
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The test fails to reject the null hypothesis that the values come from a
standard normal distribution. This illustrates the difficulty of testing
normality in small samples. (The Lilliefors test, implemented by the
Statistics Toolbox function lillietest, may be more appropriate.)

The following figure illustrates the test statistic:

xx = -3:.1:5;
F = cdfplot(x);
hold on
G = plot(xx,normcdf(xx),'r-');
set(F,'LineWidth',2)
set(G,'LineWidth',2)
legend([F G],...

'Empirical','Standard Normal',...
'Location','NW')
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The test statistic k is the maximum difference between the curves.

Setting type to 'smaller' tests the alternative that the population
cdf is smaller than the normal cdf:

[h,p,ksstat] = kstest(x,[],0.05,'smaller')
h =

0
p =

0.068181
k =

0.41277

The test statistic is the same as before, but the p-value is smaller.
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Setting type to 'larger' changes the test statistic:

[h,p,k] = kstest(x,[],0.05,'larger')
h =

0
p =

0.77533
k =

0.12706

References [1] Massey, F. J. “The Kolmogorov-Smirnov Test for Goodness of Fit.”
Journal of the American Statistical Association. Vol. 46, No. 253, 1951,
pp. 68–78.

[2] Miller, L. H. “Table of Percentage Points of Kolmogorov Statistics.”
Journal of the American Statistical Association. Vol. 51, No. 273,
1956, pp. 111–121.

[3] Marsaglia, G., W. Tsang, and J. Wang. “Evaluating Kolmogorov’s
Distribution.” Journal of Statistical Software. Vol. 8, Issue 18, 2003.

See Also kstest2, lillietest
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Purpose Two-sample Kolmogorov-Smirnov test

Syntax h = kstest2(x1,x2)
h = kstest2(x1,x2,alpha,type)
[h,p] = kstest2(...)
[h,p,ks2stat] = kstest2(...)

Description h = kstest2(x1,x2) performs a two-sample Kolmogorov-Smirnov test
to compare the distributions of the values in the two data vectors x1 and
x2. The null hypothesis is that x1 and x2 are from the same continuous
distribution. The alternative hypothesis is that they are from different
continuous distributions. The result h is 1 if the test rejects the null
hypothesis at the 5% significance level; 0 otherwise.

The test statistic is:

where is the proportion of x1 values less than or equal to x and
is the proportion of x2 values less than or equal to x.

h = kstest2(x1,x2,alpha) specifies the significance level alpha for
the test. The default is 0.05.

h = kstest2(x1,x2,alpha,type) specifies the type of test using one of
the following values for the string type:

• 'unequal' — Tests the alternative hypothesis that the population
cdfs are unequal. This is the default.

• 'larger'— Tests the alternative hypothesis that the first population
cdf is larger than the second population cdf. The test statistic does
not use the absolute value.

• 'smaller' — Tests the alternative hypothesis that the first
population cdf is smaller than the second population cdf. The test
statistic does not use the absolute value.

[h,p] = kstest2(...) also returns the asymptotic p-value p. The
asymptotic p-value becomes very accurate for large sample sizes, and
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is believed to be reasonably accurate for sample sizes n1 and n2 such
that (n1*n2)/(n1 + n2) >= 4.

[h,p,ks2stat] = kstest2(...) also returns the p-value p and the
test statistic ks2stat.

Examples The following test compares the distributions of a small evenly-spaced
sample and a larger normal sample:

x = -1:1:5
y = randn(20,1);
[h,p,k] = kstest2(x,y)
h =

0
p =

0.0774
k =

0.5214

The following figure illustrates the test statistic:

F1 = cdfplot(x);
hold on
F2 = cdfplot(y)
set(F1,'LineWidth',2,'Color','r')
set(F2,'LineWidth',2)
legend([F1 F2],'F1(x)','F2(x)','Location','NW')
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The test statistic k is the maximum difference between the curves.

References [1] Massey, F. J. “The Kolmogorov-Smirnov Test for Goodness of Fit.”
Journal of the American Statistical Association. Vol. 46, No. 253, 1951,
pp. 68–78.

[2] Miller, L. H. “Table of Percentage Points of Kolmogorov Statistics.”
Journal of the American Statistical Association. Vol. 51, No. 273,
1956, pp. 111–121.

[3] Marsaglia, G., W. Tsang, and J. Wang. “Evaluating Kolmogorov’s
Distribution.” Journal of Statistical Software. Vol. 8, Issue 18, 2003.
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[4] Stephens, M. A. “Use of the Kolmogorov-Smirnov, Cramer-Von
Mises and Related Statistics Without Extensive Tables.” Journal of the
Royal Statistical Society. Series B, Vol. 32, No. 1, 1970, pp. 115–122.

See Also kstest, lillietest
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Purpose Kurtosis

Syntax k = kurtosis(X)
k = kurtosis(X,flag)
k = kurtosis(X,flag,dim)

Description k = kurtosis(X) returns the sample kurtosis of X. For vectors,
kurtosis(x) is the kurtosis of the elements in the vector x. For
matrices kurtosis(X) returns the sample kurtosis for each column
of X. For N-dimensional arrays, kurtosis operates along the first
nonsingleton dimension of X.

k = kurtosis(X,flag) specifies whether to correct for bias (flag is
0) or not (flag is 1, the default). When X represents a sample from a
population, the kurtosis of X is biased, that is, it will tend to differ from
the population kurtosis by a systematic amount that depends on the size
of the sample. You can set flag to 0 to correct for this systematic bias.

k = kurtosis(X,flag,dim) takes the kurtosis along dimension dim
of X.

kurtosis treats NaNs as missing values and removes them.

Remarks Kurtosis is a measure of how outlier-prone a distribution is. The
kurtosis of the normal distribution is 3. Distributions that are more
outlier-prone than the normal distribution have kurtosis greater than
3; distributions that are less outlier-prone have kurtosis less than 3.

The kurtosis of a distribution is defined as

where μ is the mean of x, σ is the standard deviation of x, and E(t)
represents the expected value of the quantity t.

18-632



kurtosis

Note Some definitions of kurtosis subtract 3 from the computed value,
so that the normal distribution has kurtosis of 0. The kurtosis function
does not use this convention.

Examples X = randn([5 4])
X =

1.1650 1.6961 -1.4462 -0.3600
0.6268 0.0591 -0.7012 -0.1356
0.0751 1.7971 1.2460 -1.3493
0.3516 0.2641 -0.6390 -1.2704
-0.6965 0.8717 0.5774 0.9846

k = kurtosis(X)
k =

2.1658 1.2967 1.6378 1.9589

See Also mean, moment, skewness, std, var
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Purpose Text labels for levels

Description Text labels for levels. Access labels with getlabels.
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Purpose Less than or equal relation for handles

Syntax h1 <= h2

Description Handles are equal if they are handles for the same object. All
comparisons use a number associated with each handle object. Nothing
can be assumed about the result of a handle comparison except that the
repeated comparison of two handles in the same MATLAB session will
yield the same result. The order of handle values is purely arbitrary
and has no connection to the state of the handle objects being compared.

h1 <= h2 performs element-wise comparisons between handle arrays
h1 and h2. h1 and h2 must be of the same dimensions unless one is a
scalar. The result is a logical array of the same dimensions, where each
element is an element-wise <= result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result
will match the dimensions of the array that is not scalar.

tf = le(h1, h2) stores the result in a logical array of the same
dimensions.

See Also qrandstream, eq, ge, gt, lt, ne
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Purpose Interval between points

Description Number of points to leap over and omit for each point taken from the
sequence. The Leap property of a point set contains a positive integer
which specifies the number of points in the sequence to leap over
and omit for every point taken. The default Leap value is 0, which
corresponds to taking every point from the sequence.

Leaping is a technique used to improve the quality of a point set.
However, the Leap values must be chosen with care; poor Leap values
can create sequences that do not fill the entire space.

Examples Experiment with different leap values:

% No leaping produces the standard Halton sequence.
P = haltonset(5);
P(1:5,:)

% Set a leap of 1. The point set now includes every other
% point from the sequence.
P.Leap = 1;
P(1:5,:)

See Also net | qrandset | Skip | subsref
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Purpose Length of dataset array

Syntax n = length(A)

Description n = length(A) returns the number of observations in the dataset A.
length is equivalent to size(A,1).

See Also size
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Purpose Length of point set

Syntax length(p)

Description length(p) returns the number of points in the point set p. It is
equivalent to size(p, 1).

See Also qrandset, size
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Purpose Length of categorical array

Syntax n = length(A)

Description n = length(A) returns the size of the longest dimension of the
categorical array A when A is not empty. If A is a vector, this is the
same as its length. length is equivalent to max(size(x)) for nonempty
arrays, and 0 for empty arrays.

See Also isempty, isscalar, size
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Purpose Element counts by level

Syntax C = levelcounts(A)
C = levelcounts(A,dim)

Description C = levelcounts(A) for a categorical vector A counts the number of
elements in A equal to each of the possible levels in A. The output is a
vector C containing those counts, and has as many elements as A has
levels. For matrix A, C is a matrix of column counts. For N-dimensional
arrays, levelcounts operates along the first nonsingleton dimension.

C = levelcounts(A,dim) operates along the dimension dim.

Examples Count the number of patients in each age group in the data in
hospital.mat:

load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
disp(labels')
'0s' '10s' '20s' '30s' '40s' '50s' '60s' '70s' '80s' '90s'

AgeGroup = ordinal(hospital.Age,labels,[],edges);
I = islevel(labels,AgeGroup);
disp(I')
0 1 1 1 1 1 1 1 1 1

c = levelcounts(AgeGroup);
disp(c')
0 0 15 41 42 2 0 0 0 0

AgeGroup = droplevels(AgeGroup);
I = islevel(labels,AgeGroup);
disp(I')
0 0 1 1 1 1 0 0 0 0

c = levelcounts(AgeGroup);
disp(c')
15 41 42 2
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See Also islevel, ismember, summary
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Purpose Leverage

Syntax h = leverage(data)
h = leverage(data,model)

Description h = leverage(data) finds the leverage of each row (point) in the
matrix data for a linear additive regression model.

h = leverage(data,model) finds the leverage on a regression, using a
specified model type, where model can be one of these strings:

• 'linear' - includes constant and linear terms

• 'interaction' - includes constant, linear, and cross product terms

• 'quadratic' - includes interactions and squared terms

• 'purequadratic' - includes constant, linear, and squared terms

Leverage is a measure of the influence of a given observation on a
regression due to its location in the space of the inputs.

Algorithm [Q,R] = qr(x2fx(data,'model'));

leverage = (sum(Q'.*Q'))'

Examples One rule of thumb is to compare the leverage to 2p/n where n is the
number of observations and p is the number of parameters in the model.
For the Hald data set this value is 0.7692.

load hald
h = max(leverage(ingredients,'linear'))
h =

0.7004

Since 0.7004 < 0.7692, there are no high leverage points using this rule.
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References [1] Goodall, C. R. “Computation Using the QR Decomposition.”
Handbook in Statistics. Vol. 9, Amsterdam: Elsevier/North-Holland,
1993.

See Also regstats
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Purpose Latin hypercube sample

Syntax X = lhsdesign(n,p)
X = lhsdesign(...,'smooth','off')
X = lhsdesign(...,'criterion',criterion)
X = lhsdesign(...,'iterations',k)

Description X = lhsdesign(n,p) generates a latin hypercube sample X containing
n values on each of p variables. For each column, the n values are
randomly distributed with one from each interval (0,1/n), (1/n,2/n),
..., (1-1/n,1), and they are randomly permuted.

X = lhsdesign(...,'smooth','off') produces points at the
midpoints of the above intervals: 0.5/n, 1.5/n, ..., 1-0.5/n. The
default is 'on'.

X = lhsdesign(...,'criterion',criterion) iteratively generates
latin hypercube samples to find the best one according to the criterion
criterion, which can be one of the following strings.

Criterion Description

'none' No iteration

'maximin' Maximize minimum distance between points

'correlation' Reduce correlation

X = lhsdesign(...,'iterations',k) iterates up to k times in an
attempt to improve the design according to the specified criterion. The
default is k = 5.

See Also haltonset, sobolset, lhsnorm, unifrnd
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Purpose Latin hypercube sample from normal distribution

Syntax X = lhsnorm(mu,sigma,n)
X = lhsnorm(mu,sigma,n,flag)
[X,Z] = lhsnorm(...)

Description X = lhsnorm(mu,sigma,n) generates a latin hypercube sample X of
size n from the multivariate normal distribution with mean vector mu
and covariance matrix sigma. X is similar to a random sample from the
multivariate normal distribution, but the marginal distribution of each
column is adjusted so that its sample marginal distribution is close to
its theoretical normal distribution.

X = lhsnorm(mu,sigma,n,flag) controls the amount of smoothing in
the sample. If flag is 'off', each column has points equally spaced
on the probability scale. In other words, each column is a permutation
of the values G(0.5/n), G(1.5/n), ..., G(1-0.5/n) where G is
the inverse normal cumulative distribution for that column’s marginal
distribution. If flag is 'on' (the default), each column has points
uniformly distributed on the probability scale. For example, in place
of 0.5/n you use a value having a uniform distribution on the interval
(0/n,1/n).

[X,Z] = lhsnorm(...) also returns Z, the original multivariate
normal sample before the marginals are adjusted to obtain X.

References [1] Stein, M. “Large sample properties of simulations using latin
hypercube sampling.” Technometrics. Vol. 29, No. 2, 1987, pp. 143–151.
Correction, Vol. 32, p. 367.

See Also lhsdesign, mvnrnd
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Purpose Lilliefors test

Syntax h = lillietest(x)
h = lillietest(x,alpha)
h = lillietest(x,alpha,distr)
[h,p] = lillietest(...)
[h,p,kstat] = lillietest(...)
[h,p,kstat,critval] = lillietest(...)
[h,p,...] = lillietest(x,alpha,distr,mctol)

Description h = lillietest(x) performs a Lilliefors test of the default null
hypothesis that the sample in vector x comes from a distribution in the
normal family, against the alternative that it does not come from a
normal distribution. The test returns the logical value h = 1 if it rejects
the null hypothesis at the 5% significance level, and h = 0 if it cannot.
The test treats NaN values in x as missing values, and ignores them.

The Lilliefors test is a 2-sided goodness-of-fit test suitable when a
fully-specified null distribution is unknown and its parameters must be
estimated. This is in contrast to the one-sample Kolmogorov-Smirnov
test (see kstest), which requires that the null distribution be
completely specified. The Lilliefors test statistic is the same as for the
Kolmogorov-Smirnov test:

KS SCDF x CDF x
x

= −max ( ) ( )

where SCDF is the empirical cdf estimated from the sample and CDF is
the normal cdf with mean and standard deviation equal to the mean
and standard deviation of the sample.

lillietest uses a table of critical values computed using Monte Carlo
simulation for sample sizes less than 1000 and significance levels
between 0.001 and 0.50. The table is larger and more accurate than the
table introduced by Lilliefors. Critical values for a test are computed
by interpolating into the table, using an analytic approximation when
extrapolating for larger sample sizes.
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h = lillietest(x,alpha) performs the test at significance level
alpha. alpha is a scalar in the range [0.001, 0.50]. To perform the test at
a significance level outside of this range, use the mctol input argument.

h = lillietest(x,alpha,distr) performs the test of the null
hypothesis that x came from the location-scale family of distributions
specified by distr. Acceptable values for distr are 'norm' (normal, the
default), 'exp' (exponential), and 'ev' (extreme value). The Lilliefors
test can not be used when the null hypothesis is not a location-scale
family of distributions.

[h,p] = lillietest(...) returns the p-value p, computed using
inverse interpolation into the table of critical values. Small values of
p cast doubt on the validity of the null hypothesis. lillietest warns
when p is not found within the tabulated range of [0.001, 0.50], and
returns either the smallest or largest tabulated value. In this case, you
can use the mctol input argument to compute a more accurate p-value.

[h,p,kstat] = lillietest(...) returns the test statistic kstat.

[h,p,kstat,critval] = lillietest(...) returns the critical value
critval for the test. When kstat > critval, the null hypothesis is
rejected at significance level alpha

[h,p,...] = lillietest(x,alpha,distr,mctol) computes a Monte
Carlo approximation for p directly, rather than interpolating into the
table of pre-computed values. This is useful when alpha or p lie outside
the range of the table. lillietest chooses the number of Monte Carlo
replications, mcreps, large enough to make the Monte Carlo standard
error for p, sqrt(p*(1-p)/mcreps), less than mctol.

Examples Use lillietest to determine if car mileage, in miles per gallon (MPG),
follows a normal distribution across different makes of cars:

load carbig.mat

[h,p] = lillietest(MPG)

Warning: P is less than the smallest tabulated value, returning 0.001.

h =

1
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p =

1.0000e-003

This is clear evidence for rejecting the null hypothesis of normality,
but the p-value returned is just the smallest value in the table of
pre-computed values. To find a more accurate p-value for the test, run a
Monte Carlo approximation using the mctol input argument:

[h,p] = lillietest(MPG,0.05,'norm',1e-4)
h =

1
p =

8.3333e-006

References [1] Conover, W. J. Practical Nonparametric Statistics. Hoboken, NJ:
John Wiley & Sons, Inc., 1980.

[2] Lilliefors, H. W. “On the Kolmogorov-Smirnov test for the
exponential distribution with mean unknown.” Journal of the American
Statistical Association. Vol. 64, 1969, pp. 387–389.

[3] Lilliefors, H. W. “On the Kolmogorov-Smirnov test for normality
with mean and variance unknown.” Journal of the American Statistical
Association. Vol. 62, 1967, pp. 399–402.

See Also jbtest, kstest, kstest2, cdfplot
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Purpose Linear hypothesis test

Syntax p = linhyptest(beta,COVB,c,H,dfe)
[p,t,r] = linhyptest(...)

Description p = linhyptest(beta,COVB,c,H,dfe) returns the p-value p of
a hypothesis test on a vector of parameters. beta is a vector of k
parameter estimates. COVB is the k-by-k estimated covariance matrix
of the parameter estimates. c and H specify the null hypothesis in the
form H*b = c, where b is the vector of unknown parameters estimated
by beta. dfe is the degrees of freedom for the COVB estimate, or Inf if
COVB is known rather than estimated.

beta is required. The remaining arguments have default values:

• COVB = eye(k)

• c = zeros(k,1)

• H = eye(K)

• dfe = Inf

If H is omitted, c must have k elements and it specifies the null
hypothesis values for the entire parameter vector.

Note The following functions return outputs suitable for use as the
COVB input argument to linhyptest: nlinfit, coxphfit, glmfit,
mnrfit, regstats, robustfit. nlinfit returns COVB directly; the other
functions return COVB in stats.covb.

[p,t,r] = linhyptest(...) also returns the test statistic t and the
rank r of the hypothesis matrix H. If dfe is Inf or is not given, t is a
chi-square statistic with r degrees of freedom . If dfe is specified as a
finite value, t is an F statistic with r and dfe degrees of freedom.
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linhyptest performs a test based on an asymptotic normal distribution
for the parameter estimates. It can be used after any estimation
procedure for which the parameter covariances are available, such as
regstats or glmfit. For linear regression, the p-values are exact.
For other procedures, the p-values are approximate, and may be less
accurate than other procedures such as those based on a likelihood ratio.

Examples Fit a multiple linear model to the data in hald.mat:

load hald
stats = regstats(heat,ingredients,'linear');
beta = stats.beta
beta =

62.4054
1.5511
0.5102
0.1019

-0.1441

Perform an F-test that the last two coefficients are both 0:

SIGMA = stats.covb;
dfe = stats.fstat.dfe;
H = [0 0 0 1 0;0 0 0 0 1];
c = [0;0];
[p,F] = linhyptest(beta,SIGMA,c,H,dfe)
p =

0.4668
F =

0.8391

See Also regstats, glmfit, robustfit, mnrfit, nlinfit, coxphfit
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Purpose Create agglomerative hierarchical cluster tree

Syntax Z = linkage(y)
Z = linkage(y,method)
Z = linkage(X,method,metric)
Z = linkage(X,method,inputs)

Description Z = linkage(y) creates an agglomerative hierarchical cluster tree from
the distances in y. y is a Euclidean distance matrix or a more general
dissimilarity matrix, formatted as a vector, as returned by pdist.

Z is a (m-1)-by-3 matrix, where m is the number of observations in the
original data. Columns 1 and 2 of Z contain cluster indices linked in
pairs to form a binary tree. The leaf nodes are numbered from 1 to m.
Leaf nodes are the singleton clusters from which all higher clusters
are built. Each newly-formed cluster, corresponding to row Z(I,:),
is assigned the index m+I. Z(I,1:2) contains the indices of the two
component clusters that form cluster m+I. There are m-1 higher clusters
which correspond to the interior nodes of the clustering tree. Z(I,3)
contains the linkage distances between the two clusters merged in row
Z(I,:).

For example, suppose there are 30 initial nodes and at step 12 cluster 5
and cluster 7 are combined. Suppose their distance at that time is 1.5.
Then Z(12,:) will be [5, 7, 1.5]. The newly formed cluster will have
index 12 + 30 = 42. If cluster 42 appears in a later row, it means the
cluster created at step 12 is being combined into some larger cluster.

Z = linkage(y,method) creates the tree using the specified method.
Methods differ from one another in how they measure the distance
between clusters. Available methods are listed in the following table.

Method Description

'average' Unweighted average distance (UPGMA).

'centroid' Centroid distance (UPGMC). Y must contain
Euclidean distances.
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Method Description

'complete' Furthest distance.

'median' Weighted center of mass distance (WPGMC). Y must
contain Euclidean distances.

'single' Shortest distance. This is the default.

'ward' Inner squared distance (minimum variance
algorithm). Y must contain Euclidean distances.

'weighted' Weighted average distance (WPGMA).

Note The 'centroid' and 'median' methods can produce a cluster
tree that is not monotonic. This occurs when the distance from the
union of two clusters, r and s, to a third cluster is less than the distance
from either r or s to that third cluster. In this case, sections of the
dendrogram change direction. This is an indication that you should
use another method.

Z = linkage(X,method,metric) creates a hierarchical cluster tree
from the observations in X. Rows in X correspond to observations and
columns to variables. Pairwise distances are computed internally by
calling pdist. metric is one of the distance metrics accepted by pdist.

Z = linkage(X,method,inputs) allows you to pass extra input
arguments to pdist. inputs is a cell array containing input arguments.

Linkages

The following notation is used to describe the linkages used by the
various methods:

• Cluster r is formed from clusters p and q.

• nr is the number of objects in cluster r.

• xri is the ith object in cluster r.
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• Single linkage, also called nearest neighbor, uses the smallest
distance between objects in the two clusters:

• Complete linkage, also called furthest neighbor, uses the largest
distance between objects in the two clusters:

• Average linkage uses the average distance between all pairs of objects
in any two clusters:

• Centroid linkage uses the Euclidean distance between the centroids
of the two clusters:

where

• Median linkage uses the Euclidean distance between weighted
centroids of the two clusters,

where and are weighted centroids for the clusters r and s. If
cluster r was created by combining clusters p and q, is defined
recursively as
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• Ward’s linkage uses the incremental sum of squares; that is, the
increase in the total within-cluster sum of squares as a result of
joining two clusters. The within-cluster sum of squares is defined as
the sum of the squares of the distances between all objects in the
cluster and the centroid of the cluster. The equivalent distance is:

where is Euclidean distance, and and are the centroids of
clusters r and s, as defined in the centroid linkage.

Examples X = [3 1.7; 1 1; 2 3; 2 2.5; 1.2 1; 1.1 1.5; 3 1];
Y = pdist(X);
Z = linkage(Y)
Z =

2.0000 5.0000 0.2000
3.0000 4.0000 0.5000
8.0000 6.0000 0.5099
1.0000 7.0000 0.7000

11.0000 9.0000 1.2806
12.0000 10.0000 1.3454

See Also cluster, clusterdata, cophenet, dendrogram, inconsistent, kmeans,
pdist, silhouette, squareform
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Purpose Lognormal cumulative distribution function

Syntax P = logncdf(X,mu,sigma)
[P,PLO,PUP] = logncdf(X,mu,sigma,pcov,alpha)

Description P = logncdf(X,mu,sigma) returns values at X of the lognormal
cdf with distribution parameters mu and sigma. mu and sigma are
the mean and standard deviation, respectively, of the associated
normal distribution. X, mu, and sigma can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input
for X, mu, or sigma is expanded to a constant array with the same
dimensions as the other inputs.

[P,PLO,PUP] = logncdf(X,mu,sigma,pcov,alpha) returns confidence
bounds for P when the input parameters mu and sigma are estimates.
pcov is the covariance matrix of the estimated parameters. alpha
specifies 100(1 - alpha)% confidence bounds. The default value of alpha
is 0.05. PLO and PUP are arrays of the same size as P containing the
lower and upper confidence bounds.

logncdf computes confidence bounds for P using a normal
approximation to the distribution of the estimate

and then transforming those bounds to the scale of the output P. The
computed bounds give approximately the desired confidence level when
you estimate mu, sigma, and pcov from large samples, but in smaller
samples other methods of computing the confidence bounds might be
more accurate.

The lognormal cdf is
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Examples x = (0:0.2:10);
y = logncdf(x,0,1);
plot(x,y); grid;
xlabel('x'); ylabel('p');

References [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions.
2nd ed., Hoboken, NJ: John Wiley & Sons, Inc., 1993, pp. 102–105.

See Also cdf, lognpdf, logninv, lognstat, lognfit, lognlike, lognrnd

“Lognormal Distribution” on page B-51
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Purpose Lognormal parameter estimates

Syntax parmhat = lognfit(data)
[parmhat,parmci] = lognfit(data)
[parmhat,parmci] = lognfit(data,alpha)
[...] = lognfit(data,alpha,censoring)
[...] = lognfit(data,alpha,censoring,freq)
[...] = lognfit(data,alpha,censoring,freq,options)

Description parmhat = lognfit(data) returns a vector of maximum likelihood
estimates parmhat(1) = mu and parmhat(2) = sigma of parameters
for a lognormal distribution fitting data. mu and sigma are the mean and
standard deviation, respectively, of the associated normal distribution.

[parmhat,parmci] = lognfit(data) returns 95% confidence intervals
for the parameter estimates mu and sigma in the 2-by-2 matrix parmci.
The first column of the matrix contains the lower and upper confidence
bounds for parameter mu, and the second column contains the confidence
bounds for parameter sigma.

[parmhat,parmci] = lognfit(data,alpha) returns 100(1 - alpha) %
confidence intervals for the parameter estimates, where alpha is a value
in the range (0 1) specifying the width of the confidence intervals. By
default, alpha is 0.05, which corresponds to 95% confidence intervals.

[...] = lognfit(data,alpha,censoring) accepts a Boolean vector
censoring, of the same size as data, which is 1 for observations that
are right-censored and 0 for observations that are observed exactly.

[...] = lognfit(data,alpha,censoring,freq) accepts a frequency
vector, freq, of the same size as data. Typically, freq contains integer
frequencies for the corresponding elements in data, but can contain
any nonnegative values. Pass in [] for alpha, censoring, or freq to
use their default values.

[...] = lognfit(data,alpha,censoring,freq,options) accepts a
structure, options, that specifies control parameters for the iterative
algorithm the function uses to compute maximum likelihood estimates
when there is censoring. The lognormal fit function accepts an options
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structure which can be created using the function statset. Enter
statset('lognfit') to see the names and default values of the
parameters that lognfit accepts in the options structure. See the
reference page for statset for more information about these options.

Examples This example generates 100 independent samples of lognormally
distributed data with µ = 0 and σ = 3. parmhat estimates µ and σ and
parmci gives 99% confidence intervals around parmhat. Notice that
parmci contains the true values of µ and σ.

data = lognrnd(0,3,100,1);
[parmhat,parmci] = lognfit(data,0.01)
parmhat =

-0.2480 2.8902
parmci =

-1.0071 2.4393
0.5111 3.5262

See Also mle, lognlike, lognpdf, logncdf, logninv, lognstat, lognrnd

“Lognormal Distribution” on page B-51
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Purpose Lognormal inverse cumulative distribution function

Syntax X = logninv(P,mu,sigma)
[X,XLO,XUP] = logninv(P,mu,sigma,pcov,alpha)

Description X = logninv(P,mu,sigma) returns values at P of the inverse lognormal
cdf with distribution parameters mu and sigma. mu and sigma are
the mean and standard deviation, respectively, of the associated
normal distribution. mu and sigma can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the
size of X. A scalar input for P, mu, or sigma is expanded to a constant
array with the same dimensions as the other inputs.

[X,XLO,XUP] = logninv(P,mu,sigma,pcov,alpha) returns confidence
bounds for X when the input parameters mu and sigma are estimates.
pcov is the covariance matrix of the estimated parameters. alpha
specifies 100(1 - alpha)% confidence bounds. The default value of alpha
is 0.05. XLO and XUP are arrays of the same size as X containing the
lower and upper confidence bounds.

logninv computes confidence bounds for P using a normal
approximation to the distribution of the estimate

where q is the Pth quantile from a normal distribution with mean 0 and
standard deviation 1. The computed bounds give approximately the
desired confidence level when you estimate mu, sigma, and pcov from
large samples, but in smaller samples other methods of computing the
confidence bounds might be more accurate.

The lognormal inverse function is defined in terms of the lognormal
cdf as

where
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Examples p = (0.005:0.01:0.995);
crit = logninv(p,1,0.5);
plot(p,crit)
xlabel('Probability'); ylabel('Critical Value'); grid

References [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions.
Hoboken, NJ: Wiley-Interscience, 2000. pp. 102–105.

See Also icdf, logncdf, lognpdf, lognstat, lognfit, lognlike, lognrnd

“Lognormal Distribution” on page B-51
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Purpose Lognormal negative log-likelihood

Syntax nlogL = lognlike(params,data)
[nlogL,avar] = lognlike(params,data)
[...] = lognlike(params,data,censoring)
[...] = lognlike(params,data,censoring,freq)

Description nlogL = lognlike(params,data) returns the negative log-likelihood of
data for the lognormal distribution with parameters params. params(1)
is the mean of the associated normal distribution, mu, and params(2)
is the standard deviation of the associated normal distribution, sigma.
The values of mu and sigma are scalars, and the output nlogL is a scalar.

[nlogL,avar] = lognlike(params,data) returns the inverse of
Fisher’s information matrix. If the input parameter value in params
is the maximum likelihood estimate, avar is its asymptotic variance.
avar is based on the observed Fisher’s information, not the expected
information.

[...] = lognlike(params,data,censoring) accepts a Boolean
vector, censoring, of the same size as data, which is 1 for observations
that are right-censored and 0 for observations that are observed exactly.

[...] = lognlike(params,data,censoring,freq) accepts a
frequency vector, freq, of the same size as data. The vector freq
typically contains integer frequencies for the corresponding elements in
data, but can contain any nonnegative values. Pass in [] for censoring
to use its default value.

See Also lognfit, lognpdf, logncdf, logninv, lognstat, lognrnd

“Lognormal Distribution” on page B-51

18-661



lognpdf

Purpose Lognormal probability density function

Syntax Y = lognpdf(X,mu,sigma)

Description Y = lognpdf(X,mu,sigma) returns values at X of the lognormal
pdf with distribution parameters mu and sigma. mu and sigma are
the mean and standard deviation, respectively, of the associated
normal distribution. X, mu, and sigma can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the
size of Y. A scalar input for X, mu, or sigma is expanded to a constant
array with the same dimensions as the other inputs.

The lognormal pdf is

The normal and lognormal distributions are closely related. If X
is distributed lognormally with parameters µ and σ, then log(X) is
distributed normally with mean µ and standard deviation σ.

The mean m and variance v of a lognormal random variable are
functions of µ and σ that can be calculated with the lognstat function.
They are:
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A lognormal distribution with mean m and variance v has parameters
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The lognormal distribution is applicable when the quantity of interest
must be positive, since log(X) exists only when X is positive.
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Examples x = (0:0.02:10);
y = lognpdf(x,0,1);
plot(x,y); grid;
xlabel('x'); ylabel('p')
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References [1] Mood, A. M., F. A. Graybill, and D. C. Boes. Introduction to the
Theory of Statistics. 3rd ed., New York: McGraw-Hill, 1974. pp.
540–541.

See Also pdf, logncdf, logninv, lognstat, lognfit, lognlike, lognrnd

“Lognormal Distribution” on page B-51
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Purpose Lognormal random numbers

Syntax R = lognrnd(mu,sigma)
R = lognrnd(mu,sigma,v)
R = lognrnd(mu,sigma,m,n)

Description R = lognrnd(mu,sigma) returns an array of random numbers
generated from the lognormal distribution with parameters mu and
sigma. mu and sigma are the mean and standard deviation, respectively,
of the associated normal distribution. mu and sigma can be vectors,
matrices, or multidimensional arrays that have the same size, which
is also the size of R. A scalar input for mu or sigma is expanded to a
constant array with the same dimensions as the other input.

R = lognrnd(mu,sigma,v) returns an array of random numbers
generated from the lognormal distribution with parameters mu and
sigma, where v is a row vector. If v is a 1-by-2 vector, R is a matrix with
v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional array.

R = lognrnd(mu,sigma,m,n) returns an array of random numbers
generated from the lognormal distribution with parameters mu and
sigma, where scalars m and n are the row and column dimensions of R.

The normal and lognormal distributions are closely related. If X
is distributed lognormally with parameters µ and σ, then log(X) is
distributed normally with mean µ and standard deviation σ.

The mean m and variance v of a lognormal random variable are
functions of µ and σ that can be calculated with the lognstat function.
They are:

m
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A lognormal distribution with mean m and variance v has parameters
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Examples Generate one million lognormally distributed random numbers with
mean 1 and variance 2:

m = 1;
v = 2;
mu = log((m^2)/sqrt(v+m^2));
sigma = sqrt(log(v/(m^2)+1));

[M,V]= lognstat(mu,sigma)
M =

1
V =

2.0000

X = lognrnd(mu,sigma,1,1e6);

MX = mean(X)
MX =

0.9974
VX = var(X)
VX =

1.9776

References [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions.
Hoboken, NJ: Wiley-Interscience, 2000. pp. 102–105.

See Also random, lognpdf, logncdf, logninv, lognstat, lognfit, lognlike

“Lognormal Distribution” on page B-51
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Purpose Lognormal mean and variance

Syntax [M,V] = lognstat(mu,sigma)

Description [M,V] = lognstat(mu,sigma) returns the mean of and variance of the
lognormal distribution with parameters mu and sigma. mu and sigma
are the mean and standard deviation, respectively, of the associated
normal distribution. mu and sigma can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the
size of M and V. A scalar input for mu or sigma is expanded to a constant
array with the same dimensions as the other input.

The normal and lognormal distributions are closely related. If X
is distributed lognormally with parameters µ and σ, then log(X) is
distributed normally with mean µ and standard deviation σ.

The mean m and variance v of a lognormal random variable are
functions of µ and σ that can be calculated with the lognstat function.
They are:
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A lognormal distribution with mean m and variance v has parameters





= +

= +

log( / )

log( / )

m v m

v m

2 2

2 1

Examples Generate one million lognormally distributed random numbers with
mean 1 and variance 2:

m = 1;
v = 2;
mu = log((m^2)/sqrt(v+m^2));
sigma = sqrt(log(v/(m^2)+1));
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[M,V]= lognstat(mu,sigma)
M =

1
V =

2.0000

X = lognrnd(mu,sigma,1,1e6);

MX = mean(X)
MX =

0.9974
VX = var(X)
VX =

1.9776

References [1] Mood, A. M., F. A. Graybill, and D. C. Boes. Introduction to the
Theory of Statistics. 3rd ed., New York: McGraw-Hill, 1974. pp.
540–541.

See Also lognpdf, logncdf, logninv, lognfit, lognlike, lognrnd

“Lognormal Distribution” on page B-51
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Purpose Lower Pareto tails parameters

Syntax params = lowerparams(obj)

Description params = lowerparams(obj) returns the 2-element vector params of
shape and scale parameters, respectively, of the lower tail of the Pareto
tails object obj. lowerparams does not return a location parameter.

Examples Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and
0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);

lowerparams(obj)
ans =

-0.1901 1.1898
upperparams(obj)
ans =

0.3646 0.5103

See Also paretotails, upperparams
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Purpose Less than relation for handles

Syntax h1 < h2

Description h1 < h2 performs element-wise comparisons between handle arrays
h1 and h2. h1 and h2 must be of the same dimensions unless one is a
scalar. The result is a logical array of the same dimensions, where each
element is an element-wise < result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result
will match the dimensions of the array that is not scalar.

tf = lt(h1, h2) stores the result in a logical array of the same
dimensions.

See Also qrandstream, eq, ge, gt, le, ne
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Purpose Add least-squares line to scatter plot

Syntax lsline
h = lsline

Description lsline superimposes a least-squares line on each scatter plot in the
current axes. Scatter plots are produced by the MATLAB scatter and
plot functions. Data points connected with solid, dashed, or dash-dot
lines (LineStyle '-', '--', or '.-') are not considered to be scatter
plots by lsline, and are ignored.

h = lsline returns a column vector of handles h to the least-squares
lines.

Examples Use lsline together with scatter plots produced by scatter and
various line styles of plot:

x = 1:10;

y1 = x + randn(1,10);
scatter(x,y1,25,'b','*')
hold on

y2 = 2*x + randn(1,10);
plot(x,y2,'mo')

y3 = 3*x + randn(1,10);
plot(x,y3,'rx:')

y4 = 4*x + randn(1,10);
plot(x,y4,'g+--')

lsline
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See Also scatter, plot, refline, refcurve, gline
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Purpose Mean or median absolute deviation

Syntax y = mad(X)
Y = mad(X,1)
Y = mad(X,0)

Description y = mad(X) returns the mean absolute deviation of the values in X. For
vector input, y is mean(abs(X-mean(X)). For a matrix input, y is a
row vector containing the mean absolute deviation of each column of
X. For N-dimensional arrays, mad operates along the first nonsingleton
dimension of X.

Y = mad(X,1) returns the median absolute deviation of the values in X.
For vector input, y is median(abs(X-median(X)). For a matrix input, y is
a row vector containing the median absolute deviation of each column of
X. For N-dimensional arrays, mad operates along the first nonsingleton
dimension of X.

Y = mad(X,0) is the same as mad(X), and returns the mean absolute
deviation of the values in X.

mad(X,flag,dim) computes absolute deviations along the dimension
dim of X. flag is 0 or 1 to indicate mean or median absolute deviation,
respectively.

mad treats NaNs as missing values and removes them.

For normally distributed data, multiply mad by one of the following
factors to obtain an estimate of the normal scale parameterσ:

• sigma = 1.253*mad(X,0)— For mean absolute deviation

• sigma = 1.4826*mad(X,1)— For median absolute deviation

Examples The following compares the robustness of different scale estimates for
normally distributed data in the presence of outliers:

x = normrnd(0,1,1,50);
xo = [x 10]; % Add outlier
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r1 = std(xo)/std(x)
r1 =

1.7385

r2 = mad(xo,0)/mad(x,0)
r2 =

1.2306

r3 = mad(xo,1)/mad(x,1)
r3 =

1.0602

References [1] Mosteller, F., and J. Tukey. Data Analysis and Regression. Upper
Saddle River, NJ: Addison-Wesley, 1977.

[2] Sachs, L. Applied Statistics: A Handbook of Techniques. New York:
Springer-Verlag, 1984, p. 253.

See Also std, range, iqr
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Purpose Mahalanobis distance

Syntax d = mahal(Y,X)

Description d = mahal(Y,X) computes the Mahalanobis distance (in squared units)
of each observation in Y from the reference sample in matrix X. If Y is
n-by-m, where n is the number of observations and m is the dimension
of the data, d is n-by-1. X and Y must have the same number of columns,
but can have different numbers of rows. X must have more rows than
columns.

For observation I, the Mahalanobis distance is defined by d(I) =
(Y(I,:)-mu)*inv(SIGMA)*(Y(I,:)-mu)', where mu and SIGMA are
the sample mean and covariance of the data in X. mahal performs an
equivalent, but more efficient, computation.

Examples Generate some correlated bivariate data in X and compare the
Mahalanobis and squared Euclidean distances of observations in Y:

X = mvnrnd([0;0],[1 .9;.9 1],100);
Y = [1 1;1 -1;-1 1;-1 -1];

d1 = mahal(Y,X) % Mahalanobis
d1 =

1.3592
21.1013
23.8086
1.4727

d2 = sum((Y-repmat(mean(X),4,1)).^2, 2) % Squared Euclidean
d2 =

1.9310
1.8821
2.1228
2.0739

scatter(X(:,1),X(:,2))
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hold on
scatter(Y(:,1),Y(:,2),100,d1,'*','LineWidth',2)
hb = colorbar;
ylabel(hb,'Mahalanobis Distance')
legend('X','Y','Location','NW')

The observations in Y with equal coordinate values are much closer to
X in Mahalanobis distance than observations with opposite coordinate
values, even though all observations are approximately equidistant
from the mean of X in Euclidean distance. The Mahalanobis distance,
by considering the covariance of the data and the scales of the different
variables, is useful for detecting outliers in such cases.

See Also pdist, mahal
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Purpose Mahalanobis distance to component means

Syntax D = mahal(obj,X)

Description D = mahal(obj,X) computes the Mahalanobis distance (in squared
units) of each observation in X to the mean of each of the k components
of the Gaussian mixture distribution defined by obj. obj is an object
created by gmdistribution or fit. X is an n-by-d matrix, where n is
the number of observations and d is the dimension of the data. D is
n-by-k, with D(I,J) the distance of observation I from the mean of
component J.

Examples Generate data from a mixture of two bivariate Gaussian distributions
using the mvnrnd function:

MU1 = [1 2];
SIGMA1 = [2 0; 0 .5];
MU2 = [-3 -5];
SIGMA2 = [1 0; 0 1];
X = [mvnrnd(MU1,SIGMA1,1000);mvnrnd(MU2,SIGMA2,1000)];

scatter(X(:,1),X(:,2),10,'.')
hold on
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Fit a two-component Gaussian mixture model:

obj = gmdistribution.fit(X,2);
h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);
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Compute the Mahalanobis distance of each point in X to the mean
of each component of obj:

D = mahal(obj,X);

delete(h)
scatter(X(:,1),X(:,2),10,D(:,1),'.')
hb = colorbar;
ylabel(hb,'Mahalanobis Distance to Component 1')
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See Also gmdistribution, cluster, posterior, mahal
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Purpose Main effects plot for grouped data

Syntax maineffectsplot(Y,GROUP)
maineffectsplot(Y,GROUP,param1,val1,param2,val2,...)
[figh,AXESH] = maineffectsplot(...)

Description maineffectsplot(Y,GROUP) displays main effects plots for the group
means of matrix Y with groups defined by entries in the cell array
GROUP. Y is a numeric matrix or vector. If Y is a matrix, the rows
represent different observations and the columns represent replications
of each observation. Each cell of GROUPmust contain a grouping variable
that can be a categorical variable, numeric vector, character matrix, or
single-column cell array of strings. (See “Grouped Data” on page 2-33.)
GROUP can also be a matrix whose columns represent different grouping
variables. Each grouping variable must have the same number of rows
as Y. The number of grouping variables must be greater than 1.

The display has one subplot per grouping variable, with each subplot
showing the group means of Y as a function of one grouping variable.

maineffectsplot(Y,GROUP,param1,val1,param2,val2,...) specifies
one or more of the following name/value pairs:

• 'varnames'— Grouping variable names in a character matrix or a
cell array of strings, one per grouping variable. Default names are
'X1', 'X2', ... .

• 'statistic'— String values that indicate whether the group mean
or the group standard deviation should be plotted. Use 'mean' or
'std'. The default is 'mean'. If the value is 'std', Y is required
to have multiple columns.

• 'parent'— A handle to the figure window for the plots. The default
is the current figure window.

[figh,AXESH] = maineffectsplot(...) returns the handle figh to
the figure window and an array of handles AXESH to the subplot axes.

18-680



maineffectsplot

Examples Display main effects plots for car weight with two grouping variables,
model year and number of cylinders:

load carsmall;
maineffectsplot(Weight,{Model_Year,Cylinders}, ...

'varnames',{'Model Year','# of Cylinders'})

See Also “Grouped Data” on page 2-33

interactionplot, multivarichart
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Purpose One-way multivariate analysis of variance

Syntax d = manova1(X,group)
d = manova1(X,group,alpha)
[d,p] = manova1(...)
[d,p,stats] = manova1(...)

Description d = manova1(X,group) performs a one-way Multivariate Analysis of
Variance (MANOVA) for comparing the multivariate means of the
columns of X, grouped by group. X is an m-by-n matrix of data values,
and each row is a vector of measurements on n variables for a single
observation. group is a grouping variable defined as a categorical
variable, vector, string array, or cell array of strings. Two observations
are in the same group if they have the same value in the group array.
(See “Grouped Data” on page 2-33.) The observations in each group
represent a sample from a population.

The function returns d, an estimate of the dimension of the space
containing the group means. manova1 tests the null hypothesis that the
means of each group are the same n-dimensional multivariate vector,
and that any difference observed in the sample X is due to random
chance. If d = 0, there is no evidence to reject that hypothesis. If d = 1,
then you can reject the null hypothesis at the 5% level, but you cannot
reject the hypothesis that the multivariate means lie on the same line.
Similarly, if d = 2 the multivariate means may lie on the same plane in
n-dimensional space, but not on the same line.

d = manova1(X,group,alpha) gives control of the significance level,
alpha. The return value d will be the smallest dimension having
p > alpha, where p is a p-value for testing whether the means lie in a
space of that dimension.

[d,p] = manova1(...) also returns a p, a vector of p-values for testing
whether the means lie in a space of dimension 0, 1, and so on. The
largest possible dimension is either the dimension of the space, or one
less than the number of groups. There is one element of p for each
dimension up to, but not including, the largest.
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If the ith p-value is near zero, this casts doubt on the hypothesis that
the group means lie on a space of i-1 dimensions. The choice of a
critical p-value to determine whether the result is judged statistically
significant is left to the researcher and is specified by the value of the
input argument alpha. It is common to declare a result significant if
the p-value is less than 0.05 or 0.01.

[d,p,stats] = manova1(...) also returns stats, a structure
containing additional MANOVA results. The structure contains the
following fields.

Field Contents

W Within-groups sum of squares and cross-products
matrix

B Between-groups sum of squares and cross-products
matrix

T Total sum of squares and cross-products matrix

dfW Degrees of freedom for W

dfB Degrees of freedom for B

dfT Degrees of freedom for T

lambda Vector of values of Wilk’s lambda test statistic for
testing whether the means have dimension 0, 1, etc.

chisq Transformation of lambda to an approximate
chi-square distribution

chisqdf Degrees of freedom for chisq

eigenval Eigenvalues of

eigenvec Eigenvectors of ; these are the coefficients for
the canonical variables C, and they are scaled so the
within-group variance of the canonical variables is 1
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Field Contents

canon Canonical variables C, equal to XC*eigenvec, where XC
is X with columns centered by subtracting their means

mdist A vector of Mahalanobis distances from each point
to the mean of its group

gmdist A matrix of Mahalanobis distances between each pair
of group means

The canonical variables C are linear combinations of the original
variables, chosen to maximize the separation between groups.
Specifically, C(:,1) is the linear combination of the X columns that has
the maximum separation between groups. This means that among all
possible linear combinations, it is the one with the most significant F
statistic in a one-way analysis of variance. C(:,2) has the maximum
separation subject to it being orthogonal to C(:,1), and so on.

You may find it useful to use the outputs from manova1 along with other
functions to supplement your analysis. For example, you may want to
start with a grouped scatter plot matrix of the original variables using
gplotmatrix. You can use gscatter to visualize the group separation
using the first two canonical variables. You can use manovacluster to
graph a dendrogram showing the clusters among the group means.

Assumptions

The MANOVA test makes the following assumptions about the data
in X:

• The populations for each group are normally distributed.

• The variance-covariance matrix is the same for each population.

• All observations are mutually independent.

Examples you can use manova1 to determine whether there are differences in
the averages of four car characteristics, among groups defined by the
country where the cars were made.
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load carbig
[d,p] = manova1([MPG Acceleration Weight Displacement],...

Origin)
d =

3
p =

0
0.0000
0.0075
0.1934

There are four dimensions in the input matrix, so the group means
must lie in a four-dimensional space. manova1 shows that you cannot
reject the hypothesis that the means lie in a 3-D subspace.

References [1] Krzanowski, W. J. Principles of Multivariate Analysis: A User’s
Perspective. New York: Oxford University Press, 1988.

See Also “Grouped Data” on page 2-33

anova1, canoncorr, gscatter, gplotmatrix, manovacluster
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Purpose Dendrogram of group mean clusters following MANOVA

Syntax manovacluster(stats)
manovacluster(stats,method)
H = manovacluster(stats,method)

Description manovacluster(stats) generates a dendrogram plot of the group
means after a multivariate analysis of variance (MANOVA). stats is
the output stats structure from manova1. The clusters are computed
by applying the single linkage method to the matrix of Mahalanobis
distances between group means.

See dendrogram for more information on the graphical output from this
function. The dendrogram is most useful when the number of groups
is large.

manovacluster(stats,method) uses the specified method in place of
single linkage. method can be any of the following character strings
that identify ways to create the cluster hierarchy. (See linkage for
additional information.)

Method Description

'single' Shortest distance (default)

'complete' Largest distance

'average' Average distance

'centroid' Centroid distance

'ward' Incremental sum of squares

H = manovacluster(stats,method) returns a vector of handles to the
lines in the figure.

Examples Let’s analyze the larger car data set to determine which countries
produce cars with the most similar characteristics.

load carbig
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X = [MPG Acceleration Weight Displacement];
[d,p,stats] = manova1(X,Origin);
manovacluster(stats)

See Also cluster, dendrogram, linkage, manova1
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Purpose Classification margin

Syntax mar = margin(B,X,Y)
mar = margin(B,X,Y,'param1',val1,'param2',val2,...)

Description mar = margin(B,X,Y) computes the classification margins for
predictors X given true response Y. The Y can be either a numeric vector,
character matrix, cell array of strings, categorical vector or logical
vector. mar is a numeric array of size Nobs-by-NTrees, where Nobs is
the number of rows of X and Y, and NTrees is the number of trees in the
ensemble B. For observation I and tree J, mar(I,J) is the difference
between the score for the true class and the largest score for other
classes. This method is available for classification ensembles only.

mar = margin(B,X,Y,'param1',val1,'param2',val2,...) specifies
optional parameter name/value pairs:

'mode' String indicating how the method computes errors.
If set to 'cumulative' (default), margin computes
cumulative errors and mar is an Nobs-by-NTrees
matrix, where the first column gives error from
trees(1), second column gives error fromtrees(1:2)
etc, up to trees(1:NTrees). If set to 'individual',
mar is a Nobs-by-NTrees matrix, where each element
is an error from each tree in the ensemble. If set
to 'ensemble', mar a single column of length Nobs
showing the cumulative margins for the entire
ensemble.

'trees' Vector of indices indicating what trees to include
in this calculation. By default, this argument is set
to 'all' and the method uses all trees. If 'trees'
is a numeric vector, the method returns a vector of
length NTrees for 'cumulative' and 'individual'
modes, where NTrees is the number of elements in the
input vector, and a scalar for 'ensemble' mode. For
example, in the 'cumulative'mode, the first element
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gives error from trees(1), the second element gives
error from trees(1:2) etc.

'treeweights'Vector of tree weights. This vector must have the
same length as the 'trees' vector. The method uses
these weights to combine output from the specified
trees by taking a weighted average instead of the
simple non-weighted majority vote. You cannot use
this argument in the 'individual' mode.

'useifort' Logical matrix of size Nobs-by-NTrees indicating
which trees should be used to make predictions for
each observation. By default the method uses all trees
for all observations.

See Also TreeBagger.margin

18-689



TreeBagger.margin

Purpose Classification margin

Syntax mar = margin(B,X,Y)
mar = margin(B,X,Y,'param1',val1,'param2',val2,...)

Description mar = margin(B,X,Y) computes the classification margins for
predictors X given true response Y. The Y can be either a numeric vector,
character matrix, cell array of strings, categorical vector or logical
vector. mar is a numeric array of size Nobs-by-NTrees, where Nobs is
the number of rows of X and Y, and NTrees is the number of trees in the
ensemble B. For observation I and tree J, mar(I,J) is the difference
between the score for the true class and the largest score for other
classes. This method is available for classification ensembles only.

mar = margin(B,X,Y,'param1',val1,'param2',val2,...) specifies
optional parameter name/value pairs:

'mode' String indicating how the method computes errors.
If set to 'cumulative' (default), margin computes
cumulative errors and mar is an Nobs-by-NTrees
matrix, where the first column gives error from
trees(1), second column gives error fromtrees(1:2)
etc, up to trees(1:NTrees). If set to 'individual',
mar is a Nobs-by-NTrees matrix, where each element
is an error from each tree in the ensemble. If set
to 'ensemble', mar a single column of length Nobs
showing the cumulative margins for the entire
ensemble.

'trees' Vector of indices indicating what trees to include
in this calculation. By default, this argument is set
to 'all' and the method uses all trees. If 'trees'
is a numeric vector, the method returns a vector of
length NTrees for 'cumulative' and 'individual'
modes, where NTrees is the number of elements in the
input vector, and a scalar for 'ensemble' mode. For
example, in the 'cumulative'mode, the first element
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gives error from trees(1), the second element gives
error from trees(1:2) etc.

'treeweights'Vector of tree weights. This vector must have the
same length as the 'trees' vector. The method uses
these weights to combine output from the specified
trees by taking a weighted average instead of the
simple non-weighted majority vote. You cannot use
this argument in the 'individual' mode.

'useifort' Logical matrix of size Nobs-by-NTrees indicating
which trees should be used to make predictions for
each observation. By default the method uses all trees
for all observations.

See Also CompactTreeBagger.margin
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Purpose Nonclassical multidimensional scaling

Syntax Y = mdscale(D,p)
[Y,stress] = mdscale(D,p)
[Y,stress,disparities] = mdscale(D,p)
[...] = mdscale(...,param1,val1,param2,val2,...)

Description Y = mdscale(D,p) performs nonmetric multidimensional scaling on
the n-by-n dissimilarity matrix D, and returns Y, a configuration of
n points (rows) in p dimensions (columns). The Euclidean distances
between points in Y approximate a monotonic transformation of the
corresponding dissimilarities in D. By default, mdscale uses Kruskal’s
normalized stress1 criterion.

You can specify D as either a full n-by-n matrix, or in upper triangle
form such as is output by pdist. A full dissimilarity matrix must be real
and symmetric, and have zeros along the diagonal and non-negative
elements everywhere else. A dissimilarity matrix in upper triangle
form must have real, non-negative entries. mdscale treats NaNs in D as
missing values, and ignores those elements. Inf is not accepted.

You can also specify D as a full similarity matrix, with ones along the
diagonal and all other elements less than one. mdscale transforms a
similarity matrix to a dissimilarity matrix in such a way that distances
between the points returned in Y approximate sqrt(1-D). To use a
different transformation, transform the similarities prior to calling
mdscale.

[Y,stress] = mdscale(D,p) returns the minimized stress, i.e., the
stress evaluated at Y.

[Y,stress,disparities] = mdscale(D,p) returns the disparities,
that is, the monotonic transformation of the dissimilarities D.

[...] = mdscale(...,param1,val1,param2,val2,...) enables you
to specify optional parameter name/value pairs that control further
details of mdscale. The parameters are
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• 'Criterion'— The goodness-of-fit criterion to minimize. This also
determines the type of scaling, either non-metric or metric, that
mdscale performs. Choices for non-metric scaling are:

- 'stress' — Stress normalized by the sum of squares of the
inter-point distances, also known as stress1. This is the default.

- 'sstress' — Squared stress, normalized with the sum of 4th
powers of the inter-point distances.

Choices for metric scaling are:

- 'metricstress'— Stress, normalized with the sum of squares of
the dissimilarities.

- 'metricsstress'— Squared stress, normalized with the sum of
4th powers of the dissimilarities.

- 'sammon'— Sammon’s nonlinear mapping criterion. Off-diagonal
dissimilarities must be strictly positive with this criterion.

- 'strain' — A criterion equivalent to that used in classical
multidimensional scaling.

• 'Weights' — A matrix or vector the same size as D, containing
nonnegative dissimilarity weights. You can use these to weight the
contribution of the corresponding elements of D in computing and
minimizing stress. Elements of D corresponding to zero weights are
effectively ignored.

• 'Start'— Method used to choose the initial configuration of points
for Y. The choices are

- 'cmdscale'—Use the classical multidimensional scaling solution.
This is the default. 'cmdscale' is not valid when there are zero
weights.

- 'random' — Choose locations randomly from an appropriately
scaled p-dimensional normal distribution with uncorrelated
coordinates.

- An n-by-p matrix of initial locations, where n is the size of the
matrix D and p is the number of columns of the output matrix Y.
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In this case, you can pass in [] for p and mdscale infers p from
the second dimension of the matrix. You can also supply a 3-D
array, implying a value for 'Replicates' from the array’s third
dimension.

• 'Replicates'— Number of times to repeat the scaling, each with a
new initial configuration. The default is 1.

• 'Options'— Options for the iterative algorithm used to minimize
the fitting criterion. Pass in an options structure created by statset.
For example,

opts = statset(param1,val1,param2,val2, ...);
[...] = mdscale(...,'Options',opts)

The choices of statset parameters are

- 'Display'— Level of display output. The choices are 'off' (the
default), 'iter', and 'final'.

- 'MaxIter'—Maximum number of iterations allowed. The default
is 200.

- 'TolFun'— Termination tolerance for the stress criterion and its
gradient. The default is 1e-4.

- 'TolX'— Termination tolerance for the configuration location step
size. The default is 1e-4.

Examples load cereal.mat
X = [Calories Protein Fat Sodium Fiber ...

Carbo Sugars Shelf Potass Vitamins];

% Take a subset from a single manufacturer.
X = X(strmatch('K',Mfg),:);

% Create a dissimilarity matrix.
dissimilarities = pdist(X);

% Use non-metric scaling to recreate the data in 2D,
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% and make a Shepard plot of the results.
[Y,stress,disparities] = mdscale(dissimilarities,2);
distances = pdist(Y);
[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);
plot(dissimilarities,distances,'bo', ...
dissimilarities(ord),disparities(ord),'r.-');
xlabel('Dissimilarities'); ylabel('Distances/Disparities')
legend({'Distances' 'Disparities'},'Location','NW');

% Do metric scaling on the same dissimilarities.
[Y,stress] = ...
mdscale(dissimilarities,2,'criterion','metricsstress');
distances = pdist(Y);
plot(dissimilarities,distances,'bo', ...
[0 max(dissimilarities)],[0 max(dissimilarities)],'k:');
xlabel('Dissimilarities'); ylabel('Distances')

See Also cmdscale, pdist, statset
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Purpose Multidimensional scaling of proximity matrix

Syntax [SC,EIGEN] = mdsProx(B,X)
[SC,EIGEN] = mdsProx(B,X,'param1',val1,'param2',val2,...)

Description [SC,EIGEN] = mdsProx(B,X) applies classical multidimensional
scaling to the proximity matrix computed for the data in the matrix X,
and returns scaled coordinates SC and eigenvalues EIGEN of the scaling
transformation. The method applies multidimensional scaling to the
matrix of distances defined as 1-prox, where prox is the proximity
matrix returned by the proximity method.

You can supply the proximity matrix directly by using the 'data'
parameter.

[SC,EIGEN] = mdsProx(B,X,'param1',val1,'param2',val2,...)
specifies optional parameter name/value pairs:

'data' Flag indicating how the method treats the X input
argument. If set to 'predictors' (default), mdsProx
assumes X to be a matrix of predictors and used
for computation of the proximity matrix. If set to
'proximity', the method treats X as a proximity matrix
returned by the proximity method.

'colors' If you supply this argument, mdsProx makes overlaid
scatter plots of two scaled coordinates using specified
colors for different classes. You must supply the colors
as a string with one character for each color. If there are
more classes in the data than characters in the supplied
string, mdsProx only plots the first C classes, where C is
the length of the string. For regression or if you do not
provide the vector of true class labels, the method uses
the first color for all observations in X.

18-696



CompactTreeBagger.mdsProx

'labels' Vector of true class labels for a classification ensemble.
True class labels can be either a numeric vector,
character matrix, or cell array of strings. If supplied,
this vector must have as many elements as there are
observations (rows) in X. This argument has no effect
unless you also supply the 'colors' argument.

'mdscoords'Indices of the two scaled coordinates to plot. By default,
mdsProx makes a scatter plot of the first and second
scaled coordinates which correspond to the two largest
eigenvalues. You can specify any other two indices
not exceeding the dimensionality of the scaled data.
This argument has no effect unless you also supply the
'colors' argument.

See Also cmdscale, TreeBagger.mdsProx, proximity
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Purpose Multidimensional scaling of proximity matrix

Syntax [S,E] = mdsProx(B)
[S,E] = mdsProx(B,'param1',val1,'param2',val2,...)

Description [S,E] = mdsProx(B) returns scaled coordinates, S, and eigenvalues,
E, for the proximity matrix in the ensemble B. An earlier call to
fillProximities(B) must create the proximity matrix.

[S,E] = mdsProx(B,'param1',val1,'param2',val2,...) specifies
optional parameter name/value pairs:

'keep' Array of indices of observations in the training data
to use for multidimensional scaling. By default, this
argument is set to 'all'. If you provide numeric or
logical indices, the method uses only the subset of the
training data specified by these indices to compute
the scaled coordinates and eigenvalues.

'colors' If you supply this argument, mdsProx makes overlaid
scatter plots of two scaled coordinates using specified
colors for different classes. You must supply the colors
as a string with one character for each color. If there
are more classes in the data than characters in the
supplied string, mdsProx only plots the first C classes,
where C is the length of the string. For regression or if
you do not provide the vector of true class labels, the
method uses the first color for all observations in X.

'mdscoords' Indices of the two scaled coordinates to plot. By
default, mdsProx makes a scatter plot of the first and
second scaled coordinates which correspond to the
two largest eigenvalues. You can specify any other
two indices not exceeding the dimensionality of the
scaled data. This argument has no effect unless you
also supply the 'colors' argument.

See Also cmdscale, CompactTreeBagger.mdsProx, fillProximities
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Purpose Return median of ProbDistUnivKernel object

Syntax M = median(PD)

Description M = median(PD) returns M, the median of the ProbDistUnivKernel
object PD.

Inputs PD An object of the class ProbDistUnivKernel.

Outputs M The median of the ProbDistUnivKernel object
PD.

See Also median
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Purpose Return median of ProbDistUnivParam object

Syntax M = median(PD)

Description M = median(PD) returns M, the median of the ProbDistUnivParam
object PD.

Inputs PD An object of the class ProbDistUnivParam.

Outputs M The median of the ProbDistUnivParam object
PD.

See Also median
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Purpose Return mean of ProbDistUnivParam object

Syntax M = mean(PD)

Description M = mean(PD) returns M, the mean of the ProbDistUnivParam object PD.

Inputs PD An object of the class ProbDistUnivParam.

Outputs M The mean of the ProbDistUnivParam object
PD.

See Also mean
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Purpose Mean classification margin

Syntax mar = meanMargin(B,X,Y)
mar = meanMargin(B,X,Y,'param1',val1,'param2',val2,...)

Description mar = meanMargin(B,X,Y) computes average classification margins for
predictors X given true response Y. The Y can be either a numeric vector,
character matrix, cell array of strings, categorical vector or logical
vector. meanMargin averages the margins over all observations (rows)
in X for each tree. mar is a matrix of size 1-by-NTrees, where NTrees
is the number of trees in the ensemble B. This method is available for
classification ensembles only.

mar = meanMargin(B,X,Y,'param1',val1,'param2',val2,...)
specifies optional parameter name/value pairs:

'mode' String indicating how meanMargin computes errors.
If set to 'cumulative' (default), is a vector of length
NTrees where the first element gives mean margin
from trees(1), second column gives mean margins
from trees(1:2) etc, up to trees(1:NTrees). If set
to 'individual', mar is a vector of length NTrees,
where each element is a mean margin from each tree
in the ensemble . If set to 'ensemble', mar is a scalar
showing the cumulative mean margin for the entire
ensemble.

'trees' Vector of indices indicating what trees to include
in this calculation. By default, this argument is set
to 'all' and the method uses all trees. If 'trees'
is a numeric vector, the method returns a vector of
length NTrees for 'cumulative' and 'individual'
modes, where NTrees is the number of elements in the
input vector, and a scalar for 'ensemble' mode. For
example, in the 'cumulative'mode, the first element
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gives mean margin from trees(1), the second
element gives mean margin from trees(1:2) etc.

'treeweights'Vector of tree weights. This vector must have the
same length as the 'trees' vector. meanMargin uses
these weights to combine output from the specified
trees by taking a weighted average instead of the
simple nonweighted majority vote. You cannot use
this argument in the 'individual' mode.

See Also TreeBagger.meanMargin
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Purpose Mean classification margin

Syntax mar = meanMargin(B,X,Y)
mar = meanMargin(B,X,Y,'param1',val1,'param2',val2,...)

Description mar = meanMargin(B,X,Y) computes average classification margins for
predictors X given true response Y. The Y can be either a numeric vector,
character matrix, cell array of strings, categorical vector or logical
vector. meanMargin averages the margins over all observations (rows)
in X for each tree. mar is a matrix of size 1-by-NTrees, where NTrees
is the number of trees in the ensemble B. This method is available for
classification ensembles only.

mar = meanMargin(B,X,Y,'param1',val1,'param2',val2,...)
specifies optional parameter name/value pairs:

'mode' String indicating how meanMargin computes errors.
If set to 'cumulative' (default), is a vector of length
NTrees where the first element gives mean margin
from trees(1), second column gives mean margins
from trees(1:2) etc, up to trees(1:NTrees). If set
to 'individual', mar is a vector of length NTrees,
where each element is a mean margin from each tree
in the ensemble . If set to 'ensemble', mar is a scalar
showing the cumulative mean margin for the entire
ensemble .

'trees' Vector of indices indicating what trees to include
in this calculation. By default, this argument is set
to 'all' and the method uses all trees. If 'trees'
is a numeric vector, the method returns a vector of
length NTrees for 'cumulative' and 'individual'
modes, where NTrees is the number of elements in the
input vector, and a scalar for 'ensemble' mode. For
example, in the 'cumulative'mode, the first element
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gives mean margin from trees(1), the second
element gives mean margin from trees(1:2) etc.

'treeweights'Vector of tree weights. This vector must have the
same length as the 'trees' vector. meanMargin uses
these weights to combine output from the specified
trees by taking a weighted average instead of the
simple nonweighted majority vote. You cannot use
this argument in the 'individual' mode.

See Also CompactTreeBagger.meanMargin
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TreeBagger.MergeLeaves property

Purpose Flag to merge leaves that do not improve risk

Description The MergeLeaves property is true if decision trees have their leaves
with the same parent merged for splits that do not decrease the total
risk, and false otherwise. The default value is false.

See Also classregtree
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Purpose Merge levels

Syntax B = mergelevels(A,oldlevels,newlevel)
B = mergelevels(A,oldlevels)

Description B = mergelevels(A,oldlevels,newlevel) merges two or more levels
of the categorical array A into a single new level. oldlevels is a cell
array of strings or a 2-D character matrix that specifies the levels
to be merged. Any elements of A that have levels in oldlevels are
assigned the new level in the corresponding elements of B. newlevel is
a character string that specifies the label for the new level. For ordinal
arrays, the levels of A specified by oldlevels must be consecutive, and
mergelevels inserts the new level to preserve the order of the levels.

B = mergelevels(A,oldlevels) merges two or more levels of A. For
nominal arrays, mergelevels uses the first label in oldlevels as the
label for the new level. For ordinal arrays, mergelevels uses the label
corresponding to the lowest level in oldlevels as the label for the new
level.

Examples Example 1

For nominal data:

load fisheriris
species = nominal(species);
species = mergelevels(species,...

{'setosa','virginica'},'parent');
species = setlabels(species,'hybrid','versicolor');
getlabels(species)
ans =

'hybrid' 'parent'
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Example 2

For ordinal data:

A = ordinal([1 2 3 2 1],{'lo','med','hi'})
A =

lo med hi med lo

A = mergelevels(A,{'lo','med'},'bad')
A =

bad bad hi bad bad

See Also addlevels, droplevels, islevel, reorderlevels, getlabels
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Purpose Method used by trees (classification or regression)

Description The Method property is 'classification' for classification ensembles
and 'regression' for regression ensembles.
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Purpose Method used by trees (classification or regression)

Description The Method property is 'classification' for classification ensembles
and 'regression' for regression ensembles.
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Purpose Metropolis-Hastings sample

Syntax smpl = mhsample(start,nsamples,'pdf',pdf,'proppdf',proppdf,
'proprnd',proprnd)

smpl = mhsample(...,'symmetric',sym)
smpl = mhsample(...,'burnin',K)
smpl = mhsample(...,'thin',m)
smpl = mhsample(...,'nchain',n)
[smpl,accept] = mhsample(...)

Description smpl =
mhsample(start,nsamples,'pdf',pdf,'proppdf',proppdf,'proprnd',proprnd)
draws nsamples random samples from a target stationary distribution
pdf using the Metropolis-Hastings algorithm.

start is a row vector containing the start value of the Markov
Chain, nsamples is an integer specifying the number of samples to be
generated, and pdf, proppdf, and proprnd are function handles created
using @. proppdf defines the proposal distribution density, and proprnd
defines the random number generator for the proposal distribution. pdf
and proprnd take one argument as an input with the same type and
size as start. proppdf takes two arguments as inputs with the same
type and size as start.

smpl is a column vector or matrix containing the samples. If the log
density function is preferred, 'pdf' and 'proppdf' can be replaced
with 'logpdf' and 'logproppdf'. The density functions used in
Metropolis-Hastings algorithm are not necessarily normalized.

The proposal distribution q(x,y) gives the probability density for
choosing x as the next point when y is the current point. It is sometimes
written as q(x|y).

If the proppdf or logproppdf satisfies q(x,y) = q(y,x), that is, the
proposal distribution is symmetric, mhsample implements Random
Walk Metropolis-Hastings sampling. If the proppdf or logproppdf
satisfies q(x,y) = q(x), that is, the proposal distribution is independent of
current values, mhsample implements Independent Metropolis-Hastings
sampling.
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smpl = mhsample(...,'symmetric',sym) draws nsamples random
samples from a target stationary distribution pdf using the
Metropolis-Hastings algorithm. sym is a logical value that indicates
whether the proposal distribution is symmetric. The default value is
false, which corresponds to the asymmetric proposal distribution. If sym
is true, for example, the proposal distribution is symmetric, proppdf
and logproppdf are optional.

smpl = mhsample(...,'burnin',K) generates a Markov chain with
values between the starting point and the kth point omitted in the
generated sequence. Values beyond the kth point are kept. k is a
nonnegative integer with default value of 0.

smpl = mhsample(...,'thin',m) generates a Markov chain with
m-1 out of m values omitted in the generated sequence. m is a positive
integer with default value of 1.

smpl = mhsample(...,'nchain',n) generates n Markov chains using
the Metropolis-Hastings algorithm. n is a positive integer with a default
value of 1. smpl is a matrix containing the samples. The last dimension
contains the indices for individual chains.

[smpl,accept] = mhsample(...) also returns accept, the acceptance
rate of the proposed distribution. accept is a scalar if a single chain is
generated and is a vector if multiple chains are generated.

Examples Estimate the second order moment of a Gamma distribution using the
Independent Metropolis-Hastings sampling.

alpha = 2.43;
beta = 1;
pdf = @(x)gampdf(x,alpha,beta); %target distribution
proppdf = @(x,y)gampdf(x,floor(alpha),floor(alpha)/alpha);
proprnd = @(x)sum(...

exprnd(floor(alpha)/alpha,floor(alpha),1));
nsamples = 5000;
smpl = mhsample(1,nsamples,'pdf',pdf,'proprnd',proprnd,...

'proppdf',proppdf);
xxhat = cumsum(smpl.^2)./(1:nsamples)';
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plot(1:nsamples,xxhat)

Generate random samples from N(0,1) using the Random Walk
Metropolis-Hastings sampling.

delta = .5;

pdf = @(x) normpdf(x);

proppdf = @(x,y) unifpdf(y-x,-delta,delta);

proprnd = @(x) x + rand*2*delta - delta;

nsamples = 15000;

x = mhsample(1,nsamples,'pdf',pdf,'proprnd',proprnd,'symmetric',1);

histfit(x,50)

h = get(gca,'Children');

set(h(2),'FaceColor',[.8 .8 1])
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See Also slicesample, rand
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TreeBagger.MinLeaf property

Purpose Minimum number of observations per tree leaf

Description The MinLeaf property specifies the minimum number of observations
per tree leaf. The default values are 1 for classification and 5 for
regression. For classregtree training, the 'minparent' value is set to
2*MinLeaf.

See Also classregtree
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Purpose Maximum likelihood estimates

Syntax phat = mle(data)
[phat,pci] = mle(data)
[...] = mle(data,'distribution',dist)
[...] = mle(data,...,name1,val1,name2,val2,...)
[...] = mle(data,'pdf',pdf,'cdf',cdf,'start',start,...)
[...] = mle(data,'logpdf',logpdf,'logsf',logsf,'start',start,

...)
[...] = mle(data,'nloglf',nloglf,'start',start,...)

Description phat = mle(data) returns maximum likelihood estimates (MLEs) for
the parameters of a normal distribution, computed using the sample
data in the vector data.

[phat,pci] = mle(data) returns MLEs and 95% confidence intervals
for the parameters.

[...] = mle(data,'distribution',dist) computes parameter
estimates for the distribution specified by dist. Acceptable strings
for dist are:

• 'beta'

• 'bernoulli'

• 'binomial'

• 'discrete uniform'

• 'exponential'

• 'extreme value'

• 'gamma'

• 'generalized extreme value'

• 'generalized pareto'

• 'geometric'

• 'lognormal'
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• 'negative binomial'

• 'normal'

• 'poisson'

• 'rayleigh'

• 'uniform'

• 'weibull'

[...] = mle(data,...,name1,val1,name2,val2,...) specifies
optional argument name/value pairs chosen from the following list.

Name Value

'censoring' A Boolean vector of the same size as data,
containing ones when the corresponding
elements of data are right-censored
observations and zeros when the corresponding
elements are exact observations. The default
is that all observations are observed exactly.
Censoring is not supported for all distributions.

'frequency' A vector of the same size as data, containing
nonnegative integer frequencies for the
corresponding elements in data. The default is
one observation per element of data.

'alpha' A value between 0 and 1 specifying a confidence
level of 100(1-alpha)% for pci. The default is
0.05 for 95% confidence.

'ntrials' A scalar, or a vector of the same size as data,
containing the total number of trials for the
corresponding element of data. Applies only to
the binomial distribution.

'options' A structure created by a call to statset,
containing numerical options for the fitting
algorithm. Not applicable to all distributions.
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mle can also fit custom distributions that you define using distribution
functions, in one of three ways.

[...] = mle(data,'pdf',pdf,'cdf',cdf,'start',start,...)
returns MLEs for the parameters of the distribution defined by the
probability density and cumulative distribution functions pdf and
cdf. pdf and cdf are function handles created using the @ sign. They
accept as inputs a vector data and one or more individual distribution
parameters, and return vectors of probability density values and
cumulative probability values, respectively. If the 'censoring'
name/value pair is not present, you can omit the 'cdf' name/value
pair. mle computes the estimates by numerically maximizing the
distribution’s log-likelihood, and start is a vector containing initial
values for the parameters.

[...] =
mle(data,'logpdf',logpdf,'logsf',logsf,'start',start,...)
returns MLEs for the parameters of the distribution defined by the log
probability density and log survival functions logpdf and logsf.
logpdf and logsf are function handles created using the @ sign. They
accept as inputs a vector data and one or more individual distribution
parameters, and return vectors of logged probability density values and
logged survival function values, respectively. This form is sometimes
more robust to the choice of starting point than using pdf and cdf
functions. If the 'censoring' name/value pair is not present, you can
omit the 'logsf' name/value pair. start is a vector containing initial
values for the distribution’s parameters.

[...] = mle(data,'nloglf',nloglf,'start',start,...)
returns MLEs for the parameters of the distribution whose negative
log-likelihood is given by nloglf. nloglf is a function handle, specified
using the @ sign, that accepts the four input arguments:

• params - a vector of distribution parameter values

• data - a vector of data

• cens - a Boolean vector of censoring values

• freq - a vector of integer data frequencies
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nloglf must accept all four arguments even if you do not supply the
'censoring' or 'frequency' name/value pairs (see above). However,
nloglf can safely ignore its cens and freq arguments in that case.
nloglf returns a scalar negative log-likelihood value and, optionally,
a negative log-likelihood gradient vector (see the 'GradObj' statset
parameter below). start is a vector containing initial values for the
distribution’s parameters.

pdf, cdf, logpdf, logsf, or nloglf can also be cell arrays whose first
element is a function handle as defined above, and whose remaining
elements are additional arguments to the function. mle places these
arguments at the end of the argument list in the function call.

The following optional argument name/value pairs are valid only when
'pdf' and 'cdf', 'logpdf' and 'logcdf', or 'nloglf' are given:

• 'lowerbound' — A vector the same size as start containing lower
bounds for the distribution parameters. The default is -Inf.

• 'upperbound'— A vector the same size as start containing upper
bounds for the distribution parameters. The default is Inf.

• 'optimfun'— A string, either 'fminsearch' or 'fmincon', naming
the optimization function to be used in maximizing the likelihood.
The default is 'fminsearch'. You can only specify 'fmincon' if
Optimization Toolbox software is available.

When fitting a custom distribution, use the 'options' parameter
to control details of the maximum likelihood optimization. See
statset('mlecustom') for parameter names and default values. mle
interprets the following statset parameters for custom distribution
fitting as follows:
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Parameter Value

'GradObj' 'on' or 'off', indicating whether or not fmincon
can expect the function provided with the 'nloglf'
name/value pair to return the gradient vector of
the negative log-likelihood as a second output. The
default is 'off'. Ignored when using fminsearch.

'DerivStep' The relative difference used in finite difference
derivative approximations when using fmincon, and
'GradObj' is 'off'. 'DerivStep' can be a scalar, or
the same size as 'start'. The default is eps^(1/3).
Ignored when using fminsearch.

'FunValCheck' 'on' or 'off', indicating whether or not mle should
check the values returned by the custom distribution
functions for validity. The default is 'on'. A poor
choice of starting point can sometimes cause these
functions to return NaNs, infinite values, or out of
range values if they are written without suitable
error-checking.

'TolBnd' An offset for upper and lower bounds when using
fmincon. mle treats upper and lower bounds as
strict inequalities (i.e., open bounds). With fmincon,
this is approximated by creating closed bounds
inset from the specified upper and lower bounds by
TolBnd. The default is 1e-6.

Examples The following returns an MLE and a 95% confidence interval for the
success probability of a binomial distribution with 20 trials:

data = binornd(20,0.75,100,1); % Simulated data, p = 0.75

[phat,pci] = mle(data,'distribution','binomial',...
'alpha',.05,'ntrials',20)

phat =
0.7370
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pci =
0.7171
0.7562

See Also betafit, binofit, evfit, expfit, gamfit, gevfit, gpfit, lognfit,
nbinfit, normfit, mlecov, poissfit, raylfit, statset, unifit,
wblfit
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Purpose Asymptotic covariance of maximum likelihood estimators

Syntax ACOV = mlecov(params,data,...)
ACOV = mlecov(params,data,'pdf',pdf,'cdf',cdf)
ACOV = mlecov(params,data,'logpdf',logpdf,'logsf',logsf)
ACOV = mlecov(params,data,'nloglf',nloglf)
[...] = mlecov(params,data,...,param1,val1,param2,val2,...)

Description ACOV = mlecov(params,data,...) returns an approximation to the
asymptotic covariance matrix of the maximum likelihood estimators of
the parameters for a specified distribution. The following paragraphs
describe how to specify the distribution. mlecov computes a finite
difference approximation to the Hessian of the log-likelihood at the
maximum likelihood estimates params, given the observed data, and
returns the negative inverse of that Hessian. ACOV is a p-by-p matrix,
where p is the number of elements in params.

You must specify a distribution after the input argument data, as
follows.

ACOV = mlecov(params,data,'pdf',pdf,'cdf',cdf) enables you
to define a distribution by its probability density and cumulative
distribution functions, pdf and cdf, respectively. pdf and cdf are
function handles that you create using the @ sign. They accept a vector
of data and one or more individual distribution parameters as inputs
and return vectors of probability density function values and cumulative
distribution values, respectively. If the 'censoring' name/value pair
(see below) is not present, you can omit the 'cdf' name/value pair.

ACOV = mlecov(params,data,'logpdf',logpdf,'logsf',logsf)
enables you to define a distribution by its log probability density and
log survival functions, logpdf and logsf, respectively. logpdf and
logsf are function handles that you create using the @ sign. They
accept as inputs a vector of data and one or more individual distribution
parameters, and return vectors of logged probability density values
and logged survival function values, respectively. If the 'censoring'
name/value pair (see below) is not present, you can omit the 'logsf'
name/value pair.
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ACOV = mlecov(params,data,'nloglf',nloglf) enables you to define
a distribution by its log-likelihood function. nloglf is a function
handle, specified using the @ sign, that accepts the following four input
arguments:

• params— Vector of distribution parameter values

• data — Vector of data

• cens — Boolean vector of censoring values

• freq — Vector of integer data frequencies

nloglf must accept all four arguments even if you do not supply the
'censoring' or 'frequency' name/value pairs (see below). However,
nloglf can safely ignore its cens and freq arguments in that case.
nloglf returns a scalar negative log-likelihood value and, optionally,
the negative log-likelihood gradient vector (see the 'gradient'
name/value pair below).

pdf, cdf, logpdf, logsf, and nloglf can also be cell arrays whose first
element is a function handle, as defined above, and whose remaining
elements are additional arguments to the function. The mle function
places these arguments at the end of the argument list in the function
call.

[...] =
mlecov(params,data,...,param1,val1,param2,val2,...) specifies
optional parameter name/value pairs chosen from the following table.

Parameter Value

'censoring' Boolean vector of the same size as data, containing
1’s when the corresponding elements of data are
right-censored observations and 0’s when the
corresponding elements are exact observations. The
default is that all observations are observed exactly.
Censoring is not supported for all distributions.
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Parameter Value

'frequency' A vector of the same size as data containing
nonnegative frequencies for the corresponding
elements in data. The default is one observation per
element of data.

'options' A structure opts containing numerical options for
the finite difference Hessian calculation. You create
opts by calling statset. The applicable statset
parameters are:

• 'GradObj' — 'on' or 'off', indicating whether
or not the function provided with the 'nloglf'
name/value pair can return the gradient vector of
the negative log-likelihood as its second output. The
default is 'off'.

• 'DerivStep' — Relative step size used in finite
difference for Hessian calculations. Can be a
scalar, or the same size as params. The default is
eps^(1/4). A smaller value might be appropriate if
'GradObj' is 'on'.

Examples Create the following M-file function:

function logpdf = betalogpdf(x,a,b)
logpdf = (a-1)*log(x)+(b-1)*log(1-x)-betaln(a,b);

Fit a beta distribution to some simulated data, and compute the
approximate covariance matrix of the parameter estimates:

x = betarnd(1.23,3.45,25,1);
phat = mle(x,'dist','beta')
acov = mlecov(phat,x,'logpdf',@betalogpdf)

See Also mle
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Purpose Multinomial probability density function

Syntax Y = mnpdf(X,PROB)

Description Y = mnpdf(X,PROB) returns the pdf for the multinomial distribution
with probabilities PROB, evaluated at each row of X. X and PROB are
m-by-kmatrices or 1-by-k vectors, where k is the number of multinomial
bins or categories. Each row of PROB must sum to one, and the sample
sizes for each observation (rows of X) are given by the row sums
sum(X,2). Y is an m-by-k matrix, and mnpdf computes each row of Y
using the corresponding rows of the inputs, or replicates them if needed.

Examples % Compute the distribution
p = [1/2 1/3 1/6]; % Outcome probabilities
n = 10; % Sample size
x1 = 0:n;
x2 = 0:n;
[X1,X2] = meshgrid(x1,x2);
X3 = n-(X1+X2);
Y = mnpdf([X1(:),X2(:),X3(:)],repmat(p,(n+1)^2,1));

% Plot the distribution
Y = reshape(Y,n+1,n+1);
bar3(Y)
set(gca,'XTickLabel',0:n)
set(gca,'YTickLabel',0:n)
xlabel('x_1')
ylabel('x_2')
zlabel('Probability Mass')
title('Trinomial Distribution')
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Note that the visualization does not show x3, which is determined by
the constraint x1 + x2 + x3 = n.

See Also mnrnd

“Multinomial Distribution” on page B-54
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Purpose Multinomial logistic regression

Syntax B = mnrfit(X,Y)
B = mnrfit(X,Y,param1,val1,param2,val2,...)
[B,dev] = mnrfit(...)
[B,dev,stats] = mnrfit(...)

Description B = mnrfit(X,Y) returns a matrix B of coefficient estimates for a
multinomial logistic regression of the responses in Y on the predictors
in X. X is an n-by-p matrix of p predictors at each of n observations.
Y is an n-by-k matrix, where Y(i,j) is the number of outcomes of
the multinomial category j for the predictor combinations given by
X(i,:). The sample sizes for each observation are given by the row
sums sum(Y,2).

Alternatively, Y can be an n-by-1 column vector of scalar integers from
1 to k indicating the value of the response for each observation, and
all sample sizes are taken to be 1.

The result B is a (p+1)-by-(k–1) matrix of estimates, where each column
corresponds to the estimated intercept term and predictor coefficients,
one for each of the first k–1 multinomial categories. The estimates for
the kth category are taken to be zero.

Note mnrfit automatically includes a constant term in all models. Do
not enter a column of 1s directly into X.

mnrfit treats NaNs in either X or Y as missing values, and ignores them.

B = mnrfit(X,Y,param1,val1,param2,val2,...) allows you to
specify optional parameter name/value pairs to control the model fit.
Parameters are:

• 'model'— The type of model to fit; one of the text strings 'nominal'
(the default), 'ordinal', or 'hierarchical'
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• 'interactions' — Determines whether the model includes an
interaction between the multinomial categories and the coefficients.
Specify as 'off' to fit a model with a common set of coefficients
for the predictor variables, across all multinomial categories. This
is often described as parallel regression. Specify as 'on' to fit a
model with different coefficients across categories. In all cases,
the model has different intercepts across categories. Thus, B is a
vector containing k–1+p coefficient estimates when 'interaction'
is 'off', and a (p+1)-by-(k–1) matrix when it is 'on'. The default
is 'off' for ordinal models, and 'on' for nominal and hierarchical
models.

• 'link' — The link function to use for ordinal and hierarchical
models. The link function defines the relationship g(μij) = xibj between
the mean response for the ith observation in the jth category, μij , and
the linear combination of predictors xibj. Specify the link parameter
value as one of the text strings 'logit'(the default), 'probit',
'comploglog', or 'loglog'. You may not specify the 'link'
parameter for nominal models; these always use a multivariate
logistic link.

• 'estdisp'— Specify as 'on' to estimate a dispersion parameter for
the multinomial distribution in computing standard errors, or 'off'
(the default) to use the theoretical dispersion value of 1.

[B,dev] = mnrfit(...) returns the deviance of the fit dev.

[B,dev,stats] = mnrfit(...) returns a structure stats that
contains the following fields:

• dfe — Degrees of freedom for error

• s — Theoretical or estimated dispersion parameter

• sfit — Estimated dispersion parameter

• se — Standard errors of coefficient estimates B

• coeffcorr— Estimated correlation matrix for B

• covb — Estimated covariance matrix for B
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• t — t statistics for B

• p — p-values for B

• resid — Residuals

• residp — Pearson residuals

• residd — Deviance residuals

Examples Fit multinomial logistic regression models to data with one predictor
variable and three categories in the response variable:

x = [-3 -2 -1 0 1 2 3]';
Y = [1 11 13; 2 9 14; 6 14 5; 5 10 10; 5 14 6; 7 13 5;...

8 11 6];
bar(x,Y,'stacked'); ylim([0 25]);
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% Now fit a nominal model for the individual response
% category probabilities, with separate slopes on the
% single predictor variable, x, for each
% category:

% The first row of betaHatNom contains the intercept terms
% for the first two response categories. The second row
% contains the slopes.
betaHatNom = mnrfit(x,Y,'model','nominal',...
'interactions','on')

% Compute the predicted probabilities for the three
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% response categories:
xx = linspace(-4,4)';
pHatNom = mnrval(betaHatNom,xx,'model','nominal',...
'interactions','on');
line(xx,cumsum(25*pHatNom,2),'LineWidth',2);
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Fit a "parallel" ordinal model for the cumulative response category
probabilities, with a common slope on the single predictor variable, x,
across all categories:

% The first two elements of betaHatOrd are the
% intercept terms for the first two response categories.
% The last element of betaHatOrd is the common slope.
betaHatOrd = mnrfit(x,Y,'model','ordinal',...
'interactions','off')

% Compute the predicted cumulative probabilities for the
% first two response categories. The cumulative
% probability for the third category is always 1.
pHatOrd = mnrval(betaHatOrd,xx,'type','cumulative',...
'model','ordinal','interactions','off');
bar(x,cumsum(Y,2),'grouped'); ylim([0 25]);
line(xx,25*pHatOrd,'LineWidth',2);
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References [1] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New
York: Chapman & Hall, 1990.

See Also mnrval, glmfit, glmval, regress, regstats

“Multinomial Distribution” on page B-54
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Purpose Multinomial random numbers

Syntax r = mnrnd(n,p)
R = mnrnd(n,p,m)
R = mnrnd(N,P)

Description r = mnrnd(n,p) returns random values r from the multinomial
distribution with parameters n and p. n is a positive integer specifying
the number of trials (sample size) for each multinomial outcome. p is
a 1-by-k vector of multinomial probabilities, where k is the number of
multinomial bins or categories. p must sum to one. (If p does not sum to
one, r consists entirely of NaN values.) r is a 1-by-k vector, containing
counts for each of the k multinomial bins.

R = mnrnd(n,p,m) returns m random vectors from the multinomial
distribution with parameters n and p. R is a m-by-k matrix, where
k is the number of multinomial bins or categories. Each row of R
corresponds to one multinomial outcome.

R = mnrnd(N,P) generates outcomes from different multinomial
distributions. P is a m-by-k matrix, where k is the number of
multinomial bins or categories and each of the m rows contains a
different set of multinomial probabilities. Each row of P must sum to
one. (If any row of P does not sum to one, the corresponding row of R
consists entirely of NaN values.) N is a m-by-1 vector of positive integers
or a single positive integer (replicated by mnrnd to a m-by-1 vector). R
is a m-by-k matrix. Each row of R is generated using the corresponding
rows of N and P.

Examples Generate 2 random vectors with the same probabilities:

n = 1e3;
p = [0.2,0.3,0.5];
R = mnrnd(n,p,2)
R =

215 282 503
194 303 503
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Generate 2 random vectors with different probabilities:

n = 1e3;
P = [0.2, 0.3, 0.5; ...

0.3, 0.4, 0.3;];
R = mnrnd(n,P)
R =

186 290 524
290 389 321

See Also mnpdf

“Multinomial Distribution” on page B-54
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Purpose Multinomial logistic regression values

Syntax PHAT = mnrval(B,X)
YHAT = mnrval(B,X,ssize)
[...,DLO,DHI] = mnrval(B,X,...,stats)
[...] = mnrval(...,param1,val1,param2,val2,...)

Description PHAT = mnrval(B,X) computes predicted probabilities for the
multinomial logistic regression model with predictors X. B contains
intercept and coefficient estimates as returned by the mnrfit function.
X is an n-by-pmatrix of p predictors at each of n observations. PHAT is an
n-by-k matrix of predicted probabilities for each multinomial category.

Note mnrval automatically includes a constant term in all models. Do
not enter a column of 1s directly into X.

YHAT = mnrval(B,X,ssize) computes predicted category counts for
sample sizes ssize. ssize is an n-by-1 column vector of positive
integers.

[...,DLO,DHI] = mnrval(B,X,...,stats) also computes 95%
confidence bounds on the predicted probabilities PHAT or counts YHAT.
stats is the structure returned by the mnrfit function. DLO and DHI
define a lower confidence bound of PHAT or YHAT minus DLO and an
upper confidence bound of PHAT or YHAT plus DHI. Confidence bounds
are nonsimultaneous and they apply to the fitted curve, not to new
observations.

[...] = mnrval(...,param1,val1,param2,val2,...) allows you to
specify optional parameter name/value pairs to control the predicted
values. These parameters must be set to the corresponding values used
with the mnrfit function to compute B. Parameters are:

• 'model'— The type of model that was fit by mnrfit; one of the text
strings 'nominal' (the default), 'ordinal', or 'hierarchical'.
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• 'interactions' — Determines whether the model fit by mnrfit
included an interaction between the multinomial categories and the
coefficients. The default is 'off' for ordinal models, and 'on' for
nominal and hierarchical models.

• 'link' — The link function that was used by mnrfit for ordinal
and hierarchical models. Specify the link parameter value as one of
the text strings 'logit'(the default), 'probit', 'comploglog', or
'loglog'. You may not specify the 'link' parameter for nominal
models; these always use a multivariate logistic link.

• 'type' — Set to 'category' (the default) to return predictions
and confidence bounds for the probabilities (or counts) of the k
multinomial categories. Set to 'cumulative' to return predictions
and confidence bounds for the cumulative probabilities (or counts) of
the first k–1 multinomial categories, as an n-by-(k–1) matrix. The
predicted cumulative probability for the kth category is 1. Set to
'conditional' to return predictions and confidence bounds in terms
of the first k–1 conditional category probabilities, i.e., the probability
for category j, given an outcome in category j or higher. When
'type' is 'conditional', and you supply the sample size argument
ssize, the predicted counts at each row of X are conditioned on the
corresponding element of ssize, across all categories.

• 'confidence' — The confidence level for the confidence bounds; a
value between 0 and 1. The default is 0.95.

Examples Fit multinomial logistic regression models to data with one predictor
variable and three categories in the response variable:

x = [-3 -2 -1 0 1 2 3]';
Y = [1 11 13; 2 9 14; 6 14 5; 5 10 10; 5 14 6; 7 13 5;...

8 11 6];
bar(x,Y,'stacked');
ylim([0 25]);
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% Now fit a nominal model for the individual response
% category probabilities, with separate slopes on the
% single predictor variable, x, for each
% category:

% The first row of betaHatNom contains the intercept terms
% for the first two response categories. The second row
% contains the slopes.
betaHatNom = mnrfit(x,Y,'model','nominal',...

'interactions','on')

% Compute the predicted probabilities for the three
% response categories:
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xx = linspace(-4,4)';
pHatNom = mnrval(betaHatNom,xx,'model','nominal',...

'interactions','on');
line(xx,cumsum(25*pHatNom,2),'LineWidth',2);
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Fit a "parallel" ordinal model for the cumulative response category
probabilities, with a common slope on the single predictor variable, x,
across all categories:

% The first two elements of betaHatOrd are the
% intercept terms for the first two response categories.
% The last element of betaHatOrd is the common slope.
betaHatOrd = mnrfit(x,Y,'model','ordinal',...

'interactions','off')

% Compute the predicted cumulative probabilities for the
% first two response categories. The cumulative
% probability for the third category is always 1.
pHatOrd = mnrval(betaHatOrd,xx,'type','cumulative',...

'model','ordinal','interactions','off');
bar(x,cumsum(Y,2),'grouped');
ylim([0 25]);
line(xx,25*pHatOrd,'LineWidth',2);
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References [1] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New
York: Chapman & Hall, 1990.

See Also mnrfit, glmfit, glmval

“Multinomial Distribution” on page B-54
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Purpose Central moments

Syntax m = moment(X,order)
moment(X,order,dim)

Description m = moment(X,order) returns the central sample moment of X specified
by the positive integer order. For vectors, moment(x,order) returns
the central moment of the specified order for the elements of x. For
matrices, moment(X,order) returns central moment of the specified
order for each column. For N-dimensional arrays, moment operates
along the first nonsingleton dimension of X.

moment(X,order,dim) takes the moment along dimension dim of X.

Remarks Note that the central first moment is zero, and the second central
moment is the variance computed using a divisor of n rather than n –
1, where n is the length of the vector x or the number of rows in the
matrix X.

The central moment of order k of a distribution is defined as

m E xk
k= −( )

where E(x) is the expected value of x.

Examples X = randn([6 5])
X =

1.1650 0.0591 1.2460 -1.2704 -0.0562
0.6268 1.7971 -0.6390 0.9846 0.5135
0.0751 0.2641 0.5774 -0.0449 0.3967
0.3516 0.8717 -0.3600 -0.7989 0.7562

-0.6965 -1.4462 -0.1356 -0.7652 0.4005
1.6961 -0.7012 -1.3493 0.8617 -1.3414

m = moment(X,3)
m =

-0.0282 0.0571 0.1253 0.1460 -0.4486
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See Also kurtosis, mean, skewness, std, var
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gmdistribution.Mu property

Purpose Input matrix of means MU

Description Input matrix of means mu.
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Purpose Multiple comparison test

Syntax c = multcompare(stats)
c = multcompare(stats,param1,val1,param2,val2,...)
[c,m] = multcompare(...)
[c,m,h] = multcompare(...)
[c,m,h,gnames] = multcompare(...)

Description c = multcompare(stats) performs a multiple comparison test using
the information in the stats structure, and returns a matrix c of
pairwise comparison results. It also displays an interactive graph of the
estimates with comparison intervals around them. See “Examples”
on page 18-750.

In a one-way analysis of variance, you compare the means of several
groups to test the hypothesis that they are all the same, against the
general alternative that they are not all the same. Sometimes this
alternative may be too general. You may need information about which
pairs of means are significantly different, and which are not. A test that
can provide such information is called a multiple comparison procedure.

When you perform a simple t-test of one group mean against another,
you specify a significance level that determines the cutoff value of the
t statistic. For example, you can specify the value alpha = 0.05 to
insure that when there is no real difference, you will incorrectly find
a significant difference no more than 5% of the time. When there are
many group means, there are also many pairs to compare. If you
applied an ordinary t-test in this situation, the alpha value would apply
to each comparison, so the chance of incorrectly finding a significant
difference would increase with the number of comparisons. Multiple
comparison procedures are designed to provide an upper bound on the
probability that any comparison will be incorrectly found significant.

The output c contains the results of the test in the form of a five-column
matrix. Each row of the matrix represents one test, and there is one
row for each pair of groups. The entries in the row indicate the means
being compared, the estimated difference in means, and a confidence
interval for the difference.
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For example, suppose one row contains the following entries.

2.0000 5.0000 1.9442 8.2206 14.4971

These numbers indicate that the mean of group 2 minus the mean of
group 5 is estimated to be 8.2206, and a 95% confidence interval for
the true mean is [1.9442, 14.4971].

In this example the confidence interval does not contain 0.0, so the
difference is significant at the 0.05 level. If the confidence interval did
contain 0.0, the difference would not be significant at the 0.05 level.

The multcompare function also displays a graph with each group mean
represented by a symbol and an interval around the symbol. Two means
are significantly different if their intervals are disjoint, and are not
significantly different if their intervals overlap. You can use the mouse
to select any group, and the graph will highlight any other groups that
are significantly different from it.

c = multcompare(stats,param1,val1,param2,val2,...) specifies
one or more of the parameter name/value pairs described in the
following table.

Parameter Values

'alpha' Scalar between 0 and 1 that determines the
confidence levels of the intervals in the matrix
c and in the figure (default is 0.05). The
confidence level is 100(1-alpha)%.

'display' Either 'on' (the default) to display a graph
of the estimates with comparison intervals
around them, or 'off' to omit the graph. See
“Examples” on page 18-750.

'ctype' Specifies the type of critical value to use for the
multiple comparison. “Values of ctype” on page
18-747 describes the allowed values for ctype.
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Parameter Values

'dimension' A vector specifying the dimension or dimensions
over which the population marginal means
are to be calculated. Use only if you create
stats with the function anovan. The default
is 1 to compute over the first dimension. See
“Dimension Parameter” on page 18-749 for more
information.

'estimate' Specifies the estimate to be compared. The
allowable values of estimate depend on the
function that was the source of the stats
structure, as described in “Values of estimate”
on page 18-749

[c,m] = multcompare(...) returns an additional matrix m. The first
column of m contains the estimated values of the means (or whatever
statistics are being compared) for each group, and the second column
contains their standard errors.

[c,m,h] = multcompare(...) returns a handle h to the comparison
graph. Note that the title of this graph contains instructions for
interacting with the graph, and the x-axis label contains information
about which means are significantly different from the selected mean.
If you plan to use this graph for presentation, you may want to omit
the title and the x-axis label. You can remove them using interactive
features of the graph window, or you can use the following commands.

title('')
xlabel('')

[c,m,h,gnames] = multcompare(...) returns gnames, a cell array
with one row for each group, containing the names of the groups.

Values of ctype

The following table describes the allowed values for the parameter
ctype.
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Value Description

'hsd' or
'tukey-kramer'

Use Tukey’s honestly significant difference
criterion. This is the default, and it is based on the
Studentized range distribution. It is optimal for
balanced one-way ANOVA and similar procedures
with equal sample sizes. It has been proven
to be conservative for one-way ANOVA with
different sample sizes. According to the unproven
Tukey-Kramer conjecture, it is also accurate for
problems where the quantities being compared
are correlated, as in analysis of covariance with
unbalanced covariate values.

'lsd' Use Tukey’s least significant difference procedure.
This procedure is a simple t-test. It is reasonable
if the preliminary test (say, the one-way ANOVA
F statistic) shows a significant difference. If it is
used unconditionally, it provides no protection
against multiple comparisons.

'bonferroni' Use critical values from the t distribution, after a
Bonferroni adjustment to compensate for multiple
comparisons. This procedure is conservative, but
usually less so than the Scheffé procedure.

'dunn-sidak' Use critical values from the t distribution, after
an adjustment for multiple comparisons that was
proposed by Dunn and proved accurate by Sidák.
This procedure is similar to, but less conservative
than, the Bonferroni procedure.

'scheffe' Use critical values from Scheffé’s S procedure,
derived from the F distribution. This procedure
provides a simultaneous confidence level for
comparisons of all linear combinations of the
means, and it is conservative for comparisons of
simple differences of pairs.
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Values of estimate

The allowable values of the parameter 'estimate' depend on the
function that was the source of the stats structure, according to the
following table.

Source Values

'anova1' Ignored. Always compare the group means.

'anova2' Either 'column' (the default) or 'row' to
compare column or row means.

'anovan' Ignored. Always compare the population
marginal means as specified by the dim
argument.

'aoctool' Either 'slope', 'intercept', or 'pmm' to
compare slopes, intercepts, or population
marginal means. If the analysis of covariance
model did not include separate slopes, then
'slope' is not allowed. If it did not include
separate intercepts, then no comparisons are
possible.

'friedman' Ignored. Always compare average column ranks.

'kruskalwallis' Ignored. Always compare average group ranks.

Dimension Parameter

The dimension parameter is a vector specifying the dimension or
dimensions over which the population marginal means are to be
calculated. For example, if dim = 1, the estimates that are compared
are the means for each value of the first grouping variable, adjusted by
removing effects of the other grouping variables as if the design were
balanced. If dim = [1 3], population marginal means are computed for
each combination of the first and third grouping variables, removing
effects of the second grouping variable. If you fit a singular model, some
cell means may not be estimable and any population marginal means
that depend on those cell means will have the value NaN.
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Population marginal means are described by Milliken and Johnson
(1992) and by Searle, Speed, and Milliken (1980). The idea behind
population marginal means is to remove any effect of an unbalanced
design by fixing the values of the factors specified by dim, and averaging
out the effects of other factors as if each factor combination occurred
the same number of times. The definition of population marginal
means does not depend on the number of observations at each
factor combination. For designed experiments where the number of
observations at each factor combination has no meaning, population
marginal means can be easier to interpret than simple means ignoring
other factors. For surveys and other studies where the number of
observations at each combination does have meaning, population
marginal means may be harder to interpret.

Examples Example 1

The following example performs a 1-way analysis of variance (ANOVA)
and displays group means with their names.

load carsmall
[p,t,st] = anova1(MPG,Origin,'off');
[c,m,h,nms] = multcompare(st,'display','off');
[nms num2cell(m)]
ans =

'USA' [21.1328] [0.8814]
'Japan' [31.8000] [1.8206]
'Germany' [28.4444] [2.3504]
'France' [23.6667] [4.0711]
'Sweden' [22.5000] [4.9860]
'Italy' [28.0000] [7.0513]

multcompare also displays the following graph of the estimates with
comparison intervals around them.
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You can click the graphs of each country to compare its mean to those of
other countries.

Example 2

The following continues the example described in the anova1 reference
page, which is related to testing the material strength in structural
beams. From the anova1 output you found significant evidence that
the three types of beams are not equivalent in strength. Now you can
determine where those differences lie. First you create the data arrays
and you perform one-way ANOVA.

strength = [82 86 79 83 84 85 86 87 74 82 ...
78 75 76 77 79 79 77 78 82 79];

alloy = {'st','st','st','st','st','st','st','st',...
'al1','al1','al1','al1','al1','al1',...
'al2','al2','al2','al2','al2','al2'};

[p,a,s] = anova1(strength,alloy);
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Among the outputs is a structure that you can use as input to
multcompare.

[c,m,h,nms] = multcompare(s);
[nms num2cell(c)]
ans =

'st' [1] [2] [ 3.6064] [ 7] [10.3936]
'al1' [1] [3] [ 1.6064] [ 5] [ 8.3936]
'al2' [2] [3] [-5.6280] [-2] [ 1.6280]

The third row of the output matrix shows that the differences in
strength between the two alloys is not significant. A 95% confidence
interval for the difference is [-5.6, 1.6], so you cannot reject the
hypothesis that the true difference is zero.

The first two rows show that both comparisons involving the first group
(steel) have confidence intervals that do not include zero. In other
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words, those differences are significant. The graph shows the same
information.

See Also anova1, anova2, anovan, aoctool, friedman, kruskalwallis

References [1] Hochberg, Y., and A. C. Tamhane. Multiple Comparison Procedures.
Hoboken, NJ: John Wiley & Sons, 1987.

[2] Milliken, G. A., and D. E. Johnson. Analysis of Messy Data, Volume
1: Designed Experiments. Boca Raton, FL: Chapman & Hall/CRC Press,
1992.

[3] Searle, S. R., F. M. Speed, and G. A. Milliken. “Population marginal
means in the linear model: an alternative to least-squares means.”
American Statistician. 1980, pp. 216–221.

18-753



multivarichart

Purpose Multivari chart for grouped data

Syntax multivarichart(y,GROUP)
multivarichart(Y)
multivarichart(...,param1,val1,param2,val2,...)
[charthandle,AXESH] = multivarichart(...)

Description multivarichart(y,GROUP) displays the multivari chart for the vector
y grouped by entries in the cell array GROUP. Each cell of GROUP must
contain a grouping variable that can be a categorical variable, numeric
vector, character matrix, or single-column cell array of strings. (See
“Grouped Data” on page 2-33.) GROUP can also be a matrix whose
columns represent different grouping variables. Each grouping variable
must have the same number of elements as y. The number of grouping
variables must be 2, 3, or 4.

Each subplot of the plot matrix contains a multivari chart for the first
and second grouping variables. The x-axis in each subplot indicates
values of the first grouping variable. The legend at the bottom of the
figure window indicates values of the second grouping variable. The
subplot at position (i,j) is the multivari chart for the subset of y at the
ith level of the third grouping variable and the jth level of the fourth
grouping variable. If the third or fourth grouping variable is absent, it
is considered to have only one level.

multivarichart(Y) displays the multivari chart for a matrix Y. The
data in different columns represent changes in one factor. The data in
different rows represent changes in another factor.

multivarichart(...,param1,val1,param2,val2,...) specifies one
or more of the following name/value pairs:

• 'varnames'— Grouping variable names in a character matrix or a
cell array of strings, one per grouping variable. Default names are
'X1', 'X2', ... .

• 'plotorder' — A string with the value 'sorted' or a vector
containing a permutation of the integers from 1 to the number of
grouping variables.
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If 'plotorder' is a string with value 'sorted', the grouping
variables are rearranged in descending order according to the
number of levels in each variable.

If 'plotorder' is a vector, it indicates the order in which each
grouping variable should be plotted. For example, [2,3,1,4]
indicates that the second grouping variable should be used as the
x-axis of each subplot, the third grouping variable should be used as
the legend, the first grouping variable should be used as the columns
of the plot, and the fourth grouping variable should be used as the
rows of the plot.

[charthandle,AXESH] = multivarichart(...) returns a handle
charthandle to the figure window and a matrix AXESH of handles to
the subplot axes.

Examples Display a multivari chart for data with two grouping variables:

y = randn(100,1); % response
group = [ceil(3*rand(100,1)) ceil(2*rand(100,1))];
multivarichart(y,group)
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Display a multivari chart for data with four grouping variables:

y = randn(1000,1); % response
group = {ceil(2*rand(1000,1)),ceil(3*rand(1000,1)), ...

ceil(2*rand(1000,1)),ceil(3*rand(1000,1))};
multivarichart(y,group)

18-756



multivarichart

See Also “Grouped Data” on page 2-33

maineffectsplot, interactionplot

18-757



mvncdf

Purpose Multivariate normal cumulative distribution function

Syntax y = mvncdf(X)
y = mvncdf(X,mu,SIGMA)
y = mvncdf(xl,xu,mu,SIGMA)
[y,err] = mvncdf(...)
[...] = mvncdf(...,options)

Description y = mvncdf(X) returns the cumulative probability of the multivariate
normal distribution with zero mean and identity covariance matrix,
evaluated at each row of X. Rows of the n-by-d matrix X correspond
to observations or points, and columns correspond to variables or
coordinates. y is an n-by-1 vector.

y = mvncdf(X,mu,SIGMA) returns the cumulative probability of the
multivariate normal distribution with mean mu and covariance SIGMA,
evaluated at each row of X. mu is a 1-by-d vector, and SIGMA is a d-by-d
symmetric, positive definite matrix. mu can also be a scalar value,
which mvncdf replicates to match the size of X. If the covariance
matrix is diagonal, containing variances along the diagonal and zero
covariances off the diagonal, SIGMA may also be specified as a 1-by-d
vector containing just the diagonal. Pass in the empty matrix [] for mu
to use as its default value when you want to only specify SIGMA.

The multivariate normal cumulative probability at X is defined as the
probability that a random vector V, distributed as multivariate normal,
will fall within the semi-infinite rectangle with upper limits defined by
X, for example, Pr{V(1) ≤ X(1),V(2) ≤ X(2),...,V(d) ≤ X(d)}.

y = mvncdf(xl,xu,mu,SIGMA) returns the multivariate normal
cumulative probability evaluated over the rectangle with lower and
upper limits defined by xl and xu, respectively.

[y,err] = mvncdf(...) returns an estimate of the error in y. For
bivariate and trivariate distributions, mvncdf uses adaptive quadrature
on a transformation of the t density, based on methods developed by
Drezner and Wesolowsky and by Genz, as described in the references.
The default absolute error tolerance for these cases is 1e-8. For four
or more dimensions, mvncdf uses a quasi-Monte Carlo integration
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algorithm based on methods developed by Genz and Bretz, as described
in the references. The default absolute error tolerance for these cases
is 1e-4.

[...] = mvncdf(...,options) specifies control parameters for the
numerical integration used to compute y. This argument can be created
by a call to statset. Choices of statset parameters:

• 'TolFun' — Maximum absolute error tolerance. Default is 1e-8
when d < 4, or 1e-4 when d ≥ 4.

• 'MaxFunEvals' — Maximum number of integrand evaluations
allowed when d ≥ 4. Default is 1e7. 'MaxFunEvals' is ignored when
d < 4.

• 'Display' — Level of display output. Choices are 'off' (the
default), 'iter', and 'final'. 'Display' is ignored when d < 4.

Examples mu = [1 -1]; SIGMA = [.9 .4; .4 .3];
[X1,X2] = meshgrid(linspace(-1,3,25)',linspace(-3,1,25)');
X = [X1(:) X2(:)];
p = mvncdf(X,mu,SIGMA);
surf(X1,X2,reshape(p,25,25));
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References [1] Drezner, Z. “Computation of the Trivariate Normal Integral.”
Mathematics of Computation. Vol. 63, 1994, pp. 289–294.

[2] Drezner, Z., and G. O. Wesolowsky. “On the Computation of the
Bivariate Normal Integral.” Journal of Statistical Computation and
Simulation. Vol. 35, 1989, pp. 101–107.

[3] Genz, A. “Numerical Computation of Rectangular Bivariate and
Trivariate Normal and t Probabilities.” Statistics and Computing. Vol.
14, No. 3, 2004, pp. 251–260.

[4] Genz, A., and F. Bretz. “Numerical Computation of Multivariate
t Probabilities with Application to Power Calculation of Multiple
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Contrasts.” Journal of Statistical Computation and Simulation. Vol.
63, 1999, pp. 361–378.

[5] Genz, A., and F. Bretz. “Comparison of Methods for the Computation
of Multivariate t Probabilities.” Journal of Computational and
Graphical Statistics. Vol. 11, No. 4, 2002, pp. 950–971.

See Also mvnpdf, mvnrnd

“Multivariate Normal Distribution” on page B-58
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Purpose Multivariate normal probability density function

Syntax y = mvnpdf(X)
y = mvnpdf(X,MU)
y = mvnpdf(X,MU,SIGMA)

Description y = mvnpdf(X) returns the n-by-1 vector y, containing the probability
density of the multivariate normal distribution with zero mean and
identity covariance matrix, evaluated at each row of the n-by-d matrix
X. Rows of X correspond to observations and columns correspond to
variables or coordinates.

y = mvnpdf(X,MU) returns the density of the multivariate normal
distribution with mean mu and identity covariance matrix, evaluated
at each row of X. MU is a 1-by-d vector, or an n-by-d matrix. If MU is a
matrix, the density is evaluated for each row of X with the corresponding
row of MU. MU can also be a scalar value, which mvnpdf replicates to
match the size of X.

y = mvnpdf(X,MU,SIGMA) returns the density of the multivariate
normal distribution with mean MU and covariance SIGMA, evaluated
at each row of X. SIGMA is a d-by-d matrix, or a d-by-d-by-n array,
in which case the density is evaluated for each row of X with the
corresponding page of SIGMA, i.e., mvnpdf computes y(i) using X(i,:)
and SIGMA(:,:,i). If the covariance matrix is diagonal, containing
variances along the diagonal and zero covariances off the diagonal,
SIGMA may also be specified as a 1-by-d vector or a 1-by-d-by-n array,
containing just the diagonal. Specify [] for MU to use its default value
when you want to specify only SIGMA.

If X is a 1-by-d vector, mvnpdf replicates it to match the leading
dimension of mu or the trailing dimension of SIGMA.

Examples mu = [1 -1];
SIGMA = [.9 .4; .4 .3];
X = mvnrnd(mu,SIGMA,10);
p = mvnpdf(X,mu,SIGMA);
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See Also mvncdf, mvnrnd

“Multivariate Normal Distribution” on page B-58
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Purpose Multivariate linear regression

Syntax b = mvregress(X,Y)
[b,SIGMA] = mvregress(X,Y)
[b,SIGMA,RESID] = mvregress(X,Y)
[b,SIGMA,RESID,COVB] = mvregress(...)
[b,SIGMA,RESID,objective] = mvregress(...)
[...] = mvregress(X,Y,param1,val1,param2,val2,...)

Description b = mvregress(X,Y) returns a vector b of coefficient estimates for a
multivariate regression of the d-dimensional responses in Y on the
predictors in X. If d = 1, X can be an n-by-p matrix of p predictors at each
of n observations. If d ≥ 1, X can be a cell array of length n, with each
cell containing a d-by-p design matrix for one multivariate observation.
If all observations have the same d-by-p design matrix, X can be a single
cell. Y is n-by-d. b is p-by-1.

Note To include a constant term in a model, X should contain a column
of 1s.

mvregress treats NaNs in X or Y as missing values. Missing values in X
are ignored. Missing values in Y are handled according to the value of
the 'algorithm' parameter described below.

[b,SIGMA] = mvregress(X,Y) also returns a d-by-d matrix SIGMA for
the estimated covariance of Y.

[b,SIGMA,RESID] = mvregress(X,Y) also returns an n-by-d matrix
RESID of residuals.

The RESID values corresponding to missing values in Y are the
differences between the conditionally imputed values for Y and the
fitted values. The SIGMA estimate is not the sample covariance matrix
of the RESID matrix.

[b,SIGMA,RESID,COVB] = mvregress(...) also returns a matrix COVB
for the estimated covariance of the coefficients. By default, or if the
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'varformat' parameter is 'beta' (see below), COVB is the estimated
covariance matrix of b. If the 'varformat' parameter is 'full', COVB
is the combined estimated covariance matrix for beta and SIGMA.

[b,SIGMA,RESID,objective] = mvregress(...) also returns the
value of the objective function, or log likelihood, objective, after the
last iteration.

[...] = mvregress(X,Y,param1,val1,param2,val2,...) specifies
additional parameter name/value pairs chosen from the following:

• 'algorithm' — Either 'ecm' to compute the maximum likelihood
estimates via the ECM algorithm, 'cwls' to perform least squares
(optionally conditionally weighted by an input covariance matrix),
or 'mvn' to omit observations with missing data and compute the
ordinary multivariate normal estimates. The default is 'mvn' for
complete data, 'ecm' for missing data when the sample size is
sufficient to estimate all parameters, and 'cwls' otherwise.

• 'covar0' — A d-by-d matrix to be used as the initial estimate for
SIGMA. The default is the identity matrix. For the 'cwls' algorithm,
this matrix is usually a diagonal matrix used as a weighting at each
iteration. The 'cwls' algorithm uses the initial value of SIGMA at
each iteration, without changing it.

• 'covtype' — Either 'full', to allow a full covariance matrix, or
'diagonal', to restrict the covariance matrix to be diagonal. The
default is 'full'.

• 'maxiter'—Maximum number of iterations. The default is 100.

• 'outputfcn'— An output function called with three arguments:

1. A vector of current parameter estimates.

2. A structure with fields 'Covar' for the current value of the
covariance matrix, 'iteration' for the current iteration number,
and 'fval' for the current value of the objective function.
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3. A text string that is 'init' when called during initialization,
'iter' when called after an iteration, and 'done' when called after
completion.

The function should return logical true if the iterations should stop,
or logical false if they should continue.

• 'param0'— A vector of p elements to be used as the initial estimate
for b. Default is a zero vector. Not used for the 'mvn' algorithm.

• 'tolbeta'— Convergence tolerance for b. The default is sqrt(eps).
Iterations continue until the tolbeta and tolobj conditions are met.
The test for convergence at iteration k is

norm(b(k)-b(k-1)) < sqrt(p)*tolbeta*(1+norm(b(k)))

where p = length(b).

• 'tolobj' — Convergence tolerance for changes in the objective
function. The default is eps^(3/4). The test is

abs(obj(k)-obj(k-1)) < tolobj*(1+abs(obj(k)))

where obj is the objective function. If both tolobj and tolbeta are
0, the function performs maxiter iterations with no convergence test.

• 'varformat'— Either 'beta' to compute COVB for b only (default),
or 'full' to compute COVB for both b and SIGMA.

• 'vartype'— Either 'hessian' to compute COVB using the Hessian
or observed information (default), or 'fisher' to compute COVB using
the complete-data Fisher or expected information. The 'hessian'
method takes into account the increased uncertainties due to missing
data, while the 'fisher' method does not.

Examples Predict regional flu estimates based on Google™ queries using the
national CDC estimates as a predictor:

load flu
% response: regional queries
y = double(flu(:,2:end-1));
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% predictor: national CDC estimates
x = flu.WtdILI;
[nobs,nregions] = size(y);

% Create and fit model with separate intercepts but
% common slope
X = cell(nobs,1);
for j=1:nobs

X{j} = [eye(nregions), repmat(x(j),nregions,1)];
end
[b,sig,resid,vars,loglik] = mvregress(X,y);

% Plot raw data with fitted lines
B = [b(1:nregions)';repmat(b(end),1,nregions)]
axes1 = axes('Position',[0.13 0.5838 0.6191 0.3412]);
xx = linspace(.5,3.5)';
h = plot(x,y,'x', xx, [ones(size(xx)),xx]*B,'-');
for j=1:nregions;

set(h(nregions+j),'color',get(h(j),'color'));
end
regions = flu.Properties.VarNames;
legend1 = legend(regions{2:end-1});
set(legend1,'Position', [0.7733 0.1967 0.2161 0.6667]);
% Create and fit model with separate intercepts and slopes
for j=1:nobs
X{j} = [eye(nregions), x(j)*eye(nregions)];
end
[b,sig,resid,vars,loglik2] = mvregress(X,y);
% Plot raw data with fitted lines
B = [b(1:nregions)';b(nregions+1:end)']
axes2 = axes('Parent',gcf,'Position',...

[0.13 0.11 0.6191 0.3412]);
h = plot(x,y,'x', xx, [ones(size(xx)),xx]*B,'-');

for j=1:nregions;
set(h(nregions+j),'color',get(h(j),'color'));

end
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% Likelihood ratio test for significant difference
chisq = 2*(loglik2-loglik)
p = 1-chi2cdf(chisq, nregions-1)

References [1] Little, Roderick J. A., and Donald B. Rubin. Statistical Analysis with
Missing Data. 2nd ed., Hoboken, NJ: John Wiley & Sons, Inc., 2002.

[2] Meng, Xiao-Li, and Donald B. Rubin. “Maximum Likelihood
Estimation via the ECM Algorithm.” Biometrika. Vol. 80, No. 2, 1993,
pp. 267–278.
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[3] Sexton, Joe, and A. R. Swensen. “ECM Algorithms that Converge at
the Rate of EM.” Biometrika. Vol. 87, No. 3, 2000, pp. 651–662.

[4] Dempster, A. P., N. M. Laird, and D. B. Rubin. “Maximum
Likelihood from Incomplete Data via the EM Algorithm.” Journal of the
Royal Statistical Society. Series B, Vol. 39, No. 1, 1977, pp. 1–37.

See Also mvregresslike, manova1

“Multivariate Normal Distribution” on page B-58
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Purpose Negative log-likelihood for multivariate regression

Syntax nlogL = mvregresslike(X,Y,b,SIGMA,alg)
[nlogL,COVB] = mvregresslike(...)
[nlogL,COVB] = mvregresslike(...,type,format)

Description nlogL = mvregresslike(X,Y,b,SIGMA,alg) computes the negative
log-likelihood nlogL for a multivariate regression of the d-dimensional
multivariate observations in the n-by-d matrix Y on the predictor
variables in the matrix or cell array X, evaluated for the p-by-1 column
vector b of coefficient estimates and the d-by-d matrix SIGMA specifying
the covariance of a row of Y. If d = 1, X can be an n-by-p design matrix
of predictor variables. For any value of d, X can also be a cell array
of length n, with each cell containing a d-by-p design matrix for one
multivariate observation. If all observations have the same d-by-p
design matrix, X can be a single cell.

NaN values in X or Y are taken as missing. Observations with missing
values in X are ignored. Treatment of missing values in Y depends on
the algorithm specified by alg.

alg should match the algorithm used by mvregress to obtain the
coefficient estimates b, and must be one of the following:

• 'ecm' — ECM algorithm

• 'cwls'— Least squares conditionally weighted by SIGMA

• 'mvn' — Multivariate normal estimates computed after omitting
rows with any missing values in Y

[nlogL,COVB] = mvregresslike(...) also returns an estimated
covariance matrix COVB of the parameter estimates b.

[nlogL,COVB] = mvregresslike(...,type,format) specifies the type
and format of COVB.

type is either:
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• 'hessian' — To use the Hessian or observed information. This
method takes into account the increased uncertainties due to missing
data. This is the default.

• 'fisher'— To use the Fisher or expected information. This method
uses the complete data expected information, and does not include
uncertainty due to missing data.

format is either:

• 'beta'— To compute COVB for b only. This is the default.

• 'full'— To compute COVB for both b and SIGMA.

See Also mvregress, manova1

“Multivariate Normal Distribution” on page B-58
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Purpose Multivariate normal random numbers

Syntax R = mvnrnd(MU,SIGMA)
r = mvnrnd(MU,SIGMA,cases)

Description R = mvnrnd(MU,SIGMA) returns an n-by-d matrix R of random vectors
chosen from the multivariate normal distribution with mean MU, and
covariance SIGMA. MU is an n-by-d matrix, and mvnrnd generates each
row of R using the corresponding row of mu. SIGMA is a d-by-d symmetric
positive semi-definite matrix, or a d-by-d-by-n array. If SIGMA is an
array, mvnrnd generates each row of R using the corresponding page of
SIGMA, i.e., mvnrnd computes R(i,:) using MU(i,:) and SIGMA(:,:,i).
If the covariance matrix is diagonal, containing variances along the
diagonal and zero covariances off the diagonal, SIGMA may also be
specified as a 1-by-d vector or a 1-by-d-by-n array, containing just the
diagonal. If MU is a 1-by-d vector, mvnrnd replicates it to match the
trailing dimension of SIGMA.

r = mvnrnd(MU,SIGMA,cases) returns a cases-by-d matrix R of
random vectors chosen from the multivariate normal distribution with
a common 1-by-d mean vector MU, and a common d-by-d covariance
matrix SIGMA.

Examples mu = [2 3];
SIGMA = [1 1.5; 1.5 3];
r = mvnrnd(mu,SIGMA,100);
plot(r(:,1),r(:,2),'+')
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See Also mvnpdf, mvncdf

“Multivariate Normal Distribution” on page B-58
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Purpose Multivariate t cumulative distribution function

Syntax y = mvtcdf(X,C,DF)
y = mvtcdf(xl,xu,C,DF)
[y,err] = mvtcdf(...)
[...] = mvntdf(...,options)

Description y = mvtcdf(X,C,DF) returns the cumulative probability of the
multivariate t distribution with correlation parameters C and degrees
of freedom DF, evaluated at each row of X. Rows of the n-by-d matrix
X correspond to observations or points, and columns correspond to
variables or coordinates. y is an n-by-1 vector.

C is a symmetric, positive definite, d-by-d matrix, typically a correlation
matrix. If its diagonal elements are not 1, mvtcdf scales C to correlation
form. DF is a scalar, or a vector with n elements.

The multivariate t cumulative probability at X is defined as the
probability that a random vector T, distributed as multivariate t, will
fall within the semi-infinite rectangle with upper limits defined by X,
i.e., Pr{T(1)≤X(1),T(2)≤X(2),...T(d)≤X(d)}.

y = mvtcdf(xl,xu,C,DF) returns the multivariate t cumulative
probability evaluated over the rectangle with lower and upper limits
defined by xl and xu, respectively.

[y,err] = mvtcdf(...) returns an estimate of the error in y. For
bivariate and trivariate distributions, mvtcdf uses adaptive quadrature
on a transformation of the t density, based on methods developed
by Genz, as described in the references. The default absolute error
tolerance for these cases is 1e-8. For four or more dimensions, mvtcdf
uses a quasi-Monte Carlo integration algorithm based on methods
developed by Genz and Bretz, as described in the references. The
default absolute error tolerance for these cases is 1e-4.

[...] = mvntdf(...,options) specifies control parameters for the
numerical integration used to compute y. This argument can be created
by a call to statset. Choices of statset parameters are:
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• 'TolFun' — Maximum absolute error tolerance. Default is 1e-8
when d < 4, or 1e-4 when d ≥ 4.

• 'MaxFunEvals' — Maximum number of integrand evaluations
allowed when d ≥ 4. Default is 1e7. 'MaxFunEvals' is ignored when
d < 4.

• 'Display' — Level of display output. Choices are 'off' (the
default), 'iter', and 'final'. 'Display' is ignored when d < 4.

Examples C = [1 .4; .4 1]; df = 2;
[X1,X2] = meshgrid(linspace(-2,2,25)',linspace(-2,2,25)');
X = [X1(:) X2(:)];
p = mvtcdf(X,C,df);
surf(X1,X2,reshape(p,25,25));
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References [1] Genz, A. “Numerical Computation of Rectangular Bivariate and
Trivariate Normal and t Probabilities.” Statistics and Computing. Vol.
14, No. 3, 2004, pp. 251–260.

[2] Genz, A., and F. Bretz. “Numerical Computation of Multivariate
t Probabilities with Application to Power Calculation of Multiple
Contrasts.” Journal of Statistical Computation and Simulation. Vol.
63, 1999, pp. 361–378.

[3] Genz, A., and F. Bretz. “Comparison of Methods for the Computation
of Multivariate t Probabilities.” Journal of Computational and
Graphical Statistics. Vol. 11, No. 4, 2002, pp. 950–971.
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See Also mvtpdf, mvtrnd

“Multivariate t Distribution” on page B-64
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Purpose Multivariate t probability density function

Syntax y = mvtpdf(X,C,df)

Description y = mvtpdf(X,C,df) returns the probability density of the multivariate
t distribution with correlation parameters C and degrees of freedom df,
evaluated at each row of X. Rows of the n-by-d matrix X correspond
to observations or points, and columns correspond to variables or
coordinates. C is a symmetric, positive definite, d-by-d matrix, typically
a correlation matrix. If its diagonal elements are not 1, mvtpdf scales
C to correlation form. df is a scalar, or a vector with n elements. y is
an n-by-1 vector.

Examples Visualize a multivariate t distribution:

[X1,X2] = meshgrid(linspace(-2,2,25)',linspace(-2,2,25)');
X = [X1(:) X2(:)];
C = [1 .4; .4 1];
df = 2;
p = mvtpdf(X,C,df);
surf(X1,X2,reshape(p,25,25))
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See Also mvtcdf, mvtrnd

“Multivariate t Distribution” on page B-64
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Purpose Multivariate t random numbers

Syntax R = mvtrnd(C,df,cases)
R = mvtrnd(C,df)

Description R = mvtrnd(C,df,cases) returns a matrix of random numbers chosen
from the multivariate t distribution, where C is a correlation matrix.
df is the degrees of freedom and is either a scalar or is a vector with
cases elements. If p is the number of columns in C, then the output
R has cases rows and p columns.

Let t represent a row of R. Then the distribution of t is that of a vector
having a multivariate normal distribution with mean 0, variance 1, and
covariance matrix C, divided by an independent chi-square random
value having df degrees of freedom. The rows of R are independent.

C must be a square, symmetric and positive definite matrix. If its
diagonal elements are not all 1 (that is, if C is a covariance matrix rather
than a correlation matrix), mvtrnd computes the equivalent correlation
matrix before generating the random numbers.

R = mvtrnd(C,df) returns a single random number from the
multivariate t distribution.

Examples SIGMA = [1 0.8;0.8 1];
R = mvtrnd(SIGMA,3,100);
plot(R(:,1),R(:,2),'+')
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See Also mvtpdf, mvtcdf

“Multivariate t Distribution” on page B-64
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cvpartition.N property

Purpose Number of observations (including observations with missing group
values)

Description Number of observations (including observations with missing group
values).
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Purpose Naive Bayes classifier

Description A NaiveBayes object defines a Naive Bayes classifier. A Naive Bayes
classifier assigns a new observation to the most probable class,
assuming the features are conditionally independent given the class
value.

Construction NaiveBayes Create NaiveBayes object

Methods disp Display NaiveBayes classifier
object

display Display NaiveBayes classifier
object

fit Create Naive Bayes classifier
object by fitting training data

posterior Compute posterior probability of
each class for test data

predict Predict class label for test data

subsasgn Subscripted reference for
NaiveBayes object

subsref Subscripted reference for
NaiveBayes object

Properties CIsNonEmpty Flag for non-empty classes

CLevels Class levels

CNames Class names

CPrior Class priors
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Dist Distribution names

NClasses Number of classes

NDims Number of dimensions

Params Parameter estimates

Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.

Examples Predict the class label using the Naive Bayes classifier

load fisheriris

Use the default Gaussian distribution and a confusion matrix:

O1 = NaiveBayes.fit(meas,species);
C1 = O1.predict(meas);
cMat1 = confusionmat(species,C1)

This returns:

cMat1 =

50 0 0
0 47 3
0 3 47

Use the Gaussian distribution for features 1 and 3 and use the kernel
density estimation for features 2 and 4:

O2 = NaiveBayes.fit(meas,species,'dist',...
{'normal','kernel','normal','kernel'});
C2 = O2.predict(meas);
cMat2 = confusionmat(species,C2)

This returns:
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cMat2 =

50 0 0
0 47 3
0 3 47

References [1] Mitchell, T. (1997) Machine Learning, McGraw Hill.

[2] Vangelis M., Ion A., and Geogios P. Spam Filtering with Naive
Bayes - Which Naive Bayes? (2006) Third Conference on Email and
Anti-Spam.

[3] George H. John and Pat Langley. Estimating continuous
distributions in bayesian classifiers (1995) the Eleventh Conference on
Uncertainty in Artificial Intelligence.

See Also “Naive Bayes Classification” on page 12-6

“Grouped Data” on page 2-33
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Purpose Create NaiveBayes object

Description You cannot create a NaiveBayes classifier by calling the constructor.
Use NaiveBayes.fit to create a NaiveBayes classifier by fitting the
object to training data.

See Also fit
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Purpose Covariance ignoring NaN values

Syntax Y = nancov(X)
Y = nancov(X1,X2)
Y = nancov(...,1)
Y = nancov(...,'pairwise')

Description Y = nancov(X) is the covariance cov of X, computed after removing
observations with NaN values.

For vectors x, nancov(x) is the sample variance of the remaining
elements, once NaN values are removed. For matrices X, nancov(X) is
the sample covariance of the remaining observations, once observations
(rows) containing any NaN values are removed.

Y = nancov(X1,X2), where X1 and X2 are matrices with the same
number of elements, is equivalent to nancov(X), where X = [X1(:)
X2(:)].

nancov removes the mean from each variable (column for matrix X)
before calculating Y. If n is the number of remaining observations after
removing observations with NaN values, nancov normalizes Y by either
n – 1 or n , depending on whether n > 1 or n = 1, respectively. To specify
normalization by n, use Y = nancov(...,1).

Y = nancov(...,'pairwise') computes Y(i,j) using rows with no
NaN values in columns i or j. The result Y may not be a positive definite
matrix.

Examples Generate random data for two variables (columns) with random missing
values:

X = rand(10,2);
p = randperm(numel(X));
X(p(1:5)) = NaN
X =

0.8147 0.1576
NaN NaN

0.1270 0.9572
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0.9134 NaN
0.6324 NaN
0.0975 0.1419
0.2785 0.4218
0.5469 0.9157
0.9575 0.7922
0.9649 NaN

Establish a correlation between a third variable and the other two
variables:

X(:,3) = sum(X,2)
X =

0.8147 0.1576 0.9723
NaN NaN NaN

0.1270 0.9572 1.0842
0.9134 NaN NaN
0.6324 NaN NaN
0.0975 0.1419 0.2394
0.2785 0.4218 0.7003
0.5469 0.9157 1.4626
0.9575 0.7922 1.7497
0.9649 NaN NaN

Compute the covariance matrix for the three variables after removing
observations (rows) with NaN values:

Y = nancov(X)
Y =

0.1311 0.0096 0.1407
0.0096 0.1388 0.1483
0.1407 0.1483 0.2890

See Also NaN, cov, var, nanvar
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Purpose Maximum ignoring NaN values

Syntax y = nanmax(X)
Y = nanmax(X1,X2)
y = nanmax(X,[],dim)
[y,indices] = nanmax(...)

Description y = nanmax(X) is the maximum max of X, computed after removing
NaN values.

For vectors x, nanmax(x) is the maximum of the remaining elements,
once NaN values are removed. For matrices X, nanmax(X) is a row vector
of column maxima, once NaN values are removed. For multidimensional
arrays X, nanmax operates along the first nonsingleton dimension.

Y = nanmax(X1,X2) returns an array Y the same size as X1 and X2 with
Y(i,j) = nanmax(X1(i,j),X2(i,j)). Scalar inputs are expanded to
an array of the same size as the other input.

y = nanmax(X,[],dim) operates along the dimension dim of X.

[y,indices] = nanmax(...) also returns the row indices of the
maximum values for each column in the vector indices.

Examples Find column maxima and their indices for data with missing values:

X = magic(3);
X([1 6:9]) = repmat(NaN,1,5)
X =

NaN 1 NaN
3 5 NaN
4 NaN NaN

[y,indices] = nanmax(X)
y =

4 5 NaN
indices =

3 2 1

See Also NaN, max, nanmin
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Purpose Mean ignoring NaN values

Syntax y = nanmean(X)
y = nanmean(X,dim)

Description y = nanmean(X) is the mean of X, computed after removing NaN values.

For vectors x, nanmean(x) is the mean of the remaining elements, once
NaN values are removed. For matrices X, nanmean(X) is a row vector of
column means, once NaN values are removed. For multidimensional
arrays X, nanmean operates along the first nonsingleton dimension.

y = nanmean(X,dim) takes the mean along dimension dim of X.

Note If X contains a vector of all NaN values along some dimension, the
vector is empty once the NaN values are removed, so the sum of the
remaining elements is 0. Since the mean involves division by 0, its
value is NaN. The output NaN is not a mean of NaN values.

Examples Find column means for data with missing values:

X = magic(3);
X([1 6:9]) = repmat(NaN,1,5)
X =

NaN 1 NaN
3 5 NaN
4 NaN NaN

y = nanmean(X)
y =

3.5000 3.0000 NaN

See Also NaN, mean, nanmedian
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Purpose Median ignoring NaN values

Syntax y = nanmedian(X)
y = nanmedian(X,dim)

Description y = nanmedian(X) is the median of X, computed after removing NaN
values.

For vectors x, nanmedian(x) is the median of the remaining elements,
once NaN values are removed. For matrices X, nanmedian(X) is a
row vector of column medians, once NaN values are removed. For
multidimensional arrays X, nanmedian operates along the first
nonsingleton dimension.

y = nanmedian(X,dim) takes the mean along dimension dim of X.

Examples Find column medians for data with missing values:

X = magic(3);
X([1 6:9]) = repmat(NaN,1,5)
X =

NaN 1 NaN
3 5 NaN
4 NaN NaN

y = nanmedian(X)
y =

3.5000 3.0000 NaN

See Also NaN, median, nanmean
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Purpose Minimum ignoring NaN values

Syntax y = nanmin(X)
Y = nanmin(X1,X2)
y = nanmin(X,[],dim)
[y,indices] = nanmin(...)

Description y = nanmin(X) is the minimum min of X, computed after removing
NaN values.

For vectors x, nanmin(x) is the minimum of the remaining elements,
once NaN values are removed. For matrices X, nanmin(X) is a row vector
of column minima, once NaN values are removed. For multidimensional
arrays X, nanmin operates along the first nonsingleton dimension.

Y = nanmin(X1,X2) returns an array Y the same size as X1 and X2 with
Y(i,j) = nanmin(X1(i,j),X2(i,j)). Scalar inputs are expanded to
an array of the same size as the other input.

y = nanmin(X,[],dim) operates along the dimension dim of X.

[y,indices] = nanmin(...) also returns the row indices of the
minimum values for each column in the vector indices.

Examples Find column minima and their indices for data with missing values:

X = magic(3);
X([1 6:9]) = repmat(NaN,1,5)
X =

NaN 1 NaN
3 5 NaN
4 NaN NaN

[y,indices] = nanmin(X)
y =

3 1 NaN
indices =

2 1 1

See Also NaN, min, nanmax
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Purpose Standard deviation ignoring NaN values

Syntax y = nanstd(X)
y = nanstd(X,1)
y = nanstd(X,flag,dim)

Description y = nanstd(X) is the standard deviation std of X, computed after
removing NaN values.

For vectors x, nanstd(x) is the sample standard deviation of the
remaining elements, once NaN values are removed. For matrices X,
nanstd(X) is a row vector of column sample standard deviations,
once NaN values are removed. For multidimensional arrays X, nanstd
operates along the first nonsingleton dimension.

If n is the number of remaining observations after removing
observations with NaN values, nanstd normalizes y by n – 1. To specify
normalization by n, use y = nanstd(X,1).

y = nanstd(X,flag,dim) takes the standard deviation along the
dimension dim of X. The flag is 0 or 1 to specify normalization by n –
1 or n, respectively, where n is the number of remaining observations
after removing observations with NaN values.

Examples Find column standard deviations for data with missing values:

X = magic(3);
X([1 6:9]) = repmat(NaN,1,5)
X =

NaN 1 NaN
3 5 NaN
4 NaN NaN

y = nanstd(X)
y =

0.7071 2.8284 NaN

See Also NaN, std, nanvar, nanmean
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Purpose Sum ignoring NaN values

Syntax y = nansum(X)
y = nansum(X,dim)

Description y = nansum(X) is the sum of X, computed after removing NaN values.

For vectors x, nansum(x) is the sum of the remaining elements, once
NaN values are removed. For matrices X, nansum(X) is a row vector
of column sums, once NaN values are removed. For multidimensional
arrays X, nansum operates along the first nonsingleton dimension.

y = nansum(X,dim) takes the sum along dimension dim of X.

Note If X contains a vector of all NaN values along some dimension, the
vector is empty once the NaN values are removed, so the sum of the
remaining elements is 0. The output 0 is not a sum of NaN values.

Examples Find column sums for data with missing values:

X = magic(3);
X([1 6:9]) = repmat(NaN,1,5)
X =

NaN 1 NaN
3 5 NaN
4 NaN NaN

y = nansum(X)
y =

7 6 0

See Also NaN, sum
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Purpose Variance, ignoring NaN values

Syntax y = nanvar(X)
y = nanvar(X,1)
y = nanvar(X,w)
y = nanvar(X,w,dim)

Description y = nanvar(X) is the variance var of X, computed after removing NaN
values.

For vectors x, nanvar(x) is the sample variance of the remaining
elements, once NaN values are removed. For matrices X, nanvar(X)
is a row vector of column sample variances, once NaN values are
removed. For multidimensional arrays X, nanvar operates along the
first nonsingleton dimension.

nancov removes the mean from each variable (column for matrix X)
before calculating Y. If n is the number of remaining observations after
removing observations with NaN values, nanvar normalizes y by either
n – 1 or n , depending on whether n > 1 or n = 1, respectively. To specify
normalization by n, use y = nanvar(X,1).

y = nanvar(X,w) computes the variance using the weight vector w.
The length of w must equal the length of the dimension over which
nanvar operates, and its elements must be nonnegative. Elements of X
corresponding to NaN values of w are ignored.

y = nanvar(X,w,dim) takes the variance along the dimension dim of X.
Set w to [] to use the default normalization by n – 1.

Examples Find column standard deviations for data with missing values:

X = magic(3);
X([1 6:9]) = repmat(NaN,1,5)
X =

NaN 1 NaN
3 5 NaN
4 NaN NaN

y = nanvar(X)
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y =
0.5000 8.0000 NaN

See Also NaN, var, nanstd, nanmean
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Purpose Negative binomial cumulative distribution function

Syntax Y = nbincdf(X,R,P)

Description Y = nbincdf(X,R,P) computes the negative binomial cdf at each of
the values in X using the corresponding number of successes, R and
probability of success in a single trial, P. X, R, and P can be vectors,
matrices, or multidimensional arrays that all have the same size, which
is also the size of Y. A scalar input for X, R, or P is expanded to a constant
array with the same dimensions as the other inputs.

The negative binomial cdf is

The simplest motivation for the negative binomial is the case of
successive random trials, each having a constant probability P of
success. The number of extra trials you must perform in order to
observe a given number R of successes has a negative binomial
distribution. However, consistent with a more general interpretation
of the negative binomial, nbincdf allows R to be any positive value,
including nonintegers. When R is noninteger, the binomial coefficient in
the definition of the cdf is replaced by the equivalent expression

Examples x = (0:15);
p = nbincdf(x,3,0.5);
stairs(x,p)
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See Also cdf, nbinpdf, nbininv, nbinstat, nbinfit, nbinrnd

“Negative Binomial Distribution” on page B-71
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Purpose Negative binomial parameter estimates

Syntax parmhat = nbinfit(data)
[parmhat,parmci] = nbinfit(data,alpha)
[...] = nbinfit(data,alpha,options)

Description parmhat = nbinfit(data) returns the maximum likelihood estimates
(MLEs) of the parameters of the negative binomial distribution given
the data in the vector data.

[parmhat,parmci] = nbinfit(data,alpha) returns MLEs and
100(1-alpha) percent confidence intervals. By default, alpha = 0.05,
which corresponds to 95% confidence intervals.

[...] = nbinfit(data,alpha,options) accepts a structure,
options, that specifies control parameters for the iterative algorithm
the function uses to compute maximum likelihood estimates. The
negative binomial fit function accepts an options structure which you
can create using the function statset. Enter statset('nbinfit')
to see the names and default values of the parameters that nbinfit
accepts in the options structure. See the reference page for statset
for more information about these options.

Note The variance of a negative binomial distribution is greater than
its mean. If the sample variance of the data in data is less than its
sample mean, nbinfit cannot compute MLEs. You should use the
poissfit function instead.

See Also nbincdf, nbininv, nbinpdf, nbinrnd, nbinstat, mle, statset

“Negative Binomial Distribution” on page B-71
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Purpose Negative binomial inverse cumulative distribution function

Syntax X = nbininv(Y,R,P)

Description X = nbininv(Y,R,P) returns the inverse of the negative binomial
cdf with corresponding number of successes, R and probability of
success in a single trial, P. Since the binomial distribution is discrete,
nbininv returns the least integer X such that the negative binomial cdf
evaluated at X equals or exceeds Y. Y, R, and P can be vectors, matrices,
or multidimensional arrays that all have the same size, which is also
the size of X. A scalar input for Y, R, or P is expanded to a constant array
with the same dimensions as the other inputs.

The simplest motivation for the negative binomial is the case of
successive random trials, each having a constant probability P of
success. The number of extra trials you must perform in order to
observe a given number R of successes has a negative binomial
distribution. However, consistent with a more general interpretation
of the negative binomial, nbininv allows R to be any positive value,
including nonintegers.

Examples How many times would you need to flip a fair coin to have a 99%
probability of having observed 10 heads?

flips = nbininv(0.99,10,0.5) + 10
flips =

33

Note that you have to flip at least 10 times to get 10 heads. That is why
the second term on the right side of the equals sign is a 10.

See Also icdf, nbincdf, nbinpdf, nbinstat, nbinfit, nbinrnd

“Negative Binomial Distribution” on page B-71
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Purpose Negative binomial probability density function

Syntax Y = nbinpdf(X,R,P)

Description Y = nbinpdf(X,R,P) returns the negative binomial pdf at each of
the values in X using the corresponding number of successes, R and
probability of success in a single trial, P. X, R, and P can be vectors,
matrices, or multidimensional arrays that all have the same size, which
is also the size of Y. A scalar input for X, R, or P is expanded to a constant
array with the same dimensions as the other inputs. Note that the
density function is zero unless the values in X are integers.

The negative binomial pdf is

The simplest motivation for the negative binomial is the case of
successive random trials, each having a constant probability P of
success. The number of extra trials you must perform in order to
observe a given number R of successes has a negative binomial
distribution. However, consistent with a more general interpretation
of the negative binomial, nbinpdf allows R to be any positive value,
including nonintegers. When R is noninteger, the binomial coefficient in
the definition of the pdf is replaced by the equivalent expression

Examples x = (0:10);
y = nbinpdf(x,3,0.5);
plot(x,y,'+')
set(gca,'Xlim',[-0.5,10.5])
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See Also pdf, nbincdf, nbininv, nbinstat, nbinfit, nbinrnd

“Negative Binomial Distribution” on page B-71
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Purpose Negative binomial random numbers

Syntax RND = nbinrnd(R,P)
RND = nbinrnd(R,P,m)
RND = nbinrnd(R,P,m,n)

Description RND = nbinrnd(R,P) is a matrix of random numbers chosen from a
negative binomial distribution with corresponding number of successes,
R and probability of success in a single trial, P. R and P can be vectors,
matrices, or multidimensional arrays that have the same size, which is
also the size of RND. A scalar input for R or P is expanded to a constant
array with the same dimensions as the other input.

RND = nbinrnd(R,P,m) generates random numbers with parameters R
and P, where v is a row vector. If v is a 1-by-2 vector, R is a matrix with
v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional array.

RND = nbinrnd(R,P,m,n) generates random numbers with parameters
R and P, where scalars m and n are the row and column dimensions
of RND.

The simplest motivation for the negative binomial is the case of
successive random trials, each having a constant probability P of
success. The number of extra trials you must perform in order to
observe a given number R of successes has a negative binomial
distribution. However, consistent with a more general interpretation
of the negative binomial, nbinrnd allows R to be any positive value,
including nonintegers.

Examples Suppose you want to simulate a process that has a defect probability of
0.01. How many units might Quality Assurance inspect before finding
three defective items?

r = nbinrnd(3,0.01,1,6)+3
r =

496 142 420 396 851 178

See Also random, nbinpdf, nbincdf, nbininv, nbinstat, nbinfit
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“Negative Binomial Distribution” on page B-71
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Purpose Negative binomial mean and variance

Syntax [M,V] = nbinstat(R,P)

Description [M,V] = nbinstat(R,P) returns the mean of and variance for the
negative binomial distribution with corresponding number of successes,
R and probability of success in a single trial, P. R and P can be vectors,
matrices, or multidimensional arrays that all have the same size, which
is also the size of M and V. A scalar input for R or P is expanded to a
constant array with the same dimensions as the other input.

The mean of the negative binomial distribution with parameters r and p
is rq / p, where q = 1 – p. The variance is rq / p2.

The simplest motivation for the negative binomial is the case of
successive random trials, each having a constant probability P of
success. The number of extra trials you must perform in order to
observe a given number R of successes has a negative binomial
distribution. However, consistent with a more general interpretation
of the negative binomial, nbinstat allows R to be any positive value,
including nonintegers.

Examples p = 0.1:0.2:0.9;
r = 1:5;
[R,P] = meshgrid(r,p);
[M,V] = nbinstat(R,P)
M =

9.0000 18.0000 27.0000 36.0000 45.0000
2.3333 4.6667 7.0000 9.3333 11.6667
1.0000 2.0000 3.0000 4.0000 5.0000
0.4286 0.8571 1.2857 1.7143 2.1429
0.1111 0.2222 0.3333 0.4444 0.5556

V =
90.0000 180.0000 270.0000 360.0000 450.0000
7.7778 15.5556 23.3333 31.1111 38.8889
2.0000 4.0000 6.0000 8.0000 10.0000
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0.6122 1.2245 1.8367 2.4490 3.0612
0.1235 0.2469 0.3704 0.4938 0.6173

See Also nbinpdf, nbincdf, nbininv, nbinfit, nbinrnd

“Negative Binomial Distribution” on page B-71
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Purpose Noncentral F cumulative distribution function

Syntax P = ncfcdf(X,NU1,NU2,DELTA)

Description P = ncfcdf(X,NU1,NU2,DELTA) computes the noncentral F cdf at
each of the values in X using the corresponding numerator degrees of
freedom in NU1, denominator degrees of freedom in NU2, and positive
noncentrality parameters in DELTA. NU1, NU2, and DELTA can be vectors,
matrices, or multidimensional arrays that have the same size, which is
also the size of P. A scalar input for X, NU1, NU2, or DELTA is expanded to
a constant array with the same dimensions as the other inputs.

The noncentral F cdf is

where I(x|a,b) is the incomplete beta function with parameters a and b.

Examples Compare the noncentral F cdf with δ = 10 to the F cdf with the same
number of numerator and denominator degrees of freedom (5 and 20
respectively).

x = (0.01:0.1:10.01)';
p1 = ncfcdf(x,5,20,10);
p = fcdf(x,5,20);
plot(x,p,'-',x,p1,'-')
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References [1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous
Univariate Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc.,
1970, pp. 189–200.

See Also cdf, ncfpdf, ncfinv, ncfstat, ncfrnd

“Noncentral F Distribution” on page B-77
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Purpose Noncentral F inverse cumulative distribution function

Syntax X = ncfinv(P,NU1,NU2,DELTA)

Description X = ncfinv(P,NU1,NU2,DELTA) returns the inverse of the noncentral
F cdf with numerator degrees of freedom NU1, denominator degrees
of freedom NU2, and positive noncentrality parameter DELTA for the
corresponding probabilities in P. P, NU1, NU2, and DELTA can be vectors,
matrices, or multidimensional arrays that all have the same size, which
is also the size of X. A scalar input for P, NU1, NU2, or DELTA is expanded
to a constant array with the same dimensions as the other inputs.

Examples One hypothesis test for comparing two sample variances is to take
their ratio and compare it to an F distribution. If the numerator and
denominator degrees of freedom are 5 and 20 respectively, then you
reject the hypothesis that the first variance is equal to the second
variance if their ratio is less than that computed below.

critical = finv(0.95,5,20)
critical =

2.7109

Suppose the truth is that the first variance is twice as big as the second
variance. How likely is it that you would detect this difference?

prob = 1 - ncfcdf(critical,5,20,2)
prob =

0.1297

If the true ratio of variances is 2, what is the typical (median) value you
would expect for the F statistic?

ncfinv(0.5,5,20,2)
ans =

1.2786
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References [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions.
Hoboken, NJ: Wiley-Interscience, 2000.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous
Univariate Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc.,
1970, pp. 189–200.

See Also icdf, ncfcdf, ncfpdf, ncfstat, ncfrnd

“Noncentral F Distribution” on page B-77
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Purpose Noncentral F probability density function

Syntax Y = ncfpdf(X,NU1,NU2,DELTA)

Description Y = ncfpdf(X,NU1,NU2,DELTA) computes the noncentral F pdf at
each of the values in X using the corresponding numerator degrees of
freedom in NU1, denominator degrees of freedom in NU2, and positive
noncentrality parameters in DELTA. X, NU1, N2, and B can be vectors,
matrices, or multidimensional arrays that all have the same size, which
is also the size of Y. A scalar input for P, NU1, NU2, or DELTA is expanded
to a constant array with the same dimensions as the other inputs.

The F distribution is a special case of the noncentral F where δ = 0. As δ
increases, the distribution flattens like the plot in the example.

Examples Compare the noncentral F pdf with δ = 10 to the F pdf with the same
number of numerator and denominator degrees of freedom (5 and 20
respectively).

x = (0.01:0.1:10.01)';
p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);
plot(x,p,'-',x,p1,'-')

References [1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous
Univariate Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc.,
1970, pp. 189–200.

See Also pdf, ncfcdf, ncfinv, ncfstat, ncfrnd
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“Noncentral F Distribution” on page B-77
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Purpose Noncentral F random numbers

Syntax R = ncfrnd(NU1,NU2,DELTA)
R = ncfrnd(NU1,NU2,DELTA,v)
R = ncfrnd(NU1,NU2,DELTA,m,n)

Description R = ncfrnd(NU1,NU2,DELTA) returns a matrix of random numbers
chosen from the noncentral F distribution with corresponding
numerator degrees of freedom in NU1, denominator degrees of freedom
in NU2, and positive noncentrality parameters in DELTA. NU1, NU2, and
DELTA can be vectors, matrices, or multidimensional arrays that have
the same size, which is also the size of R. A scalar input for NU1, NU2,
or DELTA is expanded to a constant matrix with the same dimensions
as the other inputs.

R = ncfrnd(NU1,NU2,DELTA,v) returns a matrix of random numbers
with parameters NU1, NU2, and DELTA, where v is a row vector. If v is a
1-by-2 vector, R is a matrix with v(1) rows and v(2) columns. If v is
1-by-n, R is an n-dimensional array.

R = ncfrnd(NU1,NU2,DELTA,m,n) generates random numbers with
parameters NU1, NU2, and DELTA, where scalars m and n are the row
and column dimensions of R.

Examples Compute six random numbers from a noncentral F distribution with 10
numerator degrees of freedom, 100 denominator degrees of freedom and
a noncentrality parameter, δ, of 4.0. Compare this to the F distribution
with the same degrees of freedom.

r = ncfrnd(10,100,4,1,6)
r =

2.5995 0.8824 0.8220 1.4485 1.4415 1.4864

r1 = frnd(10,100,1,6)
r1 =

0.9826 0.5911 1.0967 0.9681 2.0096 0.6598
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References [1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous
Univariate Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc.,
1970, pp. 189–200.

See Also random, ncfpdf, ncfcdf, ncfinv, ncfstat

“Noncentral F Distribution” on page B-77
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Purpose Noncentral F mean and variance

Syntax [M,V] = ncfstat(NU1,NU2,DELTA)

Description [M,V] = ncfstat(NU1,NU2,DELTA) returns the mean of and variance
for the noncentral F pdf with corresponding numerator degrees of
freedom in NU1, denominator degrees of freedom in NU2, and positive
noncentrality parameters in DELTA. NU1, NU2, and DELTA can be vectors,
matrices, or multidimensional arrays that all have the same size, which
is also the size of M and V. A scalar input for NU1, NU2, or DELTA is
expanded to a constant array with the same dimensions as the other
input.

The mean of the noncentral F distribution with parameters ν1, ν2, and
δ is

where ν2 > 2.

The variance is

where ν2 > 4.

Examples [m,v]= ncfstat(10,100,4)
m =

1.4286
v =

0.4252

References [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions.
2nd ed., Hoboken, NJ: John Wiley & Sons, Inc., 1993, pp. 73–74.
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[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous
Univariate Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc.,
1970, pp. 189–200.

See Also ncfpdf, ncfcdf, ncfinv, ncfrnd

“Noncentral F Distribution” on page B-77
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NaiveBayes.NClasses property

Purpose Number of classes

Description The NClasses property specifies the number of classes in the grouping
variable used to create the Naive Bayes classifier.
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gmdistribution.NComponents property

Purpose Number k of mixture components

Description The number k of mixture components.
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Purpose Noncentral t cumulative distribution function

Syntax P = nctcdf(X,NU,DELTA)

Description P = nctcdf(X,NU,DELTA) computes the noncentral t cdf at each of
the values in X using the corresponding degrees of freedom in NU and
noncentrality parameters in DELTA. X, NU, and DELTA can be vectors,
matrices, or multidimensional arrays that have the same size, which
is also the size of P. A scalar input for X, NU, or DELTA is expanded to a
constant array with the same dimensions as the other inputs.

Examples Compare the noncentral t cdf with DELTA = 1 to the t cdf with the same
number of degrees of freedom (10).

x = (-5:0.1:5)';
p1 = nctcdf(x,10,1);
p = tcdf(x,10);
plot(x,p,'-',x,p1,'-')

References [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions.
2nd ed., Hoboken, NJ: John Wiley & Sons, Inc., 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous
Univariate Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc.,
1970, pp. 201–219.

See Also cdf, nctpdf, nctinv, nctstat, nctrnd

“Noncentral t Distribution” on page B-79
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Purpose Noncentral t inverse cumulative distribution function

Syntax X = nctinv(P,NU,DELTA)

Description X = nctinv(P,NU,DELTA) returns the inverse of the noncentral t cdf
with NU degrees of freedom and noncentrality parameter DELTA for
the corresponding probabilities in P. P, NU, and DELTA can be vectors,
matrices, or multidimensional arrays that all have the same size, which
is also the size of X. A scalar input for P, NU, or DELTA is expanded to a
constant array with the same dimensions as the other inputs.

Examples x = nctinv([0.1 0.2],10,1)
x =

-0.2914 0.1618

References [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions.
2nd ed., Hoboken, NJ: John Wiley & Sons, Inc., 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous
Univariate Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc.,
1970, pp. 201–219.

See Also icdf, nctcdf, nctpdf, nctstat, nctrnd

“Noncentral t Distribution” on page B-79
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Purpose Noncentral t probability density function

Syntax Y = nctpdf(X,V,DELTA)

Description Y = nctpdf(X,V,DELTA) computes the noncentral t pdf at each of
the values in X using the corresponding degrees of freedom in V and
noncentrality parameters in DELTA. Vector or matrix inputs for X, V, and
DELTA must have the same size, which is also the size of Y. A scalar
input for X, V, or DELTA is expanded to a constant matrix with the same
dimensions as the other inputs.

Examples Compare the noncentral t pdf with DELTA = 1 to the t pdf with the same
number of degrees of freedom (10):

x = (-5:0.1:5)';
nct = nctpdf(x,10,1);
t = tpdf(x,10);

plot(x,nct,'b-','LineWidth',2)
hold on
plot(x,t,'g--','LineWidth',2)
legend('nct','t')
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References [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions.
2nd ed., Hoboken, NJ: John Wiley & Sons, Inc., 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous
Univariate Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc.,
1970, pp. 201–219.

See Also pdf, nctcdf, nctinv, nctstat, nctrnd

“Noncentral t Distribution” on page B-79
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Purpose Noncentral t random numbers

Syntax R = nctrnd(V,DELTA)
R = nctrnd(V,DELTA,v)
R = nctrnd(V,DELTA,m,n)

Description R = nctrnd(V,DELTA) returns a matrix of random numbers chosen
from the noncentral T distribution using the corresponding degrees of
freedom in V and noncentrality parameters in DELTA. V and DELTA can
be vectors, matrices, or multidimensional arrays. A scalar input for V
or DELTA is expanded to a constant array with the same dimensions
as the other input.

R = nctrnd(V,DELTA,v) returns a matrix of random numbers with
parameters V and DELTA, where v is a row vector. If v is a 1-by-2 vector,
R is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an
n-dimensional array.

R = nctrnd(V,DELTA,m,n) generates random numbers with
parameters V and DELTA, where scalars m and n are the row and column
dimensions of R.

Examples nctrnd(10,1,5,1)
ans =

1.6576
1.0617
1.4491
0.2930
3.6297

References [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions.
2nd ed., Hoboken, NJ: John Wiley & Sons, Inc., 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous
Univariate Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc.,
1970, pp. 201–219.
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See Also random, nctpdf, nctcdf, nctinv, nctstat

“Noncentral t Distribution” on page B-79
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Purpose Noncentral t mean and variance

Syntax [M,V] = nctstat(NU,DELTA)

Description [M,V] = nctstat(NU,DELTA) returns the mean of and variance for the
noncentral t pdf with NU degrees of freedom and noncentrality parameter
DELTA. NU and DELTA can be vectors, matrices, or multidimensional
arrays that all have the same size, which is also the size of M and V. A
scalar input for NU or DELTA is expanded to a constant array with the
same dimensions as the other input.

The mean of the noncentral t distribution with parameters ν and δ is

where ν > 1.

The variance is

where ν > 2.

Examples [m,v] = nctstat(10,1)

m =
1.0837

v =
1.3255

References [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions.
2nd ed., Hoboken, NJ: John Wiley & Sons, Inc., 1993, pp. 147–148.
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[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous
Univariate Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc.,
1970, pp. 201–219.

See Also nctpdf, nctcdf, nctinv, nctrnd

“Noncentral t Distribution” on page B-79
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Purpose Noncentral chi-square cumulative distribution function

Syntax P = ncx2cdf(X,V,DELTA)

Description P = ncx2cdf(X,V,DELTA) computes the noncentral chi-square cdf at
each of the values in X using the corresponding degrees of freedom in V
and positive noncentrality parameters in DELTA. X, V, and DELTA can be
vectors, matrices, or multidimensional arrays that all have the same
size, which is also the size of P. A scalar input for X, V, or DELTA is
expanded to a constant array with the same dimensions as the other
inputs.

Some texts refer to this distribution as the generalized Rayleigh,
Rayleigh-Rice, or Rice distribution.

The noncentral chi-square cdf is

Examples Compare the noncentral chi-square cdf with DELTA = 2 to the
chi-square cdf with the same number of degrees of freedom (4):

x = (0:0.1:10)';
ncx2 = ncx2cdf(x,4,2);
chi2 = chi2cdf(x,4);

plot(x,ncx2,'b-','LineWidth',2)
hold on
plot(x,chi2,'g--','LineWidth',2)
legend('ncx2','chi2','Location','NW')
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References [1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous
Univariate Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc.,
1970, pp. 130–148.

See Also cdf, ncx2pdf, ncx2inv, ncx2stat, ncx2rnd

“Noncentral Chi-Square Distribution” on page B-75
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Purpose Noncentral chi-square inverse cumulative distribution function

Syntax X = ncx2inv(P,V,DELTA)

Description X = ncx2inv(P,V,DELTA) returns the inverse of the noncentral
chi-square cdf using the corresponding degrees of freedom in V and
positive noncentrality parameters in DELTA, at the corresponding
probabilities in P. P, V, and DELTA can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the
size of X. A scalar input for P, V, or DELTA is expanded to a constant
array with the same dimensions as the other inputs.

Algorithm ncx2inv uses Newton’s method to converge to the solution.

Examples ncx2inv([0.01 0.05 0.1],4,2)
ans =

0.4858 1.1498 1.7066

References [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions.
2nd ed., Hoboken, NJ: John Wiley & Sons, Inc., 1993, pp. 50–52.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous
Univariate Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc.,
1970, pp. 130–148.

See Also icdf, ncx2cdf, ncx2pdf, ncx2stat, ncx2rnd

“Noncentral Chi-Square Distribution” on page B-75
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Purpose Noncentral chi-square probability density function

Syntax Y = ncx2pdf(X,V,DELTA)

Description Y = ncx2pdf(X,V,DELTA) computes the noncentral chi-square pdf at
each of the values in X using the corresponding degrees of freedom in V
and positive noncentrality parameters in DELTA. Vector or matrix inputs
for X, V, and DELTA must have the same size, which is also the size of Y.
A scalar input for X, V, or DELTA is expanded to a constant array with
the same dimensions as the other inputs.

Some texts refer to this distribution as the generalized Rayleigh,
Rayleigh-Rice, or Rice distribution.

Examples Compare the noncentral chi-square pdf with DELTA = 2 to the
chi-square pdf with the same number of degrees of freedom (4):

x = (0:0.1:10)';
ncx2 = ncx2pdf(x,4,2);
chi2 = chi2pdf(x,4);

plot(x,ncx2,'b-','LineWidth',2)
hold on
plot(x,chi2,'g--','LineWidth',2)
legend('ncx2','chi2')
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References [1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous
Univariate Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc.,
1970, pp. 130–148.

See Also pdf, ncx2cdf, ncx2inv, ncx2stat, ncx2rnd

“Noncentral Chi-Square Distribution” on page B-75
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Purpose Noncentral chi-square random numbers

Syntax R = ncx2rnd(V,DELTA)
R = ncx2rnd(V,DELTA,v)
R = ncx2rnd(V,DELTA,m,n)

Description R = ncx2rnd(V,DELTA) returns a matrix of random numbers chosen
from the noncentral chi-square distribution using the corresponding
degrees of freedom in V and positive noncentrality parameters in DELTA.
V and DELTA can be vectors, matrices, or multidimensional arrays that
have the same size, which is also the size of R. A scalar input for V or
DELTA is expanded to a constant array with the same dimensions as
the other input.

R = ncx2rnd(V,DELTA,v) returns a matrix of random numbers with
parameters V and DELTA, where v is a row vector. If v is a 1-by-2 vector,
R is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an
n-dimensional array.

R = ncx2rnd(V,DELTA,m,n) generates random numbers with
parameters V and DELTA, where scalars m and n are the row and column
dimensions of R.

Examples ncx2rnd(4,2,6,3)
ans =

6.8552 5.9650 11.2961
5.2631 4.2640 5.9495
9.1939 6.7162 3.8315

10.3100 4.4828 7.1653
2.1142 1.9826 4.6400
3.8852 5.3999 0.9282

References [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions.
2nd ed., Hoboken, NJ: John Wiley & Sons, Inc., 1993, pp. 50–52.

18-832



ncx2rnd

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous
Univariate Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc.,
1970, pp. 130–148.

See Also random, ncx2pdf, ncx2cdf, ncx2inv, ncx2stat

“Noncentral Chi-Square Distribution” on page B-75
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Purpose Noncentral chi-square mean and variance

Syntax [M,V] = ncx2stat(NU,DELTA)

Description [M,V] = ncx2stat(NU,DELTA) returns the mean of and variance
for the noncentral chi-square pdf with NU degrees of freedom and
noncentrality parameter DELTA. NU and DELTA can be vectors, matrices,
or multidimensional arrays that all have the same size, which is also
the size of M and V. A scalar input for NU or DELTA is expanded to a
constant array with the same dimensions as the other input.

The mean of the noncentral chi-square distribution with parameters
ν and δ is , and the variance is .

Examples [m,v] = ncx2stat(4,2)
m =

6
v =

16

References [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions.
2nd ed., Hoboken, NJ: John Wiley & Sons, Inc., 1993, pp. 50–52.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous
Univariate Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc.,
1970, pp. 130–148.

See Also ncx2pdf, ncx2cdf, ncx2inv, ncx2rnd

“Noncentral Chi-Square Distribution” on page B-75

18-834



categorical.ndims

Purpose Number of dimensions of categorical array

Syntax n = ndims(A)

Description n = ndims(A) returns the number of dimensions in the categorical
array A. The number of dimensions in an array is always greater than
or equal to 2. Trailing singleton dimensions are ignored. Put simply,
ndims(A) is length(size(A)).

See Also size
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gmdistribution.NDimensions property

Purpose Dimension d of multivariate Gaussian distributions

Description The dimension d of the multivariate Gaussian distributions.
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dataset.ndims

Purpose Number of dimensions of dataset array

Syntax n = ndims(A)

Description n = ndims(A) returns the number of dimensions in the dataset A. The
number of dimensions in an array is always 2.

See Also size
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qrandset.ndims

Purpose Number of dimensions in matrix

Syntax n = ndims(p)

Description n = ndims(p) returns the number of dimensions in the matrix that
is created by the syntax p(:,:). Since this is always a 2-D matrix, n
is always equal to 2.

See Also qrandset, size
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NaiveBayes.NDims property

Purpose Number of dimensions

Description The NDims property specifies the number of dimensions, which is equal
to the number of features in the training data used to create the Naive
Bayes classifier.
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qrandstream.ne

Purpose Not equal relation for handles

Syntax h1 ~= h2

Description Handles are equal if they are handles for the same object and are
unequal otherwise.

h1 ~= h2 performs element-wise comparisons between handle arrays
h1 and h2. h1 and h2 must be of the same dimensions unless one is a
scalar. The result is a logical array of the same dimensions, where each
element is an element-wise ~= result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result
will match the dimensions of the array that is not scalar.

tf = ne(h1, h2) stores the result in a logical array of the same
dimensions.

See Also qrandstream, eq, ge, gt, le, lt
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Purpose Generate quasi-random point set

Syntax X = net(p,n)

Description X = net(p,n) returns the first n points X from the point set p of the
qrandset class. X is n-by-d, where d is the dimension of the point set.

Objects p of the @qrandset class encapsulate properties of a specified
quasi-random sequence. Values of the point set are not generated and
stored in memory until p is accessed using net or parenthesis indexing.

Examples Use haltonset to generate a 3-D Halton point set, skip the first 1000
values, and then retain every 101st point:

p = haltonset(3,'Skip',1e3,'Leap',1e2)
p =

Halton point set in 3 dimensions (8.918019e+013 points)
Properties:

Skip : 1000
Leap : 100

ScrambleMethod : none

Use scramble to apply reverse-radix scrambling:

p = scramble(p,'RR2')
p =

Halton point set in 3 dimensions (8.918019e+013 points)
Properties:

Skip : 1000
Leap : 100

ScrambleMethod : RR2

Use net to generate the first four points:

X0 = net(p,4)
X0 =

0.0928 0.6950 0.0029
0.6958 0.2958 0.8269
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0.3013 0.6497 0.4141
0.9087 0.7883 0.2166

Use parenthesis indexing to generate every third point, up to the 11th
point:

X = p(1:3:11,:)
X =

0.0928 0.6950 0.0029
0.9087 0.7883 0.2166
0.3843 0.9840 0.9878
0.6831 0.7357 0.7923

See Also haltonset, sobolset, qrandstream
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Purpose Nonlinear regression

Syntax beta = nlinfit(X,y,fun,beta0)
[beta,r,J,COVB,mse] = nlinfit(X,y,fun,beta0)
[...] = nlinfit(X,y,fun,beta0,options)

Description beta = nlinfit(X,y,fun,beta0) returns a vector beta of coefficient
estimates for a nonlinear regression of the responses in y on the
predictors in X using the model specified by fun. X is an n-by-p matrix of
p predictors at each of n observations. y is an n-by-1 vector of observed
responses. fun is a function handle to a function of the form:

yhat = modelfun(b,X)

where b is a coefficient vector. beta0 is a vector containing initial
values for the coefficients. beta is the same length as beta0.

[beta,r,J,COVB,mse] = nlinfit(X,y,fun,beta0) returns the fitted
coefficients b, the residuals r, the Jacobian J of fun, the estimated
covariance matrix COVB for the fitted coefficients, and an estimate mse
of the variance of the error term. You can use these outputs with
nlpredci to produce error estimates on predictions, and with nlparci
to produce error estimates on the estimated coefficients. If you use the
robust fitting option (see below), you must use COVB and may need mse
as input to nlpredci or nlparci to insure that the confidence intervals
take the robust fit properly into account.

[...] = nlinfit(X,y,fun,beta0,options) specifies control
parameters for the algorithm used in nlinfit. options is a structure
created by a call to statset. Applicable statset parameters are:

• 'MaxIter'— Maximum number of iterations allowed. The default
is 100.

• 'TolFun'— Termination tolerance on the residual sum of squares.
The defaults is 1e-8.

• 'TolX'— Termination tolerance on the estimated coefficients beta.
The default is 1e-8.
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• 'Display'— Level of display output during estimation. The choices
are

- 'off' (the default)

- 'iter'

- 'final'

• 'DerivStep'— Relative difference used in finite difference gradient
calculation. May be a scalar, or the same size as the parameter
vector b0. The default is eps^(1/3).

• 'FunValCheck'— Check for invalid values, such as NaN or Inf, from
the objective function. Values are 'off' or 'on' (the default).

• 'Robust' — Invoke robust fitting option. Values are 'off' (the
default) or 'on'.

• 'WgtFun' — A weight function for robust fitting. Valid only when
'Robust' is 'on'. It can be 'bisquare' (the default), 'andrews',
'cauchy', 'fair', 'huber', 'logistic', 'talwar', or 'welsch'. It
can also be a function handle that accepts a normalized residual as
input and returns the robust weights as output.

• 'Tune'— The tuning constant used in robust fitting to normalize the
residuals before applying the weight function. The value is a positive
scalar, with the default value dependent on the weight function. This
parameter is required if the weight function is specified as a function
handle.

Note Robust nonlinear fitting uses an algorithm that iteratively
reweights response values and recomputes a least-squares fit. The
least-squares component of the algorithm differs from linear least
squares, but the reweighting loop is identical to that for robust linear
methods. In particular, the weight function and its tuning parameter
are the same as described for robustfit. Note that nlinfit counts
iterations of both the reweighting loop and the least-squares fit toward
the maximum number of iterations.
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nlinfit treats NaNs in y or modelfun(beta0,X) as missing data and
ignores the corresponding rows.

nlintool is a graphical user interface to nlinfit.

Examples The data in reaction.mat are partial pressures of three chemical
reactants and the corresponding reaction rates. The function hougen
implements the nonlinear Hougen-Watson model for reaction rates. The
following fits the model to the data:

load reaction

beta = nlinfit(reactants,rate,@hougen,beta)
beta =

1.2526
0.0628
0.0400
0.1124
1.1914

References [1] Seber, G. A. F., and C. J. Wild. Nonlinear Regression. Hoboken, NJ:
Wiley-Interscience, 2003.

See Also nlparci, nlpredci, nlintool
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Purpose Interactive nonlinear regression

Syntax nlintool(X,y,fun,beta0)
nlintool(X,y,fun,beta0,alpha)
nlintool(X,y,fun,beta0,alpha,'xname','yname')

Description nlintool(X,y,fun,beta0) is a graphical user interface to the nlinfit
function, and uses the same input arguments. The interface displays
plots of the fitted response against each predictor, with the other
predictors held fixed. The fixed values are in the text boxes below each
predictor axis. Change the fixed values by typing in a new value or
by dragging the vertical lines in the plots to new positions. When you
change the value of a predictor, all plots update to display the model
at the new point in predictor space. Dashed red curves show 95%
simultaneous confidence bands for the function.

nlintool(X,y,fun,beta0,alpha) shows 100(1-alpha)% confidence
bands. These are simultaneous confidence bounds for the function value.
Using the Boundser pmenu you can switch between simultaneous and
non-simultaneous bounds, and between bounds on the function and
bounds for predicting a new observation.

nlintool(X,y,fun,beta0,alpha,'xname','yname') labels the plots
using the string matrix 'xname' for the predictors and the string
'yname' for the response.

Examples The data in reaction.mat are partial pressures of three chemical
reactants and the corresponding reaction rates. The function hougen
implements the nonlinear Hougen-Watson model for reaction rates. The
following fits the model to the data:

load reaction
nlintool(reactants,rate,@hougen,beta,0.01,xn,yn)
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See Also nlinfit, polytool, rstool
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Purpose Nonlinear mixed-effects estimation

Syntax beta = nlmefit(X,y,group,V,fun,beta0)
[beta,PSI] = nlmefit(...)
[beta,PSI,stats] = nlmefit(...)
[beta,PSI,stats,B] = nlmefit(...)
[...] = nlmefit(...,param1,val1,param2,val2,...)

Description beta = nlmefit(X,y,group,V,fun,beta0) fits a nonlinear
mixed-effects regression model and returns estimates of the fixed effects
in beta. By default, nlmefit fits a model in which each parameter
is the sum of a fixed and a random effect, and the random effects are
uncorrelated (their covariance matrix is diagonal).

X is an n-by-h matrix of n observations on h predictors. y is an n-by-1
vector of responses.

group is a grouping variable indicating m groups in the observations.
group is a categorical variable, a numeric vector, a character matrix
with rows for group names, or a cell array of strings.

V is an m-by-g matrix or cell array of g group-specific predictors. These
are predictors that take the same value for all observations in a group.
The rows of V are assigned to groups using grp2idx, according to the
order specified by grp2idx(group). Use a cell array for V if group
predictors vary in size across groups. Use [] for V if there are no
group-specific predictors.

fun is a function handle to a function that accepts predictor values and
model parameters and returns fitted values. fun has the form

yfit = modelfun(PHI,XFUN,VFUN)

The arguments are:

• PHI — A 1-by-p vector of model parameters.

• XFUN — A k-by-h array of predictors, where:

- k = 1 if XFUN is a single row of X.
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- k = ni if XFUN contains the rows of X for a single group of size ni.

- k = n if XFUN contains all rows of X.

• VFUN — Group-specific predictors given by one of:

- A 1-by-g vector corresponding to a single group and a single row
of V.

- An n-by-g array, where the jth row is V(I,:) if the jth observation
is in group I.

If V is empty, nlmefit calls modelfun with only two inputs.

• yfit — A k-by-1 vector of fitted values

When either PHI or VFUN contains a single row, it corresponds to all
rows in the other two input arguments.

Note If modelfun can compute yfit for more than one vector of model
parameters per call, use the 'Vectorization' parameter (described
later) for improved performance.

beta0 is a q-by-1 vector with initial estimates for q fixed effects. By
default, q is the number of model parameters p.

nlmefit fits the model by maximizing an approximation to the marginal
likelihood with random effects integrated out, assuming that:

• Random effects are multivariate normally distributed and
independent between groups.

• Observation errors are independent, identically normally distributed,
and independent of the random effects.

[beta,PSI] = nlmefit(...) also returns PSI, an r-by-r estimated
covariance matrix for the random effects. By default, r is equal to the
number of model parameters p.
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[beta,PSI,stats] = nlmefit(...) also returns stats, a structure
with fields:

• logl— The maximized log-likelihood for the fitted model

• mse— The estimated error variance for the fitted model

• aic— The Akaike information criterion for the fitted model

• bic— The Bayesian information criterion for the fitted model

• sebeta — The standard errors for beta

• dfe— The error degrees of freedom for the model

[beta,PSI,stats,B] = nlmefit(...) also returns B, an r-by-m
matrix of estimated random effects for the m groups. By default, r is
equal to the number of model parameters p.

[...] = nlmefit(...,param1,val1,param2,val2,...) specifies
additional parameter name/value pairs.

Use the following parameters to fit a model different from the default.
(The default model is obtained by setting both 'FEConstDesign' and
'REConstDesign' to eye(p), or by setting both 'FEParamsSelect' and
'REParamsSelect' to 1:p.) Use at most one parameter with an 'FE'
prefix and one parameter with an 'RE' prefix. The nlmefit function
requires you to specify at least one fixed effect and one random effect.
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Parameter Value

'FEParamsSelect' A vector specifying which elements of
the parameter vector PHI include a fixed
effect, given as a numeric vector of indices
between 1 and p or as a 1-by-p logical
vector. If q is the specified number of
elements, then the model includes q fixed
effects.

'FEConstDesign' A p-by-q design matrix ADESIGN, where
ADESIGN*beta are the fixed components of
the p elements of PHI.

'FEGroupDesign' A p-by-q-by-m array specifying a different
p-by-q fixed-effects design matrix for each
of the m groups.

'FEObsDesign' A p-by-q-by-n array specifying a different
p-by-q fixed-effects design matrix for each
of the n observations.

'REParamsSelect' A vector specifying which elements of the
parameter vector PHI include a random
effect, given as a numeric vector of indices
between 1 and p or as a 1-by-p logical
vector. The model includes r random
effects, where r is the specified number of
elements.

'REConstDesign' A p-by-r design matrix BDESIGN, where
BDESIGN*B are the random components of
the p elements of PHI.

'REGroupDesign' A p-by-r-by-m array specifying a different
p-by-r random-effects design matrix for
each of m groups.

'REObsDesign' A p-by-r-by-n array specifying a different
p-by-r random-effects design matrix for
each of n observations.
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Use the following parameters to control the iterative algorithm for
maximizing the likelihood:

Parameter Value

'RefineBeta0' Determines whether nlmefit makes an
initial refinement of beta0 by first fitting
modelfun without random effects and
replacing beta0 with beta. Choices are
'on' and 'off'. The default value is 'on'.

'ApproximationType' The method used to approximate the
likelihood of the model. Choices are:

• 'LME' — Use the likelihood for the
linear mixed-effects model at the
current conditional estimates of beta
and B. This is the default.

• 'RELME'— Use the restricted likelihood
for the linear mixed-effects model at the
current conditional estimates of beta
and B.

• 'FO' — First-order Laplacian
approximation without random effects.

• 'FOCE' — First-order Laplacian
approximation at the conditional
estimates of B.
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Parameter Value

'Vectorization' Indicates acceptable sizes for the PHI,
XFUN, and VFUN input arguments to
modelfun. Choices are:

• 'SinglePhi' — modelfun can only
accept a single set of model parameters
at a time, so PHI must be a single
row vector in each call. nlmefit calls
modelfun in a loop, if necessary, with
a single PHI vector and with XFUN
containing rows for a single observation
or group at a time. VFUN may be a single
row that applies to all rows of XFUN, or a
matrix with rows corresponding to rows
in XFUN. This is the default.

• 'SingleGroup' — modelfun can only
accept inputs corresponding to a single
group in the data, so XFUN must contain
rows of X from a single group in each
call. Depending on the model, PHI is
a single row that applies to the entire
group or a matrix with one row for each
observation. VFUN is a single row.

• 'Full' — modelfun can accept inputs
for multiple parameter vectors and
multiple groups in the data. Either PHI
or VFUN may be a single row that applies
to all rows of XFUN or a matrix with
rows corresponding to rows in XFUN.
This option can improve performance
by reducing the number of calls to
modelfun, but may require modelfun to
perform singleton expansion on PHI or V.
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Parameter Value

'CovParameterization' Specifies the parameterization used
internally for the scaled covariance matrix.
Choices are 'chol' for the Cholesky
factorization or 'logm' the matrix
logarithm. The default is 'logm'.

'CovPattern' Specifies an r-by-r logical or numeric
matrix P that defines the pattern of the
random-effects covariance matrix PSI.
nlmefit estimates the variances along
the diagonal of PSI and the covariances
specified by nonzeroes in the off-diagonal
elements of P. Covariances corresponding
to zero off-diagonal elements in P are
constrained to be zero. If P does not specify
a row-column permutation of a block
diagonal matrix, nlmefit adds nonzero
elements to P as needed. The default
value of P is eye(r), corresponding to
uncorrelated random effects.

Alternatively, P may be a 1-by-r vector
containing values in 1:r, with equal values
specifying groups of random effects. In this
case, nlmefit estimates covariances only
within groups, and constrains covariances
across groups to be zero.
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Parameter Value

'Options' A structure of the form returned by
statset. nlmefit uses the following
statset parameters:

• 'TolX'— Termination tolerance on the
estimated fixed and random effects. The
default is 1e-4.

• 'TolFun' — Termination tolerance on
the log-likelihood function. The default
is 1e-4.

• 'MaxIter' — Maximum number of
iterations allowed. The default is 200.

• 'Display'— Level of iterative display
during estimation. Choices are:

- 'off' — Displays no information.
This is the default.

- 'iter' — Displays iterative output
to the command window.

- 'final'— Displays the final output.

• 'FunValCheck' — Check for invalid
values, such as NaN or Inf, from
modelfun. Choices are 'on' and 'off'.
The default is 'on'.

• 'OutputFcn' — Function handle
specified using @, a cell array with
function handles or an empty array
(default). The solver calls all output
functions after each iteration.

'OptimFun' Specifies the optimization function used
in maximizing the likelihood. Choices
are 'fminsearch' to use fminsearch or
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Parameter Value

'fminunc' to use fminunc. The default
is 'fminsearch'. You can only specify
'fminunc' if Optimization Toolbox
software is installed.

Examples Display data on the growth of five orange trees:

CIRC = [30 58 87 115 120 142 145;
33 69 111 156 172 203 203;
30 51 75 108 115 139 140;
32 62 112 167 179 209 214;
30 49 81 125 142 174 177];

time = [118 484 664 1004 1231 1372 1582];

h = plot(time,CIRC','o','LineWidth',2);
xlabel('Time (days)')
ylabel('Circumference (mm)')
title('{\bf Orange Tree Growth}')
legend([repmat('Tree ',5,1),num2str((1:5)')],...

'Location','NW')
grid on
hold on
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Use an anonymous function to specify a logistic growth model:

model=@(PHI,t)(PHI(:,1))./(1+exp(-(t-PHI(:,2))./PHI(:,3)));

Fit the model using nlmefit with default settings (that is, assuming
each parameter is the sum of a fixed and a random effect, with no
correlation among the random effects):

TIME = repmat(time,5,1);
NUMS = repmat((1:5)',size(time));

beta0 = [100 100 100];
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[beta1,PSI1,stats1] = nlmefit(TIME(:),CIRC(:),NUMS(:),...
[],model,beta0)

beta1 =
191.3189
723.7609
346.2518

PSI1 =
962.1533 0 0

0 0.0000 0
0 0 297.9931

stats1 =
logl: -131.5457
mse: 59.7881
aic: 277.0913
bic: 287.9788

sebeta: NaN
dfe: 28

The negligible variance of the second random effect, PSI1(2,2),
suggests that it can be removed to simplify the model:

[beta2,PSI2,stats2,b2] = nlmefit(TIME(:),CIRC(:),...
NUMS(:),[],model,beta0,'REParamsSelect',[1 3])
beta2 =

191.3190
723.7610
346.2527

PSI2 =
962.0491 0

0 298.1869
stats2 =

logl: -131.5457
mse: 59.7881
aic: 275.0913
bic: 284.4234

sebeta: NaN
dfe: 29
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b2 =
-28.5254 31.6061 -36.5071 39.0738 -5.6475
10.0034 -0.7633 6.0080 -9.4630 -5.7853

The log-likelihood logl is unaffected, and both the Akaike and Bayesian
information criteria (aic and bic) are reduced, supporting the decision
to drop the second random effect from the model.

Use the estimated fixed effects in beta2 and the estimated random
effects for each tree in b2 to plot the model through the data:

PHI = repmat(beta2,1,5) + ... % Fixed effects
[b2(1,:);zeros(1,5);b2(2,:)]; % Random effects

colors = get(h,'Color');
tplot = 0:0.1:1600;
for I = 1:5

fitted_model=@(t)(PHI(1,I))./(1+exp(-(t-PHI(2,I))./ ...
PHI(3,I)));

plot(tplot,fitted_model(tplot),'Color',colors{I}, ...
'LineWidth',2)

end
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References [1] Lindstrom, M. J., and D. M. Bates. “Nonlinear mixed-effects models
for repeated measures data.” Biometrics. Vol. 46, 1990, pp. 673–687.

[2] Davidian, M., and D. M. Giltinan. Nonlinear Models for Repeated
Measurements Data. New York: Chapman & Hall, 1995.

[3] Pinheiro, J. C., and D. M. Bates. “Approximations to the
log-likelihood function in the nonlinear mixed-effects model.” Journal of
Computational and Graphical Statistics. Vol. 4, 1995, pp. 12–35.
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[4] Demidenko, E. Mixed Models: Theory and Applications. Hoboken,
NJ: John Wiley & Sons, Inc., 2004.

See Also “Grouped Data” on page 2-33

nlinfit, nlpredci
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gmdistribution.NlogL property

Purpose Negative of log-likelihood

Description The negative of the log-likelihood of the data.

Note This property applies only to gmdistribution objects constructed
with fit.
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ProbDistParametric.NLogL property

Purpose Read-only value specifying negative log likelihood for input data to
ProbDistParametric object

Description NLogL is a read-only property of the ProbDistParametric class. NLogL
is a value specifying the negative log likelihood for input data used to fit
a distribution represented by a ProbDistParametric object.

Values The value is a numeric scalar for a distribution fit to input data, that
is, a distribution created using the fitdist function. This property is
empty for distributions created without fitting to data, that is, by using
the ProbDistUnivParam.ProbDistUnivParam constructor. Use this
information to view and compare the negative log likelihood for input
data supplied to create distributions.
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ProbDistUnivKernel.NLogL property

Purpose Read-only value specifying negative log likelihood for input data to
ProbDistUnivKernel object

Description NLogL is a read-only property of the ProbDistUnivKernel class. NLogL
is a value specifying the negative log likelihood for input data used to fit
a distribution represented by a ProbDistUnivKernel object.

Values The value is a numeric scalar for a distribution fit to input data, that is,
a distribution created using the fitdist function. Use this information
to view and compare the negative log likelihood for input data used to
create distributions.
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Purpose Nonlinear regression parameter confidence intervals

Syntax ci = nlparci(beta,resid,'covar',sigma)
ci = nlparci(beta,resid,'jacobian',J)
ci = nlparci(...,'alpha',alpha)

Description ci = nlparci(beta,resid,'covar',sigma) returns the 95%
confidence intervals ci for the nonlinear least squares parameter
estimates beta. Before calling nlparci, use nlinfit to fit a nonlinear
regression model and get the coefficient estimates beta, residuals
resid, and estimated coefficient covariance matrix sigma.

ci = nlparci(beta,resid,'jacobian',J) is an alternative syntax
that also computes 95% confidence intervals. J is the Jacobian
computed by nlinfit. If the 'robust' option is used with nlinfit,
use the 'covar' input rather than the 'jacobian' input so that the
required sigma parameter takes the robust fitting into account.

ci = nlparci(...,'alpha',alpha) returns 100(1-alpha)%
confidence intervals.

nlparci treats NaNs in resid or J as missing values, and ignores the
corresponding observations.

The confidence interval calculation is valid for systems where the length
of resid exceeds the length of beta and J has full column rank. When J
is ill-conditioned, confidence intervals may be inaccurate.

Examples Continuing the example from nlinfit:

load reaction

[beta,resid,J,Sigma] = ...
nlinfit(reactants,rate,@hougen,beta);

ci = nlparci(beta,resid,'jacobian',J)
ci =

-0.7467 3.2519
-0.0377 0.1632
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-0.0312 0.1113
-0.0609 0.2857
-0.7381 3.1208

See Also nlinfit, nlpredci
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Purpose Nonlinear regression prediction confidence intervals

Syntax [ypred,delta] = nlpredci(modelfun,x,beta,resid,'covar',sigma)
[ypred,delta] = nlpredci(modelfun,x,beta,resid,'jacobian',J)
[...] = nlpredci(...,param1,val1,param2,val2,...)

Description [ypred,delta] =
nlpredci(modelfun,x,beta,resid,'covar',sigma) returns
predictions, ypred, and 95% confidence interval half-widths, delta, for
the nonlinear regression model defined by modelfun, at input values x.
modelfun is a function handle, specified using @, that accepts two
arguments—a coefficient vector and the array x—and returns a vector
of fitted y values. Before calling nlpredci, use nlinfit to fit modelfun
by nonlinear least squares and get estimated coefficient values beta,
residuals resid, and estimated coefficient covariance matrix sigma.

[ypred,delta] =
nlpredci(modelfun,x,beta,resid,'jacobian',J) is an alternative
syntax that also computes 95% confidence intervals. J is the Jacobian
computed by nlinfit. If the 'robust' option is used with nlinfit, use
the 'covar' input rather than the 'jacobian' input so that the
required sigma parameter takes the robust fitting into account.

[...] = nlpredci(...,param1,val1,param2,val2,...) accepts
optional parameter name/value pairs.

Parameter Value

'alpha' A value between 0 and 1 that specifies the confidence
level as 100(1-alpha)%. Default is 0.05.

'mse' The mean squared error returned by nlinfit. This is
required to predict new observations (see 'predopt') if
the robust option is used with nlinfit; otherwise, the
'mse' is computed from the residuals and does not take
the robust fitting into account.
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Parameter Value

'predopt' Either 'curve' (the default) to compute confidence
intervals for the estimated curve (function value) at
x, or 'observation' for prediction intervals for a
new observation at x. If 'observation'is specified
after using a robust option with nlinfit, the 'mse'
parameter must be supplied to specify the robust
estimate of the mean squared error.

'simopt' Either 'on' for simultaneous bounds, or 'off' (the
default) for nonsimultaneous bounds.

nlpredci treats NaNs in resid or J as missing values, and ignores the
corresponding observations.

The confidence interval calculation is valid for systems where the
length of resid exceeds the length of beta and J has full column rank
at beta. When J is ill-conditioned, predictions and confidence intervals
may be inaccurate.

Examples Continuing the example from nlinfit, you can determine the predicted
function value at the value newX and the half-width of a confidence
interval for it.

load reaction;

[beta,resid,J,Sigma] = nlinfit(reactants,rate,@hougen,...
beta);

newX = reactants(1:2,:);
[ypred, delta] = nlpredci(@hougen,newX,beta,resid,...
'Covar',Sigma);
ypred =

8.4179
3.9542

delta =
0.2805
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0.2474

See Also nlinfit, nlparci
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Purpose Nonnegative matrix factorization

Syntax [W,H] = nnmf(A,k)
[W,H] = nnmf(A,k,param1,val1,param2,val2,...)
[W,H,D] = nnmf(...)

Description [W,H] = nnmf(A,k) factors the nonnegative n-by-m matrix A into
nonnegative factors W (n-by-k) and H (k-by-m). The factorization is not
exact; W*H is a lower-rank approximation to A. The factors W and H are
chosen to minimize the root-mean-squared residual D between A and
W*H:

D = sqrt(norm(A-W*H,'fro')/(N*M))

The factorization uses an iterative method starting with random initial
values for W and H. Because the root-mean-squared residual D may
have local minima, repeated factorizations may yield different W and H.
Sometimes the algorithm converges to a solution of lower rank than k,
which may indicate that the result is not optimal.

W and H are normalized so that the rows of H have unit length. The
columns of W are ordered by decreasing length.

[W,H] = nnmf(A,k,param1,val1,param2,val2,...) specifies optional
parameter name/value pairs from the following table.

Parameter Value

'algorithm' Either 'als' (the default) to use an alternating
least-squares algorithm, or 'mult' to use a
multiplicative update algorithm.

In general, the 'als' algorithm converges faster
and more consistently. The 'mult' algorithm is
more sensitive to initial values, which makes it a
good choice when using 'replicates' to find W
and H from multiple random starting values.

18-870



nnmf

Parameter Value

'w0' An n-by-k matrix to be used as the initial value
for W.

'h0' A k-by-m matrix to be used as the initial value
for H.

'options' An options structure as created by the statset
function. nnmf uses the following fields of the
options structure: Display, TolX, TolFun,
and MaxIter. Unlike in optimization settings,
reaching MaxIter iterations is treated as
convergence.

'replicates' The number of times to repeat the factorization,
using new random starting values for W and H,
except at the first replication if 'w0' and 'h0'
are given. This is most beneficial with the 'mult'
algorithm. The default is 1.

[W,H,D] = nnmf(...) also returns D, the root mean square residual.

Examples Example 1

Compute a nonnegative rank-two approximation of the measurements
of the four variables in Fisher’s iris data:

load fisheriris
[W,H] = nnmf(meas,2);
H
H =

0.6852 0.2719 0.6357 0.2288
0.8011 0.5740 0.1694 0.0087

The first and third variables in meas (sepal length and petal length,
with coefficients 0.6852 and 0.6357, respectively) provide relatively
strong weights to the first column of W. The first and second variables
in meas (sepal length and sepal width, with coefficients 0.8011and
0.5740) provide relatively strong weights to the second column of W.
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Create a biplot of the data and the variables in meas in the column
space of W:

biplot(H','scores',W,'varlabels',{'sl','sw','pl','pw'});
axis([0 1.1 0 1.1])
xlabel('Column 1')
ylabel('Column 2')

Example 2

Starting from a random array X with rank 20, try a few iterations at
several replicates using the multiplicative algorithm:

X = rand(100,20)*rand(20,50);
opt = statset('MaxIter',5,'Display','final');
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[W0,H0] = nnmf(X,5,'replicates',10,...
'options',opt,...
'algorithm','mult');

rep iteration rms resid |delta x|
1 5 0.560887 0.0245182
2 5 0.66418 0.0364471
3 5 0.609125 0.0358355
4 5 0.608894 0.0415491
5 5 0.619291 0.0455135
6 5 0.621549 0.0299965
7 5 0.640549 0.0438758
8 5 0.673015 0.0366856
9 5 0.606835 0.0318931

10 5 0.633526 0.0319591
Final root mean square residual = 0.560887

Continue with more iterations from the best of these results using
alternating least squares:

opt = statset('Maxiter',1000,'Display','final');
[W,H] = nnmf(X,5,'w0',W0,'h0',H0,...

'options',opt,...
'algorithm','als');

rep iteration rms resid |delta x|
1 80 0.256914 9.78625e-005

Final root mean square residual = 0.256914

References [1] Berry, M. W., et al. “Algorithms and Applications for Approximate
Nonnegative Matrix Factorization.” Computational Statistics and Data
Analysis. Vol. 52, No. 1, 2007, pp. 155–173.

See Also princomp, factoran, statset
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Purpose Return vector of node errors

Syntax e = nodeerr(t)
e = nodeerr(t,nodes)

Description e = nodeerr(t) returns an n-element vector e of the errors of the nodes
in the tree t, where n is the number of nodes. For a regression tree, the
error e(i) for node i is the variance of the observations assigned to
node i. For a classification tree, e(i) is the misclassification probability
for node i.

e = nodeerr(t,nodes) takes a vector nodes of node numbers and
returns the errors for the specified nodes.

The error e is the so-called resubstitution error computed by applying
the tree to the same data used to create the tree. This error is likely to
under estimate the error you would find if you applied the tree to new
data. The test function provides options to compute the error (or cost)
using cross-validation or a test sample.

Examples Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})

t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica
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view(t)

e = nodeerr(t)
e =

0.6667
0

0.5000
0.0926
0.0217
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0.0208
0.3333

0
0

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also classregtree, numnodes, test
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Purpose Node probabilities

Syntax p = nodeprob(t)
p = nodeprob(t,nodes)

Description p = nodeprob(t) returns an n-element vector p of the probabilities of
the nodes in the tree t, where n is the number of nodes. The probability
of a node is computed as the proportion of observations from the original
data that satisfy the conditions for the node. For a classification tree,
this proportion is adjusted for any prior probabilities assigned to each
class.

p = nodeprob(t,nodes) takes a vector nodes of node numbers and
returns the probabilities for the specified nodes.

Examples Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})

t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)

18-877



classregtree.nodeprob

p = nodeprob(t)
p =

1.0000
0.3333
0.6667
0.3600
0.3067
0.3200
0.0400
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0.3133
0.0067

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also classregtree, nodesize, numnodes
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Purpose Return node size

Syntax sizes = nodesize(t)
sizes = nodesize(t,nodes)

Description sizes = nodesize(t) returns an n-element vector sizes of the sizes
of the nodes in the tree t, where n is the number of nodes. The size of
a node is defined as the number of observations from the data used to
create the tree that satisfy the conditions for the node.

sizes = nodesize(t,nodes) takes a vector nodes of node numbers
and returns the sizes for the specified nodes.

Examples Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})

t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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sizes = nodesize(t)
sizes =

150
50

100
54
46
48
6
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47
1

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also classregtree, numnodes
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Purpose Notify listeners of event

Syntax notify(h,'eventname')
notify(h,'eventname',data)

Description notify(h,'eventname') notifies listeners added to the event named
eventname on handle object array h that the event is taking place. h
is the array of handles to objects triggering the event, and eventname
must be a string.

notify(h,'eventname',data) provides a way of encapsulating
information about an event which can then be accessed by each
registered listener. data must belong to the event.eventdata class.

See Also addlistener, event.EventData, events, qrandstream
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Superclasses categorical

Purpose Arrays for nominal categorical data

Construction nominal Construct nominal categorical
array

Methods Inherited Methods

Methods in the following table are inherited from categorical.

addlevels Add levels to categorical array

cat Concatenate categorical arrays

cellstr Convert categorical array to cell
array of strings

char Convert categorical array to
character array

circshift Shift categorical array circularly

ctranspose Transpose categorical matrix

disp Display categorical array

display Display categorical array

double Convert categorical array to
double array

droplevels Drop levels

end Last index in indexing expression
for categorical array

flipdim Flip categorical array along
specified dimension
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fliplr Flip categorical matrix in
left/right direction

flipud Flip categorical matrix in
up/down direction

getlabels Access categorical array labels

getlevels Get categorical array levels

horzcat Horizontal concatenation for
categorical arrays

int16 Convert categorical array to
signed 16-bit integer array

int32 Convert categorical array to
signed 32-bit integer array

int64 Convert categorical array to
signed 64-bit integer array

int8 Convert categorical array to
signed 8-bit integer array

intersect Set intersection for categorical
arrays

ipermute Inverse permute dimensions of
categorical array

isempty True for empty categorical array

isequal True if categorical arrays are
equal

islevel Test for levels

ismember True for elements of categorical
array in set

isscalar True if categorical array is scalar

isundefined Test for undefined elements

isvector True if categorical array is vector
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length Length of categorical array

levelcounts Element counts by level

ndims Number of dimensions of
categorical array

numel Number of elements in categorical
array

permute Permute dimensions of
categorical array

reorderlevels Reorder levels

repmat Replicate and tile categorical
array

reshape Resize categorical array

rot90 Rotate categorical matrix 90
degrees

setdiff Set difference for categorical
arrays

setlabels Label levels

setxor Set exclusive-or for categorical
arrays

shiftdim Shift dimensions of categorical
array

single Convert categorical array to
single array

size Size of categorical array

squeeze Squeeze singleton dimensions
from categorical array

subsasgn Subscripted assignment for
categorical array
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subsindex Subscript index for categorical
array

subsref Subscripted reference for
categorical array

summary Summary statistics for categorical
array

times Product of categorical arrays

transpose Transpose categorical matrix

uint16 Convert categorical array to
unsigned 16-bit integers

uint32 Convert categorical array to
unsigned 32-bit integers

uint64 Convert categorical array to
unsigned 64-bit integers

uint8 Convert categorical array to
unsigned 8-bit integers

union Set union for categorical arrays

unique Unique values in categorical
array

vertcat Vertical concatenation for
categorical arrays

Properties Inherited Properties

Properties in the following table are inherited from categorical.

labels Text labels for levels

undeflabel Text label for undefined levels
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Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.

See Also histc, ordinal
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Purpose Construct nominal categorical array

Syntax B = nominal(A)
B = nominal(A,labels)
B = nominal(A,labels,levels)
B = nominal(A,labels,[],edges)

Description B = nominal(A) creates a nominal array B from the array A. A can
be numeric, logical, character, categorical, or a cell array of strings.
nominal creates the levels of B from the sorted unique values in A, and
creates default labels for them.

B = nominal(A,labels) labels the levels in B using the character array
or cell array of strings labels. nominal assigns labels to levels in B in
order according to the sorted unique values in A.

B = nominal(A,labels,levels) creates a nominal array with possible
levels defined by levels. levels is a vector whose values can be
compared to those in A using the equality operator. nominal assigns
labels to each level from the corresponding elements of labels.
If A contains any values not present in levels, the levels of the
corresponding elements of B are undefined.

B = nominal(A,labels,[],edges) creates a nominal array by binning
the numeric array A with bin edges given by the numeric vector
edges. The uppermost bin includes values equal to the right-most
edge. nominal assigns labels to each level in B from the corresponding
elements of labels. edges must have one more element than labels.

By default, an element of B is undefined if the corresponding element
of A is NaN (when A is numeric), an empty string (when A is character),
or undefined (when A is categorical). nominal treats such elements as
“undefined” or “missing” and does not include entries for them among
the possible levels for B. To create an explicit level for such elements
instead of treating them as undefined, you must use the levels input,
and include NaN, the empty string, or an undefined element.

You may include duplicate labels in labels in order to merge multiple
values in A into a single level in B.
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Examples Example 1

Create a nominal array from Fisher’s iris data:

load fisheriris
species = nominal(species);
data = dataset(species,meas);
summary(data)
species: [150x1 nominal]

setosa versicolor virginica
50 50 50

meas: [150x4 double]
min 4.3000 2 1 0.1000
1st Q 5.1000 2.8000 1.6000 0.3000
median 5.8000 3 4.3500 1.3000
3rd Q 6.4000 3.3000 5.1000 1.8000
max 7.9000 4.4000 6.9000 2.5000

Example 2

1 Load patient data from the CSV file hospital.dat and store the
information in a dataset array with observation names given by the
first column in the data (patient identification):

patients = dataset('file','hospital.dat',...
'delimiter',',',...
'ReadObsNames',true);

2 Make the {0,1}-valued variable smoke nominal, and change the labels
to 'No' and 'Yes':

patients.smoke = nominal(patients.smoke,{'No','Yes'});

3 Add new levels to smoke as placeholders for more detailed histories
of smokers:

patients.smoke = addlevels(patients.smoke,...
{'0-5 Years','5-10 Years','LongTerm'});
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4 Assuming the nonsmokers have never smoked, relabel the 'No' level:

patients.smoke = setlabels(patients.smoke,'Never','No');

5 Drop the undifferentiated 'Yes' level from smoke:

patients.smoke = droplevels(patients.smoke,'Yes');

Warning: OLDLEVELS contains categorical levels that
were present in A, caused some array elements to have
undefined levels.

Note that smokers now have an undefined level.

6 Set each smoker to one of the new levels, by observation name:

patients.smoke('YPL-320') = '5-10 Years';

See Also histc, ordinal
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Purpose Normal cumulative distribution function

Syntax P = normcdf(X,mu,sigma)
[P,PLO,PUP] = normcdf(X,mu,sigma,pcov,alpha)

Description P = normcdf(X,mu,sigma) computes the normal cdf at each of the
values in X using the corresponding mean mu and standard deviation
sigma. X, mu, and sigma can be vectors, matrices, or multidimensional
arrays that all have the same size. A scalar input is expanded to a
constant array with the same dimensions as the other inputs. The
parameters in sigma must be positive.

[P,PLO,PUP] = normcdf(X,mu,sigma,pcov,alpha) produces
confidence bounds for P when the input parameters mu and sigma are
estimates. pcov is the covariance matrix of the estimated parameters.
alpha specifies 100(1 - alpha)% confidence bounds. The default value of
alpha is 0.05. PLO and PUP are arrays of the same size as P containing
the lower and upper confidence bounds.

The function normdf computes confidence bounds for P using a normal
approximation to the distribution of the estimate

and then transforming those bounds to the scale of the output P. The
computed bounds give approximately the desired confidence level when
you estimate mu, sigma, and pcov from large samples, but in smaller
samples other methods of computing the confidence bounds might be
more accurate.

The normal cdf is

The result, p, is the probability that a single observation from a normal
distribution with parameters µ and σ will fall in the interval (-∞ x].
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The standard normal distribution has µ = 0 and σ = 1.

Examples What is the probability that an observation from a standard normal
distribution will fall on the interval [-1 1]?

p = normcdf([-1 1]);
p(2)-p(1)
ans =

0.6827

More generally, about 68% of the observations from a normal
distribution fall within one standard deviation, σ, of the mean, µ.

See Also cdf, normpdf, norminv, normstat, normfit, normlike, normrnd

“Normal Distribution” on page B-82
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Purpose Normal parameter estimates

Syntax [muhat,sigmahat] = normfit(data)
[muhat,sigmahat,muci,sigmaci] = normfit(data)
[muhat,sigmahat,muci,sigmaci] = normfit(data,alpha)
[...] = normfit(data,alpha,censoring)
[...] = normfit(data,alpha,censoring,freq)
[...] = normfit(data,alpha,censoring,freq,options)

Description [muhat,sigmahat] = normfit(data) returns estimates of the mean,
µ, and standard deviation, σ, of the normal distribution given the data
in data.

[muhat,sigmahat,muci,sigmaci] = normfit(data) returns 95%
confidence intervals for the parameter estimates on the mean and
standard deviation in the arrays muci and sigmaci, respectively. The
first row of muci contains the lower bounds of the confidence intervals
for µ the second row contains the upper bounds. The first row of
sigmaci contains the lower bounds of the confidence intervals for σ, and
the second row contains the upper bounds.

[muhat,sigmahat,muci,sigmaci] = normfit(data,alpha) returns
100(1 - alpha) % confidence intervals for the parameter estimates,
where alpha is a value in the range [0 1] specifying the width of the
confidence intervals. By default, alpha is 0.05, which corresponds to
95% confidence intervals.

[...] = normfit(data,alpha,censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that
are right-censored and 0 for observations that are observed exactly.
data must be a vector in order to pass in the argument censoring.

[...] = normfit(data,alpha,censoring,freq) accepts a frequency
vector, freq, of the same size as data. Typically, freq contains integer
frequencies for the corresponding elements in data, but can contain
any nonnegative values. Pass in [] for alpha, censoring, or freq to
use their default values.
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[...] = normfit(data,alpha,censoring,freq,options) accepts a
structure, options, that specifies control parameters for the iterative
algorithm the function uses to compute maximum likelihood estimates
when there is censoring. The normal fit function accepts an options
structure which you can create using the function statset. Enter
statset('normfit') to see the names and default values of the
parameters that normfit accepts in the options structure. See the
reference page for statset for more information about these options.

Examples In this example the data is a two-column random normal matrix. Both
columns have µ = 10 and σ = 2. Note that the confidence intervals below
contain the "true values."

data = normrnd(10,2,100,2);
[mu,sigma,muci,sigmaci] = normfit(data)
mu =

10.1455 10.0527
sigma =

1.9072 2.1256
muci =

9.7652 9.6288
10.5258 10.4766

sigmaci =
1.6745 1.8663
2.2155 2.4693

See Also mle, normlike, normpdf, normcdf, norminv, normstat, normrnd

“Normal Distribution” on page B-82
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Purpose Normal inverse cumulative distribution function

Syntax X = norminv(P,mu,sigma)
[X,XLO,XUP] = norminv(P,mu,sigma,pcov,alpha)

Description X = norminv(P,mu,sigma) computes the inverse of the normal cdf
using the corresponding mean mu and standard deviation sigma at
the corresponding probabilities in P. P, mu, and sigma can be vectors,
matrices, or multidimensional arrays that all have the same size. A
scalar input is expanded to a constant array with the same dimensions
as the other inputs. The parameters in sigma must be positive, and the
values in P must lie in the interval [0 1].

[X,XLO,XUP] = norminv(P,mu,sigma,pcov,alpha) produces
confidence bounds for X when the input parameters mu and sigma are
estimates. pcov is the covariance matrix of the estimated parameters.
alpha specifies 100(1 - alpha)% confidence bounds. The default value of
alpha is 0.05. XLO and XUP are arrays of the same size as X containing
the lower and upper confidence bounds.

The function norminv computes confidence bounds for P using a normal
approximation to the distribution of the estimate

where q is the Pth quantile from a normal distribution with mean 0 and
standard deviation 1. The computed bounds give approximately the
desired confidence level when you estimate mu, sigma, and pcov from
large samples, but in smaller samples other methods of computing the
confidence bounds may be more accurate.

The normal inverse function is defined in terms of the normal cdf as

where
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The result, x, is the solution of the integral equation above where you
supply the desired probability, p.

Examples Find an interval that contains 95% of the values from a standard
normal distribution.

x = norminv([0.025 0.975],0,1)
x =

-1.9600 1.9600

Note that the interval x is not the only such interval, but it is the
shortest.

xl = norminv([0.01 0.96],0,1)
xl =

-2.3263 1.7507

The interval xl also contains 95% of the probability, but it is longer
than x.

See Also icdf, normcdf, normpdf, normstat, normfit, normlike, normrnd

“Normal Distribution” on page B-82
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Purpose Normal negative log-likelihood

Syntax nlogL = normlike(params,data)
[nlogL,AVAR] = normlike(params,data)
[...] = normlike(param,data,censoring)
[...] = normlike(param,data,censoring,freq)

Description nlogL = normlike(params,data) returns the negative of the normal
log-likelihood function. params(1) is the mean, mu, and params(2)
is the standard deviation, sigma.

[nlogL,AVAR] = normlike(params,data) also returns the inverse of
Fisher’s information matrix, AVAR. If the input parameter values in
params are the maximum likelihood estimates, the diagonal elements
of AVAR are their asymptotic variances. AVAR is based on the observed
Fisher’s information, not the expected information.

[...] = normlike(param,data,censoring) accepts a Boolean
vector, censoring, of the same size as data, which is 1 for observations
that are right-censored and 0 for observations that are observed exactly.

[...] = normlike(param,data,censoring,freq) accepts a
frequency vector, freq, of the same size as data. The vector freq
typically contains integer frequencies for the corresponding elements in
data, but can contain any nonnegative values. Pass in [] for censoring
to use its default value.

normlike is a utility function for maximum likelihood estimation.

See Also normfit, normpdf, normcdf, norminv, normstat, normrnd

“Normal Distribution” on page B-82
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Purpose Normal probability density function

Syntax Y = normpdf(X,mu,sigma)

Description Y = normpdf(X,mu,sigma) computes the pdf at each of the values in
X using the normal distribution with mean mu and standard deviation
sigma. X, mu, and sigma can be vectors, matrices, or multidimensional
arrays that all have the same size. A scalar input is expanded to a
constant array with the same dimensions as the other inputs. The
parameters in sigma must be positive.

The normal pdf is

The likelihood function is the pdf viewed as a function of the parameters.
Maximum likelihood estimators (MLEs) are the values of the
parameters that maximize the likelihood function for a fixed value of x.

The standard normal distribution has µ = 0 and σ = 1.

If x is standard normal, then xσ + µ is also normal with mean µ and
standard deviation σ. Conversely, if y is normal with mean µ and
standard deviation σ, then x = (y-µ) / σ is standard normal.

Examples mu = [0:0.1:2];
[y i] = max(normpdf(1.5,mu,1));
MLE = mu(i)
MLE =

1.5000

See Also pdf, normcdf, norminv, normstat, normfit, normlike, normrnd

“Normal Distribution” on page B-82
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Purpose Normal probability plot

Syntax h = normplot(X)

Description h = normplot(X) displays a normal probability plot of the data in X.
For matrix X, normplot displays a line for each column of X. h is a handle
to the plotted lines.

The plot has the sample data displayed with the plot symbol '+'.
Superimposed on the plot is a line joining the first and third quartiles
of each column of X (a robust linear fit of the sample order statistics.)
This line is extrapolated out to the ends of the sample to help evaluate
the linearity of the data.

The purpose of a normal probability plot is to graphically assess whether
the data in X could come from a normal distribution. If the data are
normal the plot will be linear. Other distribution types will introduce
curvature in the plot. normplot uses midpoint probability plotting
positions. Use probplot when the data included censored observations.

Examples Generate a normal sample and a normal probability plot of the data.

x = normrnd(10,1,25,1);
normplot(x)
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See Also cdfplot, wblplot, probplot, hist, normfit, norminv, normpdf,
normspec, normstat, normcdf, normrnd, normlike

“Normal Distribution” on page B-82
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Purpose Normal random numbers

Syntax R = normrnd(mu,sigma)
R = normrnd(mu,sigma,v)
R = normrnd(mu,sigma,m,n)

Description R = normrnd(mu,sigma) generates random numbers from the normal
distribution with mean parameter mu and standard deviation parameter
sigma. mu and sigma can be vectors, matrices, or multidimensional
arrays that have the same size, which is also the size of R. A scalar
input for mu or sigma is expanded to a constant array with the same
dimensions as the other input.

R = normrnd(mu,sigma,v) generates random numbers from the
normal distribution with mean parameter mu and standard deviation
parameter sigma, where v is a row vector. If v is a 1-by-2 vector, R
is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an
n-dimensional array.

R = normrnd(mu,sigma,m,n) generates random numbers from the
normal distribution with mean parameter mu and standard deviation
parameter sigma, where scalars m and n are the row and column
dimensions of R.

Examples n1 = normrnd(1:6,1./(1:6))
n1 =

2.1650 2.3134 3.0250 4.0879 4.8607 6.2827

n2 = normrnd(0,1,[1 5])
n2 =

0.0591 1.7971 0.2641 0.8717 -1.4462

n3 = normrnd([1 2 3;4 5 6],0.1,2,3)
n3 =

0.9299 1.9361 2.9640
4.1246 5.0577 5.9864
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See Also random, normpdf, normcdf, norminv, normstat, normfit, normlike

“Normal Distribution” on page B-82
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normspec

Purpose Normal density plot between specifications

Syntax normspec(specs)
normspec(specs,mu,sigma)
normspec(specs,mu,sigma,region)
p = normspec(...)
[p,h] = normspec(...)

Description normspec(specs) plots the standard normal density, shading the
portion inside the specification limits given by the two-element vector
specs. Set specs(1) to -Inf if there is no lower limit; set specs(2)
to Inf if there is no upper limit.

normspec(specs,mu,sigma) shades the portion inside the specification
limits of a normal density with parameters mu and sigma. The defaults
are mu = 0 and sigma = 1.

normspec(specs,mu,sigma,region) shades the region either
'inside' or 'outside' the specification limits. The default is
'inside'.

p = normspec(...) also returns the probability, p, of the shaded area.

[p,h] = normspec(...) also returns a handle h to the line objects.

Examples A production process fills cans of paint. The average amount of paint in
any can is 1 gallon, but variability in the process produces a standard
deviation of 2 ounces (2/128 gallons). What is the probability that cans
will be filled under specification by 3 or more ounces?

p = normspec([1-3/128,Inf],1,2/128,'outside')
p =

0.0668
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See Also capaplot, histfit

“Normal Distribution” on page B-82
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Purpose Normal mean and variance

Syntax [M,V] = normstat(mu,sigma)

Description [M,V] = normstat(mu,sigma) returns the mean of and variance
for the normal distribution using the corresponding mean mu and
standard deviation sigma. mu and sigma can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the
size of M and V. A scalar input for mu or sigma is expanded to a constant
array with the same dimensions as the other input.

The mean of the normal distribution with parameters µ and σ is µ, and
the variance is σ2.

Examples n = 1:5;
[m,v] = normstat(n'*n,n'*n)
m =

1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25

v =
1 4 9 16 25
4 16 36 64 100
9 36 81 144 225

16 64 144 256 400
25 100 225 400 625

See Also normpdf, normcdf, norminv, normfit, normlike, normrnd

“Normal Distribution” on page B-82
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piecewisedistribution.nsegments

Purpose Number of segments

Syntax n = nsegments(obj)

Description n = nsegments(obj) returns the number of segments n in the
piecewise distribution object obj.

Examples Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and
0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);

n = nsegments(obj)
n =

3

See Also paretotails, boundary, segment
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CompactTreeBagger.NTrees property

Purpose Number of decision trees in ensemble

Description The NTrees property is a scalar equal to the number of decision trees
in the ensemble.

See Also Trees

18-908



TreeBagger.NTrees property

Purpose Number of decision trees in ensemble

Description The NTrees property is a scalar equal to the number of decision trees
in the ensemble.

See Also Trees
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ProbDistParametric.NumParams property

Purpose Read-only value specifying number of parameters of ProbDistParametric
object

Description NumParams is a read-only property of the ProbDistParametric class.
NumParams is a value specifying the number of parameters of a
distribution represented by a ProbDistParametric object.

Values This value is an integer that counts both the specified parameters and
parameters that are fit to the data. Use this information to view and
compare the number of parameters supplied to create distributions.
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dataset.numel

Purpose Number of elements in dataset array

Syntax n = numel(A)
n = numel(A, varargin)

Description n = numel(A) returns 1. To find the number of elements, n, in the
dataset array A, use prod(size(A)) or numel(A,':',':').

n = numel(A, varargin) returns the number of subscripted elements,
n, in A(index1, index2, ..., indexn), where varargin is a cell
array whose elements are index1, index2, ... indexn.

See Also length, size
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categorical.numel

Purpose Number of elements in categorical array

Syntax n = numel(A)
n = numel(A, varargin)

Description n = numel(A) returns the number of elements in the categorical array
A.

n = numel(A, varargin) returns the number of subscripted elements,
n, in A(index1, index2, ..., indexN), where varargin is a cell
array whose elements are index1, index2, ... indexN.

See Also size
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classregtree.numnodes

Purpose Number of nodes

Syntax n = numnodes(t)

Description n = numnodes(t) returns the number of nodes n in the tree t.

Examples Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})

t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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n = numnodes(t)
n =

9

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also classregtree
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cvpartition.NumTestSets property

Purpose Number of test sets

Description Value is the number of folds in partitions of type 'kfold' and
'leaveout'.

Value is 1 in partitions of type 'holdout' and 'resubstitution'.
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TreeBagger.NVarToSample property

Purpose Number of variables for random feature selection

Description The NVarToSample property specifies the number of predictor or feature
variables to select at random for each decision split. By default, it is set
to the square root of the total number of variables for classification and
one third of the total number of variables for regression.

See Also classregtree
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dataset.ObsNames property

Purpose Cell array of nonempty, distinct strings giving names of observations
in data set

Description A cell array of nonempty, distinct strings giving the names of the
observations in the data set. The number of strings must equal the
number of observations. The default is an empty cell array.
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TreeBagger.oobError

Purpose Out-of-bag error

Syntax err = oobError(B)
err = oobError(B,'param1',val1,'param2',val2,...)

Description err = oobError(B) computes the misclassification probability (for
classification trees) or mean squared error (for regression trees) for
out-of-bag observations in the training data, using the trained bagger B.
err is a vector of length NTrees, where NTrees is the number of trees
in the ensemble.

err = oobError(B,'param1',val1,'param2',val2,...) specifies
optional parameter name/value pairs:

'mode' String indicating how oobError computes errors.
If set to 'cumulative' (default), the method
computes cumulative errors and err is a vector of
length NTrees, where the first element gives error
from trees(1), second element gives error from
trees(1:2) etc, up to trees(1:NTrees). If set to
'individual', err is a vector of length NTrees,
where each element is an error from each tree
in the ensemble. If set to 'ensemble', err is a
scalar showing the cumulative error for the entire
ensemble.

'trees' Vector of indices indicating what trees to include
in this calculation. By default, this argument is set
to 'all' and the method uses all trees. If 'trees'
is a numeric vector, the method returns a vector of
length NTrees for 'cumulative' and 'individual'
modes, where NTrees is the number of elements
in the input vector, and a scalar for 'ensemble'
mode. For example, in the 'cumulative'mode, the
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first element gives error from trees(1), the second
element gives error from trees(1:2) etc.

'treeweights' Vector of tree weights. This vector must have the
same length as the 'trees' vector. oobError uses
these weights to combine output from the specified
trees by taking a weighted average instead of the
simple nonweighted majority vote. You cannot use
this argument in the 'individual' mode.

See Also CompactTreeBagger.error
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TreeBagger.OOBIndices property

Purpose Indicator matrix for out-of-bag observations

Description The OOBIndices property is a logical array of size Nobs-by-NTrees
where Nobs is the number of observations in the training data and
NTrees is the number of trees in the ensemble. The (I,J) element is
true if observation I is out-of-bag for tree J and false otherwise. In
other words, a true value means observation I was not selected for the
training data used to grow tree J.

See Also classregtree
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TreeBagger.OOBInstanceWeight property

Purpose Count of out-of-bag trees for each observation

Description The OOBInstanceWeight property is a numeric array of size Nobs-by-1
containing the number of trees used for computing out-of-bag response
for each observation. Nobs is the number of observations in the training
data used to create the ensemble.
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TreeBagger.oobMargin

Purpose Out-of-bag margins

Syntax mar = oobMargin(B)
mar = oobMargin(B,'param1',val1,'param2',val2,...)

Description mar = oobMargin(B) computes an Nobs-by-NTrees matrix of
classification margins for out-of-bag observations in the training data,
using the trained bagger B.

mar = oobMargin(B,'param1',val1,'param2',val2,...) specifies
optional parameter name/value pairs:

'mode' String indicating how oobMargin computes
errors. If set to 'cumulative' (default), the
method computes cumulative margins and mar
is an Nobs-by-NTrees matrix, where the first
column gives margins from trees(1), second
column gives margins from trees(1:2) etc, up to
trees(1:NTrees). If set to 'individual', mar is
an Nobs-by-NTrees matrix, where each column
gives margins from each tree in the ensemble. If
set to 'ensemble', mar is a single column of length
Nobs showing the cumulative margins for the
entire ensemble.

'trees' Vector of indices indicating what trees to include
in this calculation. By default, this argument is
set to 'all' and the method uses all trees. If
’trees’ is a numeric vector, the method returns
an Nobs-by-NTrees matrix for 'cumulative' and
'individual' modes, where NTrees is the number
of elements in the input vector, and a single
column for 'ensemble' mode. For example, in
the 'cumulative' mode, the first column gives
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margins from trees(1), the second column gives
margins from trees(1:2) etc.

'treeweights' Vector of tree weights. This vector must have the
same length as the 'trees' vector. oobMargin uses
these weights to combine output from the specified
trees by taking a weighted average instead of the
simple nonweighted majority vote. You cannot use
this argument in the 'individual' mode.

See Also CompactTreeBagger.margin
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Purpose Out-of-bag mean margins

Syntax mar = oobMeanMargin(B)
mar = oobMeanMargin(B,'param1',val1,'param2',val2,...)

Description mar = oobMeanMargin(B) computes average classification margins for
out-of-bag observations in the training data, using the trained bagger B.
oobMeanMargin averages the margins over all out-of-bag observations.
mar is a row-vector of length NTrees, where NTrees is the number
of trees in the ensemble.

mar = oobMeanMargin(B,'param1',val1,'param2',val2,...)
specifies optional parameter name/value pairs:

'mode' String indicating how oobMargin computes errors. If
set to 'cumulative' (default), is a vector of length
NTrees where the first element gives mean margin
from trees(1), second column gives mean margins
from trees(1:2) etc, up to trees(1:NTrees). If set
to 'individual', mar is a vector of length NTrees,
where each element is a mean margin from each tree
in the ensemble . If set to 'ensemble', mar is a scalar
showing the cumulative mean margin for the entire
ensemble .

'trees' Vector of indices indicating what trees to include
in this calculation. By default, this argument is set
to 'all' and the method uses all trees. If 'trees'
is a numeric vector, the method returns a vector of
length NTrees for 'cumulative' and 'individual'
modes, where NTrees is the number of elements in the
input vector, and a scalar for 'ensemble' mode. For
example, in the 'cumulative'mode, the first element
gives mean margin from trees(1), the second
element gives mean margin from trees(1:2) etc.

'treeweights'Vector of tree weights. This vector must have the
same length as the 'trees' vector. oobMeanMargin
uses these weights to combine output from the
specified trees by taking a weighted average instead
of the simple nonweighted majority vote. You cannot
use this argument in the 'individual' mode.
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See Also CompactTreeBagger.meanMargin
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TreeBagger.OOBPermutedVarCountRaiseMargin
property

Purpose Variable importance for raising margin

Description The OOBPermutedVarCountRaiseMargin property is a numeric array of
size 1-by-Nvars containing a measure of variable importance for each
predictor. For any variable, the measure is the difference between the
number of raised margins and the number of lowered margins if the
values of that variable are permuted across the out-of-bag observations.
This property is empty for regression trees.
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TreeBagger.OOBPermutedVarDeltaError property

Purpose Variable importance for classification error

Description The OOBPermutedVarDeltaError property is a numeric array of size
1-by-Nvars containing a measure of importance for each predictor
variable (feature). For any variable, the measure is the increase in
classification error averaged over the entire ensemble of trees if the
values of that variable are permuted across the out-of-bag observations.
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TreeBagger.OOBPermutedVarDeltaMeanMargin
property

Purpose Variable importance for classification margin

Description The OOBPermutedVarDeltaMeanMargin property is a numeric array of
size 1-by-Nvars containing a measure of importance for each predictor
variable (feature). For any variable, the measure is the decrease in the
classification margin if the values of that variable are permuted across
the out-of-bag observations. This property is empty for regression trees.
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Purpose Ensemble predictions for out-of-bag observations

Syntax Y = oobPredict(B)
Y = oobPredict(B,'param1',val1,'param2',val2,...)

Description Y = oobPredict(B) computes predicted responses using the trained
bagger B for out-of-bag observations in the training data. The output
has one prediction for each observation in the training data. The
returned Y is a cell array of strings for classification and a numeric
array for regression.

Y = oobPredict(B,'param1',val1,'param2',val2,...) specifies
optional parameter name/value pairs:

'trees' Array of tree indices to use for computation of
responses. Default is 'all'.

'treeweights' Array of NTrees weights for weighting votes from
the specified trees.

See Also CompactTreeBagger.predict, OOBIndices
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ordinal class

Superclasses categorical

Purpose Arrays for ordinal categorical data

Description An ordinal array is a kind of categorical array in which an ordering
is encoded in the categories. More generally, categorical arrays are
designed to store, manipulate, and process sets of data that assume
values only in a finite, discrete set of categories or levels. Each ordinal
array has its own set of levels and optional labels. Like a numerical
array, an ordinal array can have any size or dimension.

Construction ordinal Construct ordinal categorical
array

Methods ismember Test for membership

mergelevels Merge levels

sort Sort elements of ordinal array

sortrows Sort rows

Inherited Methods

Methods in the following table are inherited from categorical.

addlevels Add levels to categorical array

cat Concatenate categorical arrays

cellstr Convert categorical array to cell
array of strings

char Convert categorical array to
character array

circshift Shift categorical array circularly
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ctranspose Transpose categorical matrix

disp Display categorical array

display Display categorical array

double Convert categorical array to
double array

droplevels Drop levels

end Last index in indexing expression
for categorical array

flipdim Flip categorical array along
specified dimension

fliplr Flip categorical matrix in
left/right direction

flipud Flip categorical matrix in
up/down direction

getlabels Access categorical array labels

getlevels Get categorical array levels

horzcat Horizontal concatenation for
categorical arrays

int16 Convert categorical array to
signed 16-bit integer array

int32 Convert categorical array to
signed 32-bit integer array

int64 Convert categorical array to
signed 64-bit integer array

int8 Convert categorical array to
signed 8-bit integer array

intersect Set intersection for categorical
arrays
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ipermute Inverse permute dimensions of
categorical array

isempty True for empty categorical array

isequal True if categorical arrays are
equal

islevel Test for levels

ismember True for elements of categorical
array in set

isscalar True if categorical array is scalar

isundefined Test for undefined elements

isvector True if categorical array is vector

length Length of categorical array

levelcounts Element counts by level

ndims Number of dimensions of
categorical array

numel Number of elements in categorical
array

permute Permute dimensions of
categorical array

reorderlevels Reorder levels

repmat Replicate and tile categorical
array

reshape Resize categorical array

rot90 Rotate categorical matrix 90
degrees

setdiff Set difference for categorical
arrays

setlabels Label levels
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setxor Set exclusive-or for categorical
arrays

shiftdim Shift dimensions of categorical
array

single Convert categorical array to
single array

size Size of categorical array

squeeze Squeeze singleton dimensions
from categorical array

subsasgn Subscripted assignment for
categorical array

subsindex Subscript index for categorical
array

subsref Subscripted reference for
categorical array

summary Summary statistics for categorical
array

times Product of categorical arrays

transpose Transpose categorical matrix

uint16 Convert categorical array to
unsigned 16-bit integers

uint32 Convert categorical array to
unsigned 32-bit integers

uint64 Convert categorical array to
unsigned 64-bit integers

uint8 Convert categorical array to
unsigned 8-bit integers

union Set union for categorical arrays
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unique Unique values in categorical
array

vertcat Vertical concatenation for
categorical arrays

Properties Inherited Properties

Properties in the following table are inherited from categorical.

labels Text labels for levels

undeflabel Text label for undefined levels

Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.

References [1] Johnson, N. L., S. Kotz, and A. W. Kemp, Univariate Discrete
Distributions, 2nd edition, Wiley, 1992, pp. 124-130.

See Also histc, nominal
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Purpose Construct ordinal categorical array

Syntax B = ordinal(A)
B = ordinal(A,labels)
B = ordinal(A,labels,levels)
B = ordinal(A,labels,[],edges)

Description B = ordinal(A) creates an ordinal array B from the array A. A can
be numeric, logical, character, categorical, or a cell array of strings.
ordinal creates the levels of B from the sorted unique values in A, and
creates default labels for them.

B = ordinal(A,labels) labels the levels in B using the character array
or cell array of strings labels. ordinal assigns labels to levels in B in
order according to the sorted unique values in A.

B = ordinal(A,labels,levels) creates an ordinal array with
possible levels defined by levels. levels is a vector whose values
can be compared to those in A using the equality operator. ordinal
assigns labels to each level from the corresponding elements of labels.
If A contains any values not present in levels, the levels of the
corresponding elements of B are undefined. Use [] for labels to allow
ordinal to create default labels.

B = ordinal(A,labels,[],edges) creates an ordinal array by binning
the numeric array A, with bin edges given by the numeric vector
edges. The uppermost bin includes values equal to the right-most
edge. ordinal assigns labels to each level in B from the corresponding
elements of labels. edges must have one more element than labels.

By default, an element of B is undefined if the corresponding element
of A is NaN (when A is numeric), an empty string (when A is character),
or undefined (when A is categorical). ordinal treats such elements as
“undefined” or “missing” and does not include entries for them among
the possible levels for B. To create an explicit level for such elements
instead of treating them as undefined, you must use the levels input,
and include NaN, the empty string, or an undefined element.
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You may include duplicate labels in labels in order to merge multiple
values in A into a single level in B.

Examples Example 1

Create an ordinal array with labels from random integer data:

x = floor(3*rand(1,1e3));
x(1:5)
ans =

1 2 1 2 0

o = ordinal(x,{'I','II','III'});
o(1:5)
ans =

II III II III I

Example 2

Create an ordinal array from the measurements in Fisher’s iris data,
ignoring decimal lengths:

load fisheriris
m = floor(min(meas(:)));
M = floor(max(meas(:)));
labels = num2str((m:M)');
edges = m:M+1;
cms = ordinal(meas,labels,[],edges)

meas(1:5,:)
ans =

5.1000 3.5000 1.4000 0.2000
4.9000 3.0000 1.4000 0.2000
4.7000 3.2000 1.3000 0.2000
4.6000 3.1000 1.5000 0.2000
5.0000 3.6000 1.4000 0.2000

cms(1:5,:)
ans =

5 3 1 0
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4 3 1 0
4 3 1 0
4 3 1 0
5 3 1 0

Example 3

Create an age group ordinal array from the data in hospital.mat:

load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
AgeGroup = ordinal(hospital.Age,labels,[],edges);

hospital.Age(1:5)
ans =

38
43
38
40
49

AgeGroup(1:5)
ans =

30s
40s
30s
40s
40s

See Also histc, nominal
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CompactTreeBagger.outlierMeasure

Purpose Outlier measure for data

Syntax out = outlierMeasure(B,X)
out = outlierMeasure(B,X,'param1',val1,'param2',val2,...)

Description out = outlierMeasure(B,X) computes outlier measures for predictors
X using trees in the ensemble B. The method computes the outlier
measure for a given observation by taking an inverse of the average
squared proximity between this observation and other observations.
outlierMeasure then normalizes these outlier measures by subtracting
the median of their distribution, taking the absolute value of this
difference, and dividing by the median absolute deviation. A high value
of the outlier measure indicates that this observation is an outlier.

You can supply the proximity matrix directly by using the 'data'
parameter.

out = outlierMeasure(B,X,'param1',val1,'param2',val2,...)
specifies optional parameter name/value pairs:

'data' Flag indicating how to treat the X input argument. If
set to 'predictors' (default), the method assumes X
is a matrix of predictors and uses it for computation
of the proximity matrix. If set to 'proximity', the
method treats X as a proximity matrix returned
by the proximity method. If you do not supply
the proximity matrix, outlierMeasure computes
it internally. If you use the proximity method to
compute a proximity matrix, supplying it as input to
outlierMeasure reduces computing time.

'labels' Vector of true class labels. True class labels can be
either a numeric vector, character matrix, or cell
array of strings. When you supply this parameter,
the method performs the outlier calculation for any
observations using only other observations from the
same class. This parameter must specify one label for
each observation (row) in X.
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See Also proximity
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TreeBagger.OutlierMeasure property

Purpose Measure for determining outliers

Description The OutlierMeasure property is a numeric array of size Nobs-by-1,
where Nobs is the number of observations in the training data,
containing outlier measures for each observation.

See Also CompactTreeBagger.outlierMeasure
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Purpose Parallel coordinates plot

Syntax parallelcoords(X)
parallelcoords(X,...,'Standardize','on')
parallelcoords(X,...,'Standardize','PCA')
parallelcoords(X,...,'Standardize','PCAStd')
parallelcoords(X,...,'Quantile',alpha)
parallelcoords(X,...,'Group',group)
parallelcoords(X,...,'Labels',labels)
parallelcoords(X,...,PropertyName,PropertyValue,...)
h = parallelcoords(X,...)
parallelcoords(axes,...)

Description parallelcoords(X) creates a parallel coordinates plot of the
multivariate data in the n-by-p matrix X. Rows of X correspond to
observations, columns to variables. A parallel coordinates plot is a
tool for visualizing high dimensional data, where each observation is
represented by the sequence of its coordinate values plotted against
their coordinate indices. parallelcoords treats NaNs in X as missing
values and does not plot those coordinate values.

parallelcoords(X,...,'Standardize','on') scales each column of X
to have mean 0 and standard deviation 1 before making the plot.

parallelcoords(X,...,'Standardize','PCA') creates a parallel
coordinates plot from the principal component scores of X, in order of
decreasing eigenvalues. parallelcoords removes rows of X containing
missing values (NaNs) for principal components analysis (PCA)
standardization.

parallelcoords(X,...,'Standardize','PCAStd') creates a parallel
coordinates plot using the standardized principal component scores.

parallelcoords(X,...,'Quantile',alpha) plots only the median
and the alpha and 1-alpha quantiles of f (t) at each value of t. This is
useful if X contains many observations.

parallelcoords(X,...,'Group',group) plots the data in different
groups with different colors. Groups are defined by group, a numeric
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array containing a group index for each observation. (See “Grouped
Data” on page 2-33.) group can also be a categorical variable, character
matrix, or cell array of strings, containing a group name for each
observation.

parallelcoords(X,...,'Labels',labels) labels the coordinate tick
marks along the horizontal axis using labels, a character array or
cell array of strings.

parallelcoords(X,...,PropertyName,PropertyValue,...) sets
properties to the specified property values for all line graphics objects
created by parallelcoords.

h = parallelcoords(X,...) returns a column vector of handles to the
line objects created by parallelcoords, one handle per row of X. If you
use the 'Quantile' input argument, h contains one handle for each of
the three lines objects created. If you use both the 'Quantile' and the
'Group' input arguments, h contains three handles for each group.

parallelcoords(axes,...) plots into the axes with handle axes.

Examples % Make a grouped plot of the raw data
load fisheriris
labels = {'Sepal Length','Sepal Width',...

'Petal Length','Petal Width'};
parallelcoords(meas,'group',species,'labels',labels);

% Plot only the median and quartiles of each group
parallelcoords(meas,'group',species,'labels',labels,...

'quantile',.25);

See Also “Grouped Data” on page 2-33

andrewsplot, glyphplot
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ProbDistUnivParam.paramci

Purpose Return parameter confidence intervals of ProbDistUnivParam object

Syntax CI = paramci(PD)
CI = paramci(PD, Alpha)

Description CI = paramci(PD) returns CI, a 2-by-N array containing 95%
confidence intervals for the parameters of the ProbDistUnivParam
object PD. N is the number of parameters in the distribution.
When you create PD by specifying parameters (such as using the
ProbDistUnivParam.ProbDistUnivParam constructor or using the
fitdist function and specifying a 'binomial' or 'generalized
pareto' distribution) rather than by fitting to data, the confidence
intervals have a width of 0 because the parameters are viewed as
estimates of an unknown parameter.

CI = paramci(PD, Alpha) returns 100*(1 - Alpha)% confidence
intervals. Default Alpha is 0.05, which specifies 95% confidence
intervals.

Note If you create PD with a distribution that does not support
confidence intervals, then CI contains NaN values.

Inputs PD An object of the class ProbDistUnivParam.

Alpha A value between 0 and 1 that specifies a
confidence interval. Default is 0.05, which
specifies 95% confidence intervals.

Outputs CI A 2-by-N array containing 100*(1 - Alpha)%
confidence intervals for the parameters of
the ProbDistUnivParam object PD. N is the
number of parameters in the distribution.
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See Also fitdist
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ProbDistParametric.ParamCov property

Purpose Read-only covariance matrix of parameter estimates of
ProbDistParametric object

Description ParamCov is a read-only property of the ProbDistParametric class.
ParamCov is a covariance matrix containing the parameter estimates of
a distribution represented by a ProbDistParametric object. ParamCov
has a size of NumParams-by-NumParams.

Values This covariance matrix includes estimates for both the specified
parameters and parameters that are fit to the data. For specified
parameters, the covariance is 0, indicating the parameter is known
exactly. Use this information to view and compare the descriptions of
parameters supplied to create distributions.
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Purpose Read-only cell array specifying descriptions of parameters of
ProbDistParametric object

Description ParamDescription is a read-only property of the ProbDistParametric
class. ParamDescription is a cell array of strings specifying the
descriptions or meanings of the parameters of a distribution represented
by a ProbDistParametric object. ParamDescription has a length of
NumParams.

Values This cell array includes a brief description of the meaning of both
the specified parameters and parameters that are fit to the data.
The description is the same as the parameter name when no further
description information is available. Use this information to view and
compare the descriptions of parameters used to create distributions.
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ProbDistParametric.ParamIsFixed property

Purpose Read-only logical array specifying fixed parameters of
ProbDistParametric object

Description ParamIsFixed is a read-only property of the ProbDistParametric class.
ParamIsFixed is a logical array specifying the fixed parameters of a
distribution represented by a ProbDistParametric object. ParamIsFixed
has a length of NumParams.

Values This array specifies a 1 (true) for fixed parameters, and a 0 (false)
for parameters that are estimated from the input data. Use this
information to view and compare the fixed parameters used to create
distributions.
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Purpose Read-only cell array specifying names of parameters of
ProbDistParametric object

Description ParamNames is a read-only property of the ProbDistParametric class.
ParamNames is a cell array of strings specifying the names of the
parameters of a distribution represented by a ProbDistParametric
object. ParamNames has a length of NumParams.

Values This cell array includes the names of both the specified parameters and
parameters that are fit to the data. Use this information to view and
compare the names of parameters used to create distributions.
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NaiveBayes.Params property

Purpose Parameter estimates

Description The Params property is an NClasses-by-NDims cell array containing
the parameter estimates, excluding the class priors. Params(i,j)
contains the parameter estimates for the jth feature in the ith class.
Params(i,j) is an empty cell if the ith class is empty.

The entry in Params(i,j) depends on the distribution type used for
the jth feature, as follows:

'normal' A vector of length two. The first element is the
mean, and the second element is standard deviation.

'kernel' A ProbDistUnivKernel object

'mvmn' A vector containing the probability for each possible
value of the jth feature in the ith class. The order
of the probabilities is decided by the sorted order of
all the unique values of the jth feature.

'mn' A scalar representing the probability the jth
token appearing in the ith class, Prob(token j
| class i). It is estimated as (1 + the number
of occurrence of token J in class I)/(NDims
+ the total number of token occurrence in
class I).
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ProbDistParametric.Params property

Purpose Read-only array specifying values of parameters of ProbDistParametric
object

Description Params is a read-only property of the ProbDistParametric class.
Params is an array of values specifying the values of the parameters of
a distribution represented by a ProbDistParametric object. Params
has a length of NumParams.

Values This array includes the values of both the specified parameters and
parameters that are fit to the data. Use this information to view and
compare the values of parameters used to create distributions.
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Purpose Parent node

Syntax p = parent(t)
p = parent(t,nodes)

Description p = parent(t) returns an n-element vector p containing the number of
the parent node for each node in the tree t, where n is the number of
nodes. The parent of the root node is 0.

p = parent(t,nodes) takes a vector nodes of node numbers and
returns the parent nodes for the specified nodes.

Examples Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})

t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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p = parent(t)
p =

0
1
1
3
3
4
4
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6
6

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also classregtree, children, numnodes
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Purpose Pareto chart

Syntax pareto(y,names)
[h,ax] = pareto(...)

Description pareto(y,names) displays a Pareto chart where the values in the vector
y are drawn as bars in descending order. Each bar is labeled with the
associated value in the string matrix or cell array, names. pareto(y)
labels each bar with the index of the corresponding element in y.

The line above the bars shows the cumulative percentage.

[h,ax] = pareto(...) returns a combination of patch and line object
handles to the two axes created in ax.

Examples Create a Pareto chart from data measuring the number of manufactured
parts rejected for various types of defects.

defects = {'pits';'cracks';'holes';'dents'};
quantity = [5 3 19 25];
pareto(quantity,defects)
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See Also bar, hist
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paretotails class

Superclasses piecewisedistribution

Purpose Empirical distributions with Pareto tails

Construction paretotails Construct Pareto tails object

Methods lowerparams Lower Pareto tails parameters

upperparams Upper Pareto tails parameters

Inherited Methods

Methods in the following table are inherited from
piecewisedistribution.

boundary Piecewise distribution boundaries

cdf Cumulative distribution function
for piecewise distribution

disp Display piecewisedistribution
object

display Display piecewisedistribution
object

icdf Inverse cumulative distribution
function for piecewise distribution

nsegments Number of segments

pdf Probability density function for
piecewise distribution

random Random numbers from piecewise
distribution

segment Segments containing values
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Properties Objects of the paretotails class have no properties accessible by dot
indexing, get methods, or set methods. To obtain information about a
paretotails object, use the appropriate method.

Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.

See Also “Generalized Pareto Distribution” on page B-37
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Purpose Construct Pareto tails object

Syntax obj = paretotails(x,pl,pu)
obj = paretotails(x,pl,pu,cdffun)

Description obj = paretotails(x,pl,pu) creates an object obj defining a
distribution consisting of the empirical distribution of x in the center
and Pareto distributions in the tails. x is a real-valued vector of
data values whose extreme observations are fit to generalized Pareto
distributions (GPDs). pl and pu identify the lower- and upper-tail
cumulative probabilities such that 100*pl and 100*(1-pu) percent
of the observations in x are, respectively, fit to a GPD by maximum
likelihood. If pl is 0, or if there are not at least two distinct observations
in the lower tail, then no lower Pareto tail is fit. If pu is 1, or if there are
not at least two distinct observations in the upper tail, then no upper
Pareto tail is fit.

obj = paretotails(x,pl,pu,cdffun) uses cdffun to estimate the cdf
of x between the lower and upper tail probabilities. cdffun may be
any of the following:

• 'ecdf'— Uses an interpolated empirical cdf, with data values as the
midpoints in the vertical steps in the empirical cdf, and computed by
linear interpolation between data values. This is the default.

• 'kernel'— Uses a kernel-smoothing estimate of the cdf.

• @fun — Uses a handle to a function of the form [p,xi] = fun(x)
that accepts the input data vector x and returns a vector p of cdf
values and a vector xi of evaluation points. Values in xi must be
sorted and distinct but need not equal the values in x.

cdffun is used to compute the quantiles corresponding to pl and pu
by inverse interpolation, and to define the fitted distribution between
these quantiles.

The output object obj is a Pareto tails object with methods to evaluate
the cdf, inverse cdf, and other functions of the fitted distribution. These
methods are well-suited to copula and other Monte Carlo simulations.
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The pdf method in the tails is the GPD density, but in the center it is
computed as the slope of the interpolated cdf.

The paretotails class is a subclass of the piecewisedistribution
class, and many of its methods are derived from that class.

Examples Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and
0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
[p,q] = boundary(obj);

x = linspace(-5,5);
plot(x,cdf(obj,x),'b-','LineWidth',2)
hold on
plot(x,tcdf(x,3),'r:','LineWidth',2)
plot(q,p,'bo','LineWidth',2,'MarkerSize',5)
legend('Pareto Tails Object','t Distribution',...

'Location','NW')
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See Also cdf, ecdf, gpfit, icdf, ksdensity

18-960



partialcorr

Purpose Linear or rank partial correlation coefficients

Syntax RHO = partialcorr(X,Z)
RHO = partialcorr(X,Y,Z)
[RHO,PVAL] = partialcorr(...)
[...] = partialcorr(...,param1,val1,param2,val2,...)

Description RHO = partialcorr(X,Z) returns the sample linear partial correlation
coefficients between pairs of variables in X controlling for the variables
in Z. X is an n-by-p matrix, and Z is an n-by-q matrix with rows
corresponding to observations, and columns corresponding to variables.
The output, RHO, is a symmetric p-by-p matrix.

RHO = partialcorr(X,Y,Z) returns the sample linear partial
correlation coefficients between pairs of variables between X and
Y, controlling for the variables in Z. X is an n-by-p1 matrix, Y an
n-by-p2 matrix, and Z is an n-by-q matrix, with rows corresponding to
observations, and columns corresponding to variables. RHO is a p1-by-p2
matrix, where the (i, j)th entry is the sample linear partial correlation
between the ith column in X and the jth column in Y.

If the covariance matrix of [X,Z] is

S
S S

S ST=
⎛

⎝⎜
⎞

⎠⎟
11 12

12 22

then the partial correlation matrix of X, controlling for Z, can be
defined formally as a normalized version of the covariance matrix

S xy S S S S T_ (= −11 12 22 12
-1 )

[RHO,PVAL] = partialcorr(...) also returns PVAL, a matrix of
p-values for testing the hypothesis of no partial correlation against the
alternative that there is a nonzero partial correlation. Each element of
PVAL is the p-value for the corresponding element of RHO. If PVAL(I,J)
is small, say less than 0.05, then the partial correlation, RHO(I,J), is
significantly different from zero.
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[...] = partialcorr(...,param1,val1,param2,val2,...)
specifies additional parameters and their values. Valid parameter/value
pars are listed in the following table.

Parameter Values

'type' • 'Pearson' — To compute Pearson (linear)
partial correlations. This is the default.

• 'Spearman' — To compute Spearman (rank)
partial correlations.

'rows' • 'all' — To use all rows regardless of missing
(NaN) values. This is the default.

• 'complete'— To use only rows with no missing
values.

• 'pairwise'— To compute RHO(I,J) using rows
with no missing values in column I or J.

'tail'

The alternative
hypothesis
against which
to compute
p-values for
testing the
hypothesis
of no partial
correlation.

• 'both' (the default) — the correlation is not zero.

• 'right'— the correlation is greater than zero.

• 'left'— the correlation is less than zero.

A 'pairwise' value for the rows parameter can produce a RHO that is
not positive definite. A 'complete' value always produces a positive
definite RHO, but when data is missing, the estimates will be based on
fewer observations, in general.

partialcorr computes p-values for linear and rank partial correlations
using a Student’s t distribution for a transformation of the correlation.
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This is exact for linear partial correlation when X and Z are normal, but
is a large-sample approximation otherwise.

See Also corr, tiedrank, corrcoef
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Purpose Principal component analysis on covariance matrix

Syntax COEFF = pcacov(V)
[COEFF,latent] = pcacov(V)
[COEFF,latent,explained] = pcacov(V)

Description COEFF = pcacov(V) performs principal components analysis on the
p-by-p covariance matrix V and returns the principal component
coefficients, also known as loadings. COEFF is a p-by-p matrix, with
each column containing coefficients for one principal component. The
columns are in order of decreasing component variance.

pcacov does not standardize V to have unit variances. To perform
principal components analysis on standardized variables, use the
correlation matrix R = V./(SD*SD'), where SD = sqrt(diag(V)), in
place of V. To perform principal components analysis directly on the
data matrix, use princomp.

[COEFF,latent] = pcacov(V) returns latent, a vector containing the
principal component variances, that is, the eigenvalues of V.

[COEFF,latent,explained] = pcacov(V) returns explained, a vector
containing the percentage of the total variance explained by each
principal component.

Examples load hald
covx = cov(ingredients);
[COEFF,latent,explained] = pcacov(covx)
COEFF =

0.0678 -0.6460 0.5673 -0.5062
0.6785 -0.0200 -0.5440 -0.4933

-0.0290 0.7553 0.4036 -0.5156
-0.7309 -0.1085 -0.4684 -0.4844

latent =
517.7969
67.4964
12.4054
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0.2372

explained =
86.5974
11.2882
2.0747
0.0397

References [1] Jackson, J. E. A User’s Guide to Principal Components. Hoboken,
NJ: John Wiley and Sons, 1991.

[2] Jolliffe, I. T. Principal Component Analysis. 2nd ed., New York:
Springer-Verlag, 2002.

[3] Krzanowski, W. J. Principles of Multivariate Analysis: A User’s
Perspective. New York: Oxford University Press, 1988.

[4] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

See Also barttest, biplot, factoran, pcares, princomp , rotatefactors
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Purpose Residuals from principal component analysis

Syntax residuals = pcares(X,ndim)
[residuals,reconstructed] = pcares(X,ndim)

Description residuals = pcares(X,ndim) returns the residuals obtained by
retaining ndim principal components of the n-by-p matrix X. Rows of X
correspond to observations, columns to variables. ndim is a scalar and
must be less than or equal to p. residuals is a matrix of the same size
as X. Use the data matrix, not the covariance matrix, with this function.

pcares does not normalize the columns of X. To perform the principal
components analysis based on standardized variables, that is, based
on correlations, use pcares(zscore(X), ndim). You can perform
principal components analysis directly on a covariance or correlation
matrix, but without constructing residuals, by using pcacov.

[residuals,reconstructed] = pcares(X,ndim) returns the
reconstructed observations; that is, the approximation to X obtained by
retaining its first ndim principal components.

Examples This example shows the drop in the residuals from the first row of the
Hald data as the number of component dimensions increases from one
to three.

load hald
r1 = pcares(ingredients,1);
r2 = pcares(ingredients,2);
r3 = pcares(ingredients,3);

r11 = r1(1,:)
r11 =

2.0350 2.8304 -6.8378 3.0879

r21 = r2(1,:)
r21 =

-2.4037 2.6930 -1.6482 2.3425
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r31 = r3(1,:)
r31 =

0.2008 0.1957 0.2045 0.1921

References [1] Jackson, J. E., A User’s Guide to Principal Components, John Wiley
and Sons, 1991.

[2] Jolliffe, I. T., Principal Component Analysis, 2nd Edition, Springer,
2002.

[3] Krzanowski, W. J. Principles of Multivariate Analysis: A User’s
Perspective. New York: Oxford University Press, 1988.

[4] Seber, G. A. F.Multivariate Observations. Hoboken, NJ: John Wiley
& Sons, Inc., 1984.

See Also factoran, pcacov, princomp
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gmdistribution.PComponents property

Purpose Input vector of mixing proportions

Description Optional input vector of mixing proportions p, or its default value.
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Purpose Probability density functions

Syntax Y = pdf(name,X,A)
Y = pdf(name,X,A,B)
Y = pdf(name,X,A,B,C)

Description Y = pdf(name,X,A) computes the probability density function for the
one-parameter family of distributions specified by name. Parameter
values for the distribution are given in A. Densities are evaluated at
the values in X and returned in Y.

If X and A are arrays, they must be the same size. If X is a scalar, it is
expanded to a constant matrix the same size as A. If A is a scalar, it is
expanded to a constant matrix the same size as X.

Y is the common size of X and A after any necessary scalar expansion.

Y = pdf(name,X,A,B) computes the probability density function for
two-parameter families of distributions, where parameter values are
given in A and B.

If X, A, and B are arrays, they must be the same size. If X is a scalar, it is
expanded to a constant matrix the same size as A and B. If either A or B
are scalars, they are expanded to constant matrices the same size as X.

Y is the common size of X, A, and B after any necessary scalar expansion.

Y = pdf(name,X,A,B,C) computes the probability density function for
three-parameter families of distributions, where parameter values are
given in A, B, and C.

If X, A, B, and C are arrays, they must be the same size. If X is a scalar,
it is expanded to a constant matrix the same size as A, B, and C. If
any of A, B or C are scalars, they are expanded to constant matrices
the same size as X.

Y is the common size of X, A, B and C after any necessary scalar
expansion.

Acceptable strings for name are:
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• 'beta' (Beta distribution)

• 'bino' (Binomial distribution)

• 'chi2' (Chi-square distribution)

• 'exp' (Exponential distribution)

• 'ev' (Extreme value distribution)

• 'f' (F distribution)

• 'gam' (Gamma distribution)

• 'gev' (Generalized extreme value distribution)

• 'gp' (Generalized Pareto distribution)

• 'geo' (Geometric distribution)

• 'hyge' (Hypergeometric distribution)

• 'logn' (Lognormal distribution)

• 'nbin' (Negative binomial distribution)

• 'ncf' (Noncentral F distribution)

• 'nct' (Noncentral tdistribution)

• 'ncx2' (Noncentral chi-square distribution)

• 'norm' (Normal distribution)

• 'poiss' (Poisson distribution)

• 'rayl' (Rayleigh distribution)

• 't' (t distribution)

• 'unif' (Uniform distribution)

• 'unid' (Discrete uniform distribution)

• 'wbl' (Weibull distribution)

Examples Compute the pdf of the normal distribution with mean 0 and standard
deviation 1 at inputs –2, –1, 0, 1, 2:
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p1 = pdf('Normal',-2:2,0,1)
p1 =

0.0540 0.2420 0.3989 0.2420 0.0540

The order of the parameters is the same as for normpdf.

Compute the pdfs of Poisson distributions with rate parameters 0, 1, ...,
4 at inputs 1, 2, ..., 5, respectively:

p2 = pdf('Poisson',0:4,1:5)
p2 =

0.3679 0.2707 0.2240 0.1954 0.1755

The order of the parameters is the same as for poisspdf.

See Also cdf, icdf, mle, random
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Purpose Probability density function for Gaussian mixture distribution

Syntax y = pdf(obj,X)

Description y = pdf(obj,X) returns a vector y of length n containing the values
of the probability density function (pdf) for the gmdistribution object
obj, evaluated at the n-by-d data matrix X, where n is the number of
observations and d is the dimension of the data. obj is an object created
by gmdistribution or fit. y(I) is the cdf of observation I.

Examples Create a gmdistribution object defining a two-component mixture of
bivariate Gaussian distributions:

MU = [1 2;-3 -5];
SIGMA = cat(3,[2 0;0 .5],[1 0;0 1]);
p = ones(1,2)/2;
obj = gmdistribution(MU,SIGMA,p);

ezsurf(@(x,y)pdf(obj,[x y]),[-10 10],[-10 10])
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See Also gmdistribution, fit, cdf, mvnpdf
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Purpose Probability density function for piecewise distribution

Syntax P = pdf(obj,X)

Description P = pdf(obj,X) returns an array P of values of the probability density
function for the piecewise distribution object obj, evaluated at the
values in the array X.

Note For a Pareto tails object, the pdf is computed using the
generalized Pareto distribution in the tails. In the center, the pdf is
computed using the slopes of the cdf, which are interpolated between
a set of discrete values. Therefore the pdf in the center is piecewise
constant. It is noisy for a cdffun specified in paretotails via the
'ecdf' option, and somewhat smoother for the 'kernel' option, but
generally not a good estimate of the underlying density of the original
data.

Examples Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and
0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
[p,q] = boundary(obj)
p =

0.1000
0.9000

q =
-1.7766
1.8432

pdf(obj,q)
ans =

0.2367
0.1960
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See Also paretotails, cdf
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Purpose Return probability density function (PDF) for ProbDist object

Syntax Y = pdf(PD, X)

Description Y = pdf(PD, X) returns Y, an array containing the probability density
function (PDF) for the ProbDist object PD, evaluated at values in X.

Inputs PD An object of the class ProbDistUnivParam or
ProbDistUnivKernel.

X A numeric array of values where you want to
evaluate the PDF.

Outputs Y An array containing the probability density
function (PDF) for the ProbDist object PD.

See Also pdf
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Purpose Pairwise distance between pairs of objects

Syntax y = pdist(X)
y = pdist(X,metric)
y = pdist(X,distfun)
y = pdist(X,'minkowski',p)

Description y = pdist(X) computes the Euclidean distance between pairs of
objects in n-by-p data matrix X. Rows of X correspond to observations;
columns correspond to variables. y is a row vector of length n(n–1)/2,
corresponding to pairs of observations in X. The distances are arranged
in the order (2,1), (3,1), ..., (n,1), (3,2), ..., (n,2), ..., (n,n–1)). y is commonly
used as a dissimilarity matrix in clustering or multidimensional scaling.

To save space and computation time, y is formatted as a vector.
However, you can convert this vector into a square matrix using the
squareform function so that element i, j in the matrix, where i < j,
corresponds to the distance between objects i and j in the original data
set.

y = pdist(X,metric) computes the distance between objects in the
data matrix, X, using the method specified by metric, which can be any
of the following character strings.

Metric Description

'euclidean' Euclidean distance (default).

'seuclidean' Standardized Euclidean distance. Each
coordinate in the sum of squares is inverse
weighted by the sample variance of that
coordinate.

'mahalanobis' Mahalanobis distance.

'cityblock' City block metric.

'minkowski' Minkowski metric.
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Metric Description

'cosine' One minus the cosine of the included angle
between points (treated as vectors).

'correlation' One minus the sample correlation between
points (treated as sequences of values).

'spearman' One minus the sample Spearman’s rank
correlation between observations, treated as
sequences of values.

'hamming' Hamming distance, the percentage of
coordinates that differ.

'jaccard' One minus the Jaccard coefficient, the
percentage of nonzero coordinates that differ.

'chebychev' Chebychev distance (maximum coordinate
difference).

y = pdist(X,distfun) accepts a function handle distfun to a metric
of the form

d = distfun(u,V)

which takes as arguments a 1-by-p vector u, corresponding to a single
row of X, and an m-by-p matrix V, corresponding to multiple rows of X.
distfun must accept a matrix V with an arbitrary number of rows.
distfun must return an m-by-1 vector of distances d, whose kth element
is the distance between u and V(k,:).

y = pdist(X,'minkowski',p) computes the distance between objects
in the data matrix, X, using the Minkowski metric. p is the exponent
used in the Minkowski computation which, by default, is 2.

Metrics

Given an m-by-n data matrix X, which is treated as m (1-by-n) row
vectors x1, x2, ..., xm, the various distances between the vector xr and
xs are defined as follows:
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• Euclidean distance

• Standardized Euclidean distance

where D is the diagonal matrix with diagonal elements given by ,
which denotes the variance of the variable Xj over the m objects.

• Mahalanobis distance

where V is the sample covariance matrix.

• City block metric

• Minkowski metric

Notice that for the special case of p = 1, the Minkowski metric gives
the City Block metric, and for the special case of p = 2, the Minkowski
metric gives the Euclidean distance.

• Cosine distance

• Correlation distance
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where

and

• Hamming distance

• Jaccard distance

Examples X = [1 2; 1 3; 2 2; 3 1]
X =

1 2
1 3
2 2
3 1

Y = pdist(X,'mahal')
Y =

2.3452 2.0000 2.3452 1.2247 2.4495 1.2247

Y = pdist(X)
Y =

1.0000 1.0000 2.2361 1.4142 2.8284 1.4142

squareform(Y)
ans =
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0 1.0000 1.0000 2.2361
1.0000 0 1.4142 2.8284
1.0000 1.4142 0 1.4142
2.2361 2.8284 1.4142 0

See Also cluster, clusterdata, cmdscale, cophenet, dendrogram,
inconsistent, linkage, silhouette, squareform
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Purpose Pearson system random numbers

Syntax r = pearsrnd(mu,sigma,skew,kurt,m,n)
[r,type] = pearsrnd(...)
[r,type,coefs] = pearsrnd(...)

Description r = pearsrnd(mu,sigma,skew,kurt,m,n) returns an m-by-n matrix of
random numbers drawn from the distribution in the Pearson system
with mean mu, standard deviation sigma, skewness skew, and kurtosis
kurt. mu, sigma, skew, and kurt must be scalars.

Note Because r is a random sample, its sample moments, especially
the skewness and kurtosis, typically differ somewhat from the specified
distribution moments.

Some combinations of moments are not valid for any random variable,
and in particular, the kurtosis must be greater than the square of the
skewness plus 1. The kurtosis of the normal distribution is defined
to be 3.

r = pearsrnd(mu,sigma,skew,kurt) returns a scalar value.

r = pearsrnd(mu,sigma,skew,kurt,m,n,...) or r =
pearsrnd(mu,sigma,skew,kurt,[m,n,...]) returns an m-by-n-by-...
array.

[r,type] = pearsrnd(...) returns the type of the specified
distribution within the Pearson system. type is a scalar integer from
0 to 7. Set m and n to zero to identify the distribution type without
generating any random values.

The seven distribution types in the Pearson system correspond to the
following distributions:

• 0 — Normal distribution

• 1 — Four-parameter beta distribution
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• 2 — Symmetric four-parameter beta distribution

• 3 — Three-parameter gamma distribution

• 4 — Not related to any standard distribution. The density is
proportional to:

(1+((x–a)/b)2)–c exp(–d arctan((x–a)/b)).

• 5 — Inverse gamma location-scale distribution

• 6 — F location-scale distribution

• 7 — Student’s t location-scale distribution

[r,type,coefs] = pearsrnd(...) returns the coefficients coefs
of the quadratic polynomial that defines the distribution via the

differential equation
d( (p(x)))

dx
 = 

-(a + x)

(c(0) + c(1) x + c(2) x2
log

⋅ ⋅ )
.

Examples Generate random values from the standard normal distribution:

r = pearsrnd(0,1,0,3,100,1); % Equivalent to randn(100,1)

Determine the distribution type:

[r,type] = pearsrnd(0,1,1,4,0,0);
r =

[]
type =

1

References [1] Johnson, N.L., S. Kotz, and N. Balakrishnan (1994) Continuous
Univariate Distributions, Volume 1, Wiley-Interscience, Pg 15, Eqn
12.33.

See Also random, johnsrnd
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Purpose Compute Receiver Operating Characteristic (ROC) curve or other
performance curve for classifier output

Syntax [X,Y] = perfcurve(labels,scores,posclass)
[X,Y] = perfcurve(labels,scores,posclass,'param1', val1,

'param2',val2,...)
[X,Y,THRE,AUC,OPTROCPT,SUBY,SUBYNAMES] = perfcurve(labels,

scores,posclass)

Description [X,Y] = perfcurve(labels,scores,posclass) computes a ROC
curve for a vector of classifier predictions scores given true class labels,
labels. labels can be a numeric vector, logical vector, character
matrix, cell array of strings or categorical vector. scores is a numeric
vector of scores returned by a classifier for some data. posclass is
the positive class label (scalar), either numeric (for numeric labels),
logical (for logical labels), or char. The returned values X and Y are
coordinates for the performance curve and can be visualized with
plot(X,Y). For more information on labels, scores, and posclass,
see “Inputs” on page 18-985 . For more information on X and Y, see
“Outputs” on page 18-988.

[X,Y] = perfcurve(labels,scores,posclass,'param1',
val1,'param2',val2,...) specifies optional parameter name/value
pairs. See “Inputs” on page 18-985 for a list of inputs, parameter
name/value pairs, and respective explanations.

[X,Y,THRE,AUC,OPTROCPT,SUBY,SUBYNAMES] =
perfcurve(labels,scores,posclass) returns:

• An array of thresholds on classifier scores for the computed values of
X and Y (THRE).

• The area under curve (AUC) for the computed values of X and Y.

• The optimal operating point of the ROC curve (OPTROCPT).

• An array of Y values for negative subclasses (SUBY).

• A cell array of negative class names (SUBYNAMES).
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For more information on each output, see “Outputs” on page 18-988.

Inputs
labels labels can be a numeric vector, logical vector,

character matrix, cell array of strings or
categorical vector.

scores scores is a numeric vector of scores returned by a
classifier for some data. This vector must have as
many elements as labels does.

posclass posclass is the positive class label (scalar),
either numeric (for numeric labels) or char. The
specified positive class must be in the array of
input labels.

The following name/value pairs are available for the syntax
[X,Y] = perfcurve(labels,scores,posclass,'param1',
val1,'param2',val2,...)

Name (’param’) Value (val) and Description

'negClass' List of negative classes. Can be either a numeric array or an
array of chars or a cell array of strings. By default, negClass
is set to 'all' and all classes found in the input array of labels
that are not the positive class are considered negative. If
negClass is a subset of the classes found in the input array of
labels, instances with labels that do not belong to either positive
or negative classes are discarded.
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Name (’param’) Value (val) and Description

'xCrit' Criterion to be computed for X. perfcurve supports the following
criteria:

• TP — Number of true positive instances.

• FN — Number of false negative instances.

• FP — Number of false positive instances.

• TN — Number of true negative instances.

• TP+FP — Sum of TP and FP.

• RPP — Rate of positive predictions.
RPP=(TP+FP)/(TP+FN+FP+TN)

• RNP — Rate of negative predictions.
RNP=(TN+FN)/(TP+FN+FP+TN)

• accu— Accuracy. accu = (TP+TN)/(TP+FN+FP+TN)

• TPR, sens, reca— True positive rate, sensitivity, recall. TPR,
sens, reca = TP/(TP+FN)

• FNR, miss— False negative rate, miss. FNR,miss=FN/(TP+FN)

• FPR, fall — False positive rate, fallout.
FPR,fall=FP/(TN+FP)

• TNR, spec — True negative rate, specificity.
TNR,spec=TN/(TN+FP)

• PPV, prec — Positive predictive value, precision.
PPV,prec=TP/(TP+FP)

• NPV— Negative predictive value. NPV=TN/(TN+FN)

• ecost — Expected cost.
ecost=(TP*COST(P|P)+FN*COST(N|P)+FP*
COST(P|N)+TN*COST(N|N))/(TP+FN+FP+TN)
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Name (’param’) Value (val) and Description

In addition, you can define an arbitrary criterion by supplying
an anonymous function of three arguments, (C,scale,cost),
where C is a 2-by-2 confusion matrix, scale is a 2-by-1 array of
class scales, and cost is a 2-by-2 misclassification cost matrix.

Caution Some of these criteria return NaN values at one of the
two special thresholds, 'reject all' and 'accept all'.

'yCrit' Criterion to compute for Y. perfcurve supports the same criteria
as for X.

'xVals' Values for the X criterion. The default value for xVals is 'all'
and perfcurve computes X and Y values for all scores. If the
value for xVals is not 'all', it must be a numeric array. In this
case, perfcurve computes X and Y only for the specified xVals.

'processNaN' Specifies how perfcurve processes NaN scores. The default
value is 'ignore' and perfcurve removes instances with NaN
scores from the data. If you set the parameter to 'addtofalse',
perfcurve adds instances with NaN scores to false classification
counts in the respective class. That is, perfcurve always counts
instances from the positive class as false negative (FN), and
always counts instances from the negative class as false positive
(FP).

'prior' Either string or array with two elements. It represents prior
probabilities for the positive and negative class, respectively.
Default is 'empirical', that is, perfcurve derives prior
probabilities from class frequencies. If set to 'uniform',
perfcurve sets all prior probabilities equal.

'cost' A 2-by-2 matrix of misclassification costs [C(P|P) C(N|P);
C(P|N) C(N|N)], where C(I|J) is the cost of misclassifying
class J as class I. The default value is [0 0.5; 0.5 0].
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Outputs X x-coordinates for the performance curve. By default,
X is false positive rate, FPR, (equivalently, fallout, or
1–specificity). To change this output, use the 'xCrit'
name/value input. For accepted criterion, see 'xCrit' in
“Inputs” on page 18-985 for more information.

Y y-coordinates for the performance curve. By default,
Y is true positive rate, TPR, (equivalently, recall, or
sensitivity). To change this output, use the 'yCrit'
input. For accepted criterion, see 'xCrit' in “Inputs” on
page 18-985 for more information.

THRE An array of thresholds on classifier scores for the
computed values of X and Y. It has the same number
of rows as X and Y. For each threshold, TP is the count
of true positive observations with scores greater or
equal to this threshold, and FP is the count of false
positive observations with scores greater or equal to this
threshold. perfcurve defines negative counts, TN and
FN, in a similar way then sorts the thresholds in the
descending order which corresponds to the ascending
order of positive counts.

For the M distinct thresholds found in the array of
scores, perfcurve returns the X, Y and THRE arrays
with M+1 rows. perfcurve sets elements THRE(2:M+1)
to the distinct thresholds, and THRE(1) replicates
THRE(2). By convention, THRE(1) represents the highest
'reject all' threshold and perfcurve computes the
corresponding values of X and Y for TP=0 and FP=0.
THRE(end) is the lowest 'accept all' threshold for
which TN=0 and FN=0.
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AUC The area under curve (AUC) for the computed values of X
and Y. If you set xVals to 'all' (the default), perfcurve
computes AUC using the returned X and Y values. If
xVals is a numeric array, perfcurve computes AUC
using X and Y values found from all distinct scores in the
interval specified by the smallest and largest elements
of xVals. More precisely, perfcurve finds X values for
all distinct thresholds as if xVals were set to 'all',
then uses a subset of these (with corresponding Y values)
between min(xVals) and max(xVals) to compute AUC.
The function uses trapezoidal approximation to estimate
the area. If the first or last value of X or Y are NaNs,
perfcurve removes them to allow calculation of AUC.
This takes care of criteria that produce NaNs for the
special 'reject all' or 'accept all' thresholds, for
example, positive predictive value (PPV) or negative
predictive value (NPV).

OPTROCPT The optimal operating point of the ROC curve as an
array of size 1-by-2 with FPR and TPR values for the
optimal ROC operating point. perfcurve computes
optrocpt only for the standard ROC curve and sets to
NaNs otherwise. To obtain the optimal operating point for
the ROC curve, perfcurve first finds the slope, S, using

S
t P N t N N
t N P t P P

N
P

= −
−

cos ( | ) cos ( | )
cos ( | ) cos ( | )

*

where cost(I|J) is the cost of assigning an instance
of class J to class I, and P=TP+FN and N=TN+FP are the
total instance counts in the positive and negative class,
respectively. perfcurve then finds the optimal operating
point by moving the straight line with slope M from the
upper left corner of the ROC plot (FPR=0, TPR=1) down
and to the right until it intersects the ROC curve.
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SUBY An array of Y values for negative subclasses. If you
only specify one negative class, SUBY is identical to Y.
Otherwise SUBY is a matrix of size M-by-K, where M is
the number of returned values for X and Y, and K is
the number of negative classes. perfcurve computes
Y values by summing counts over all negative classes.
SUBY gives values of the Y criterion for each negative
class separately. For each negative class, perfcurve
places a new column in SUBY and fills it with Y values for
TN and FP counted just for this class.

SUBYNAMES A cell array of negative class names. If you provide
an input array, negClass, of negative class names,
perfcurve copies it into SUBYNAMES. If you do not provide
negClass, perfcurve extracts SUBYNAMES from input
labels. The order of SUBYNAMES is the same as the order
of columns in SUBY, that is, SUBY(:,1) is for negative
class SUBYNAMES{1} etc.
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Examples Plot the ROC curve for classification by logistic regression:

load fisheriris
x = meas(51:end,1:2);
% iris data, 2 classes and 2 features
y = (1:100)'>50;
% versicolor=0, virginica=1
b = glmfit(x,y,'binomial');
% logistic regression
p = glmval(b,x,'logit');
% fit probabilities for scores
[X,Y] = perfcurve(species(51:end,:),p,'virginica');
plot(X,Y)
xlabel('False positive rate'); ylabel('True positive rate')
title('ROC for classification by logistic regression')

References [1] T. Fawcett, ROC Graphs: Notes and Practical Considerations for
Researchers, 2004.

18-991



perfcurve

[2] M. Zweig and G. Campbell, Receiver-Operating Characteristic
(ROC) Plots: A Fundamental Evaluation Tool in Clinical Medicine,
Clin. Chem. 39/4, 561-577, 1993.

[3] J. Davis and M. Goadrich, The relationship between precision-recall
and ROC curves, in Proceedings of ICML ’06, 233-240, 2006.

[4] C. Moskowitz and M. Pepe, Quantifying and comparing the
predictive accuracy of continuous prognostic factors for binary outcomes,
Biostatistics 5, 113-127, 2004.

[5] Y. Huang, M. Pepe and Z. Feng, Evaluating the Predictiveness of
a Continuous Marker, U. Washington Biostatistics Paper Series, 282,
2006.

[6] W. Briggs and R. Zaretzki, The Skill Plot: A Graphical Technique for
Evaluating Continuous Diagnostic Tests, Biometrics 63, 250-261, 2008.

[7] http://www2.cs.uregina.ca/~hamilton/courses/831/notes/lift_chart/lift_chart.html;
http://www.dmreview.com/news/5329-1.html.

[8] R. Bettinger, Cost-Sensitive Classifier Selection Using the ROC
Convex Hull Method, SAS Institute.

[9] http://www.stata.com/statalist/archive/2003-02/msg00060.html

See Also “Performance Curves” on page 12-37, “Plotting a Performance Curve”
on page 12-33, “Grouped Data” on page 2-33

glmfit, mnrfit
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Purpose Enumeration of permutations

Syntax P = perms(v)

Description P = perms(v) where v is a row vector of length n, creates a matrix
whose rows consist of all possible permutations of the n elements of v.
The matrix P contains n! rows and n columns.

perms is only practical when n is less than 8 or 9.

Examples perms([2 4 6])

ans =

6 4 2
6 2 4
4 6 2
4 2 6
2 4 6
2 6 4

See Also

combnk
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Purpose Permute dimensions of categorical array

Syntax B = permute(A,order)

Description B = permute(A,order) rearranges the dimensions of the categorical
array A so that they are in the order specified by the vector order. The
array produced has the same values as A but the order of the subscripts
needed to access any particular element are rearranged as specified by
order. The elements of order must be a rearrangement of the numbers
from 1 to n.

See Also circshift, ipermute
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Purpose Piecewise-defined distributions

Construction piecewisedistribution is an abstract class. To construct a
piecewisedistribution object, use the subclass constructor,
paretotails.

Methods boundary Piecewise distribution boundaries

cdf Cumulative distribution function
for piecewise distribution

disp Display piecewisedistribution
object

display Display piecewisedistribution
object

icdf Inverse cumulative distribution
function for piecewise distribution

nsegments Number of segments

pdf Probability density function for
piecewise distribution

random Random numbers from piecewise
distribution

segment Segments containing values

Properties Objects of the piecewisedistribution class have no properties
accessible by dot indexing, get methods, or set methods. To
obtain information about a piecewisedistribution object, use the
appropriate method.

Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.
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Purpose Create piecewise distribution object

Description piecewisedistribution is an abstract class, and you cannot create
instances of it directly. You can create paretotails objects that are
derived from this class.

See Also paretotails
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Purpose Partial least-squares regression

Syntax [XL,YL] = plsregress(X,Y,ncomp)
[XL,YL,XS] = plsregress(X,Y,ncomp)
[XL,YL,XS,YS] = plsregress(X,Y,ncomp)
[XL,YL,XS,YS,BETA] = PLSREGRESS(X,Y,ncomp,...)
[XL,YL,XS,YS,BETA,PCTVAR] = plsregress(X,Y,ncomp)
[XL,YL,XS,YS,BETA,PCTVAR,MSE] = plsregress(X,Y,ncomp)
[XL,YL,XS,YS,BETA,PCTVAR,MSE] = plsregress(...,param1,val1,

param2,val2,...)
[XL,YL,XS,YS,BETA,PCTVAR,MSE,stats] = PLSREGRESS(X,Y,ncomp,

...)

Description [XL,YL] = plsregress(X,Y,ncomp) computes a partial least-squares
(PLS) regression of Y on X, using ncomp PLS components, and returns
the predictor and response loadings in XL and YL, respectively. X is
an n-by-p matrix of predictor variables, with rows corresponding to
observations and columns to variables. Y is an n-by-m response matrix.
XL is a p-by-ncompmatrix of predictor loadings, where each row contains
coefficients that define a linear combination of PLS components that
approximate the original predictor variables. YL is an m-by-ncomp
matrix of response loadings, where each row contains coefficients that
define a linear combination of PLS components that approximate the
original response variables.

[XL,YL,XS] = plsregress(X,Y,ncomp) returns the predictor scores
XS, that is, the PLS components that are linear combinations of the
variables in X. XS is an n-by-ncomp orthonormal matrix with rows
corresponding to observations and columns to components.

[XL,YL,XS,YS] = plsregress(X,Y,ncomp) returns the response
scores YS, that is, the linear combinations of the responses with which
the PLS components XS have maximum covariance. YS is an n-by-ncomp
matrix with rows corresponding to observations and columns to
components. YS is neither orthogonal nor normalized.

plsregress uses the SIMPLS algorithm, first centering X and Y by
subtracting off column means to get centered variables X0 and Y0.
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However, it does not rescale the columns. To perform PLS with
standardized variables, use zscore to normalize X and Y.

If ncomp is omitted, its default value is min(size(X,1)-1,size(X,2)).

The relationships between the scores, loadings, and centered variables
X0 and Y0 are:

XL = (XS\X0)' = X0'*XS,

YL = (XS\Y0)' = Y0'*XS,

XL and YL are the coefficients from regressing X0 and Y0 on XS, and
XS*XL' and XS*YL' are the PLS approximations to X0 and Y0.

plsregress initially computes YS as:

YS = Y0*YL = Y0*Y0'*XS,

By convention, however, plsregress then orthogonalizes each column
of YS with respect to preceding columns of XS, so that XS'*YS is lower
triangular.

[XL,YL,XS,YS,BETA] = PLSREGRESS(X,Y,ncomp,...) returns
the PLS regression coefficients BETA. BETA is a (p+1)-by-m matrix,
containing intercept terms in the first row:

Y = [ones(n,1),X]*BETA + RESIDUALS,

Y0 = X0*BETA(2:end,:) + RESIDUALS.

[XL,YL,XS,YS,BETA,PCTVAR] = plsregress(X,Y,ncomp) returns
a 2-by-ncomp matrix PCTVAR containing the percentage of variance
explained by the model. The first row of PCTVAR contains the percentage
of variance explained in X by each PLS component, and the second row
contains the percentage of variance explained in Y.

[XL,YL,XS,YS,BETA,PCTVAR,MSE] = plsregress(X,Y,ncomp) returns
a 2-by-(ncomp+1) matrix MSE containing estimated mean-squared errors
for PLS models with 0:ncomp components. The first row of MSE contains
mean-squared errors for the predictor variables in X, and the second
row contains mean-squared errors for the response variable(s) in Y.
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[XL,YL,XS,YS,BETA,PCTVAR,MSE] =
plsregress(...,param1,val1,param2,val2,...) specifies optional
parameter name/value pairs from the following table to control the
calculation of MSE.

ParameterValue

'cv' The method used to compute MSE.

• When the value is a positive integer k, plsregress
uses k-fold cross-validation.

• When the value is an object of the cvpartition class,
other forms of cross-validation can be specified.

• When the value is 'resubstitution', plsregress
uses X and Y both to fit the model and to estimate the
mean-squared errors, without cross-validation.

The default is 'resubstitution'.

'mcreps' A positive integer indicating the number of Monte-Carlo
repetitions for cross-validation. The default value
is 1. The value must be 1 if the value of 'cv' is
'resubstitution'.

[XL,YL,XS,YS,BETA,PCTVAR,MSE,stats] =
PLSREGRESS(X,Y,ncomp,...) returns a structure stats with the
following fields:

• W— A p-by-ncomp matrix of PLS weights so that XS = X0*W.

• T2 — The T2 statistic for each point in XS.

• Xresiduals— The predictor residuals, that is, X0-XS*XL'.

• Yresiduals— The response residuals, that is, Y0-XS*YL'.

Examples Load data on near infrared (NIR) spectral intensities of 60 samples of
gasoline at 401 wavelengths, and their octane ratings:
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load spectra
X = NIR;
y = octane;

Perform PLS regression with ten components:

[XL,yl,XS,YS,beta,PCTVAR] = plsregress(X,y,10);

Plot the percent of variance explained in the response variable as a
function of the number of components:

plot(1:10,cumsum(100*PCTVAR(2,:)),'-bo');
xlabel('Number of PLS components');
ylabel('Percent Variance Explained in y');

Compute the fitted response and display the residuals:
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yfit = [ones(size(X,1),1) X]*beta;
residuals = y-yfit;

stem(residuals)
xlabel('Observation');
ylabel('Residual');

References [1] de Jong, S. “SIMPLS: An Alternative Approach to Partial Least
Squares Regression.” Chemometrics and Intelligent Laboratory Systems.
Vol. 18, 1993, pp. 251–263.

[2] Rosipal, R., and N. Kramer. “Overview and Recent Advances
in Partial Least Squares.” Subspace, Latent Structure and Feature
Selection: Statistical and Optimization Perspectives Workshop (SLSFS
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2005), Revised Selected Papers (Lecture Notes in Computer Science
3940). Berlin, Germany: Springer-Verlag, 2006, pp. 34–51.

See Also regress, sequentialfs
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sobolset.PointOrder property

Purpose Point generation method

Description The PointOrder property contains a string that specifies the order in
which the Sobol sequence points are produced. The property value must
be one of 'standard' or 'graycode'. When set to 'standard' the points
produced match the original Sobol sequence implementation. When set
to 'graycode', the sequence is generated using an implementation that
uses the Gray code of the index instead of the index itself.
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qrandstream.PointSet property

Purpose Point set from which stream is drawn

Description The PointSet property contains a copy of the point set from which the
stream is providing points. The point set is specified during construction
of a quasi-random stream and cannot subsequently be altered.

Examples Q = qrandstream('sobol', 5, 'Skip', 8);
% Create a new stream based on the same sequence as that in Q
Q2 = qrandstream(Q.PointSet);
u1 = qrand(Q, 10)
u2 = qrand(Q2, 10) % contains exactly the same values as u1
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Purpose Poisson cumulative distribution function

Syntax P = poisscdf(X,lambda)

Description P = poisscdf(X,lambda) computes the Poisson cdf at each of the
values in X using the corresponding mean parameters in lambda. X and
lambda can be vectors, matrices, or multidimensional arrays that have
the same size. A scalar input is expanded to a constant array with the
same dimensions as the other input. The parameters in lambda must
be positive.

The Poisson cdf is

Examples For example, consider a Quality Assurance department that performs
random tests of individual hard disks. Their policy is to shut down the
manufacturing process if an inspector finds more than four bad sectors
on a disk. What is the probability of shutting down the process if the
mean number of bad sectors (λ) is two?

probability = 1-poisscdf(4,2)
probability =

0.0527

About 5% of the time, a normally functioning manufacturing process
produces more than four flaws on a hard disk.

Suppose the average number of flaws (λ) increases to four. What is the
probability of finding fewer than five flaws on a hard drive?

probability = poisscdf(4,4)
probability =

0.6288
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This means that this faulty manufacturing process continues to operate
after this first inspection almost 63% of the time.

See Also cdf, poisspdf, poissinv, poisstat, poissfit, poissrnd

“Poisson Distribution” on page B-88
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Purpose Poisson parameter estimates

Syntax lambdshat = poissfit(data)
[lambdahat,lambdaci] = poissfit(data)
[lambdahat,lambdaci] = poissfit(data,alpha)

Description lambdshat = poissfit(data) returns the maximum likelihood
estimate (MLE) of the parameter of the Poisson distribution, λ, given
the data data.

[lambdahat,lambdaci] = poissfit(data) also gives 95% confidence
intervals in lamdaci.

[lambdahat,lambdaci] = poissfit(data,alpha) gives
100(1 - alpha)% confidence intervals. For example alpha = 0.001
yields 99.9% confidence intervals.

The sample mean is the MLE of λ.

Examples r = poissrnd(5,10,2);
[l,lci] = poissfit(r)
l =

7.4000 6.3000
lci =

5.8000 4.8000
9.1000 7.9000

See Also mle, poisspdf, poisscdf, poissinv, poisstat, poissrnd

“Poisson Distribution” on page B-88
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Purpose Poisson inverse cumulative distribution function

Syntax X = poissinv(P,lambda)

Description X = poissinv(P,lambda) returns the smallest value X such that the
Poisson cdf evaluated at X equals or exceeds P, using mean parameters
in lambda. P and lambda can be vectors, matrices, or multidimensional
arrays that all have the same size. A scalar input is expanded to a
constant array with the same dimensions as the other input.

Examples If the average number of defects (λ) is two, what is the 95th percentile
of the number of defects?

poissinv(0.95,2)
ans =

5

What is the median number of defects?

median_defects = poissinv(0.50,2)
median_defects =

2

See Also icdf, poisscdf, poisspdf, poisstat, poissfit, poissrnd

“Poisson Distribution” on page B-88
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Purpose Poisson probability density function

Syntax Y = poisspdf(X,lambda)

Description Y = poisspdf(X,lambda) computes the Poisson pdf at each of the
values in X using mean parameters in lambda. X and lambda can be
vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array with the same
dimensions as the other input. The parameters in lambda must all
be positive.

The Poisson pdf is

where x can be any nonnegative integer. The density function is zero
unless x is an integer.

Examples A computer hard disk manufacturer has observed that flaws occur
randomly in the manufacturing process at the average rate of two flaws
in a 4 GB hard disk and has found this rate to be acceptable. What is
the probability that a disk will be manufactured with no defects?

In this problem, λ = 2 and x = 0.

p = poisspdf(0,2)
p =

0.1353

See Also pdf, poisscdf, poissinv, poisstat, poissfit, poissrnd

“Poisson Distribution” on page B-88
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Purpose Poisson random numbers

Syntax R = poissrnd(lambda)
R = poissrnd(lambda,m)
R = poissrnd(lambda,m,n)

Description R = poissrnd(lambda) generates random numbers from the Poisson
distribution with mean parameter lambda. lambda can be a vector, a
matrix, or a multidimensional array. The size of R is the size of lambda.

R = poissrnd(lambda,m) generates random numbers from the Poisson
distribution with mean parameter lambda, where m is a row vector. If m
is a 1-by-2 vector, R is a matrix with m(1) rows and m(2) columns. If m
is 1-by-n, R is an n-dimensional array.

R = poissrnd(lambda,m,n) generates random numbers from the
Poisson distribution with mean parameter lambda, where scalars m and
n are the row and column dimensions of R.

Examples Generate a random sample of 10 pseudo-observations from a Poisson
distribution with λ = 2.

lambda = 2;

random_sample1 = poissrnd(lambda,1,10)
random_sample1 =

1 0 1 2 1 3 4 2 0 0

random_sample2 = poissrnd(lambda,[1 10])
random_sample2 =

1 1 1 5 0 3 2 2 3 4

random_sample3 = poissrnd(lambda(ones(1,10)))
random_sample3 =

3 2 1 1 0 0 4 0 2 0

See Also random, poisspdf, poisscdf, poissinv, poisstat, poissfit
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“Poisson Distribution” on page B-88
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Purpose Poisson mean and variance

Syntax M = poisstat(lambda)
[M,V] = poisstat(lambda)

Description M = poisstat(lambda) returns the mean of the Poisson distribution
using mean parameters in lambda. The size of M is the size of lambda.

[M,V] = poisstat(lambda) also returns the variance V of the Poisson
distribution.

For the Poisson distribution with parameter λ, both the mean and
variance are equal to λ.

Examples Find the mean and variance for the Poisson distribution with λ = 2.

[m,v] = poisstat([1 2; 3 4])
m =

1 2
3 4

v =
1 2
3 4

See Also poisspdf, poisscdf, poissinv, poissfit, poissrnd

“Poisson Distribution” on page B-88
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Purpose Polynomial confidence intervals

Syntax Y = polyconf(p,X)
[Y,DELTA] = polyconf(p,X,S)
[Y,DELTA] = polyconf(p,X,S,param1,val1,param2,val2,...)

Description Y = polyconf(p,X) evaluates the polynomial p at the values in X. p is
a vector of coefficients in descending powers.

[Y,DELTA] = polyconf(p,X,S) takes outputs p and S from polyfit
and generates 95% prediction intervals Y – DELTA for new observations
at the values in X.

[Y,DELTA] = polyconf(p,X,S,param1,val1,param2,val2,...)
specifies optional parameter name/value pairs chosen from the following
list.

Parameter Value

'alpha' A value between 0 and 1 specifying a confidence level
of 100*(1-alpha)%. The default is 0.05.

'mu' A two-element vector containing centering and
scaling parameters. With this option, polyconf uses
(X-mu(1))/mu(2) in place of X.

'predopt' Either 'observation' (the default) to compute
prediction intervals for new observations at the
values in X, or 'curve' to compute confidence
intervals for the fit evaluated at the values in X. See
below.

'simopt' Either 'off' (the default) for nonsimultaneous
bounds, or 'on' for simultaneous bounds. See below.

The 'predopt' and 'simopt' parameters can be understood in terms
of the following functions:

• p(x) — the unknown mean function estimated by the fit
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• l(x) — the lower confidence bound

• u(x) — the upper confidence bound

Suppose you make a new observation yn+1 at xn+1, so that

yn+1(xn+1) = p(xn+1) + εn+1

By default, the interval [ln+1(xn+1), un+1(xn+1)] is a 95% confidence bound
on yn+1(xn+1).

The following combinations of the 'predopt' and 'simopt' parameters
allow you to specify other bounds.

simopt predopt Bounded Quantity

'off' 'observation' yn+1(xn+1) (default)

'off' 'curve' p(xn+1)

'on' 'observation' yn+1(x), for all x

'on' 'curve' p(x), for all x

In general, 'observation' intervals are wider than 'curve' intervals,
because of the additional uncertainty of predicting a new response
value (the curve plus random errors). Likewise, simultaneous intervals
are wider than nonsimultaneous intervals, because of the additional
uncertainty of bounding values for all predictors x.
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Examples This example uses code from the documentation example function
polydemo, and calls the documentation example function polystr
to convert the coefficient vector p into a string for the polynomial
expression displayed in the figure title. It combines the functions
polyfit, polyval, roots, and polyconf to produce a formatted display
of data with a polynomial fit.
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Note Statistics Toolbox documentation example files are located in the
\help\toolbox\stats\examples subdirectory of your MATLAB root
folder (matlabroot). This subdirectory is not on the MATLAB path
at installation. To use the M-files in this subdirectory, either add the
subdirectory to the MATLAB path (addpath) or make the subdirectory
your current working folder (cd).

Display simulated data with a quadratic trend, a fitted quadratic
polynomial, and 95% prediction intervals for new observations:

xdata = -5:5;
ydata = x.^2 - 5*x - 3 + 5*randn(size(x));

degree = 2; % Degree of the fit
alpha = 0.05; % Significance level

% Compute the fit and return the structure used by
% POLYCONF.
[p,S] = polyfit(xdata,ydata,degree);

% Compute the real roots and determine the extent of the
% data.
r = roots(p)'; % Roots as a row vector.
real_r = r(imag(r) == 0); % Real roots.

% Assure that the data are row vectors.
xdata = reshape(xdata,1,length(xdata));
ydata = reshape(ydata,1,length(ydata));

% Extent of the data.
mx = min([real_r,xdata]);
Mx = max([real_r,xdata]);
my = min([ydata,0]);
My = max([ydata,0]);
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% Scale factors for plotting.
sx = 0.05*(Mx-mx);
sy = 0.05*(My-my);

% Plot the data, the fit, and the roots.
hdata = plot(xdata,ydata,'md','MarkerSize',5,...

'LineWidth',2);
hold on
xfit = mx-sx:0.01:Mx+sx;
yfit = polyval(p,xfit);
hfit = plot(xfit,yfit,'b-','LineWidth',2);
hroots = plot(real_r,zeros(size(real_r)),...

'bo','MarkerSize',5,...
'LineWidth',2,...
'MarkerFaceColor','b');

grid on
plot(xfit,zeros(size(xfit)),'k-','LineWidth',2)
axis([mx-sx Mx+sx my-sy My+sy])

% Add prediction intervals to the plot.
[Y,DELTA] = polyconf(p,xfit,S,'alpha',alpha);
hconf = plot(xfit,Y+DELTA,'b--');
plot(xfit,Y-DELTA,'b--')

% Display the polynomial fit and the real roots.
approx_p = round(100*p)/100; % Round for display.
htitle = title(['{\bf Fit: }',...

texlabel(polystr(approx_p))]);
set(htitle,'Color','b')
approx_real_r = round(100*real_r)/100; % Round for display.
hxlabel = xlabel(['{\bf Real Roots: }',...

num2str(approx_real_r)]);
set(hxlabel,'Color','b')

% Add a legend.
legend([hdata,hfit,hroots,hconf],...

'Data','Fit','Real Roots of Fit',...
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'95% Prediction Intervals')

See Also polyfit, polyval, polytool
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Purpose Interactive polynomial fitting

Syntax polytool
polytool(x,y)
polytool(x,y,n)
polytool(x,y,n,alpha)
polytool(x,y,n,alpha,xname,yname)
h = polytool(...)

Description polytool

polytool(x,y) fits a line to the vectors x and y and displays an
interactive plot of the result in a graphical interface. You can use the
interface to explore the effects of changing the parameters of the fit and
to export fit results to the workspace.

polytool(x,y,n) initially fits a polynomial of degree n. The default
is 1, which produces a linear fit.

polytool(x,y,n,alpha) initially plots 100(1 - alpha)% confidence
intervals on the predicted values. The default is 0.05 which results in
95% confidence intervals.

polytool(x,y,n,alpha,xname,yname) labels the x and y values on the
graphical interface using the strings xname and yname. Specify n and
alpha as [] to use their default values.

h = polytool(...) outputs a vector of handles, h, to the line objects
in the plot. The handles are returned in the degree: data, fit, lower
bounds, upper bounds.

See Also polyfit, polyval, polyconf, invpred
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Purpose Posterior probabilities of components

Syntax P = posterior(obj,X)
[P,nlogl] = posterior(obj,X)

Description P = posterior(obj,X) returns the posterior probabilities of each of
the k components in the Gaussian mixture distribution defined by obj
for each observation in the data matrix X. X is n-by-d, where n is the
number of observations and d is the dimension of the data. obj is an
object created by gmdistribution or fit. P is n-by-k, with P(I,J) the
probability of component J given observation I.

posterior treats NaN values as missing data. Rows of X with NaN values
are excluded from the computation.

[P,nlogl] = posterior(obj,X) also returns nlogl, the negative
log-likelihood of the data.

Examples Generate data from a mixture of two bivariate Gaussian distributions
using the mvnrnd function:

MU1 = [1 2];
SIGMA1 = [2 0; 0 .5];
MU2 = [-3 -5];
SIGMA2 = [1 0; 0 1];
X = [mvnrnd(MU1,SIGMA1,1000);mvnrnd(MU2,SIGMA2,1000)];

scatter(X(:,1),X(:,2),10,'.')
hold on
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Fit a two-component Gaussian mixture model:

obj = gmdistribution.fit(X,2);
h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);
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Compute posterior probabilities of the components:

P = posterior(obj,X);

delete(h)
scatter(X(:,1),X(:,2),10,P(:,1),'.')
hb = colorbar;
ylabel(hb,'Component 1 Probability')
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See Also gmdistribution, fit, cluster, mahal
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Purpose Compute posterior probability of each class for test data

Syntax post = posterior(nb,test)
[post,cpre] = posterior(nb,test)
[post,cpre,logp] = posterior(nb,test)
[...] = posterior(..., 'HandleMissing',val)

Description post = posterior(nb,test) returns the posterior probability of the
observations in test according to the NaiveBayes object nb. test is
a N-by-nb.ndims matrix, where N is the number of observations in
the test data. Rows of test correspond to points, columns of test
correspond to features. post is a N-by-nb.nclasses matrix containing
the posterior probability of each observation for each class. post(i,j)
is the posterior probability of point I belonging to class j. Classes are
ordered the same as nb.clevels, i.e., column j of post corresponds to
the jth class in nb.clevels. The posterior probabilities corresponding
to any empty classes are NaN.

[post,cpre] = posterior(nb,test) returns cpre, an N-by-1 vector,
containing the class to which each row of test has been assigned. cpre
has the same type as nb.CLevels.

[post,cpre,logp] = posterior(nb,test) returns logp, an N-by-1
vector containing estimates of the log of the probability density function
(PDF). logp(i) is the log of the PDF of point i. The PDF value of point
i is the sum of Prob(point I | class J) * Pr{class J} taken over
all classes.

[...] = posterior(..., 'HandleMissing',val) specifies how
posterior treats NaN (missing values). val can be one of the following:
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'off'
(default)

Observations with NaN in any of the columns are not
classified into any class. The corresponding rows in
post and logp are NaN. The corresponding rows in
cpre are NaN (if obj.clevels is numeric or logical),
empty strings (if obj.clevels is char or cell array of
strings) or (if obj.clevels is categorical).

'on' For observations having NaN in some (but not all)
columns, post and cpre are computed using the
columns with non-NaN values. Corresponding logp
values are NaN.

See Also NaiveBayes, fit, predict
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Purpose Percentiles

Syntax Y = prctile(X,p)
Y = prctile(X,p,dim)

Description Y = prctile(X,p) returns percentiles of the values in X. p is a scalar
or a vector of percent values. When X is a vector, Y is the same size as
p and Y(i) contains the p(i)th percentile. When X is a matrix, the
ith row of Y contains the p(i)th percentiles of each column of X. For
N-dimensional arrays, prctile operates along the first nonsingleton
dimension of X.

Y = prctile(X,p,dim) calculates percentiles along dimension dim.
The dim’th dimension of Y has length length(p).

Percentiles are specified using percentages, from 0 to 100. For an
n-element vector X, prctile computes percentiles as follows:

1 The sorted values in X are taken to be the 100(0.5/n), 100(1.5/n), ...,
100([n-0.5]/n) percentiles.

2 Linear interpolation is used to compute percentiles for percent values
between 100(0.5/n) and 100([n-0.5]/n).

3 The minimum or maximum values in X are assigned to percentiles
for percent values outside that range.

prctile treats NaNs as missing values and removes them.

Examples x = (1:5)'*(1:5)
x =

1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25

y = prctile(x,[25 50 75])
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y =
1.7500 3.5000 5.2500 7.0000 8.7500
3.0000 6.0000 9.0000 12.0000 15.0000
4.2500 8.5000 12.7500 17.0000 21.2500
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Purpose Predict response

Syntax YFIT = predict(B,X)
[YFIT,stdevs] = predict(B,X)
[YFIT,scores] = predict(B,X)
[YFIT,scores,stdevs] = predict(B,X)
Y = predict(B,X,'param1',val1,'param2',val2,...)

Description YFIT = predict(B,X) computes the predicted response of the trained
ensemble B for predictors X. By default, predict takes a democratic
(nonweighted) average vote from all trees in the ensemble. In X, rows
represent observations and columns represent variables. YFIT is a cell
array of strings for classification and a numeric array for regression.

For regression, [YFIT,stdevs] = predict(B,X) also returns standard
deviations of the computed responses over the ensemble of the grown
trees.

For classification, [YFIT,scores] = predict(B,X) returns scores
for all classes. scores is a matrix with one row per observation and
one column per class. For each observation and each class, the score
generated by each tree is the probability of this observation originating
from this class computed as the fraction of observations of this class in a
tree leaf. predict averages these scores over all trees in the ensemble.

[YFIT,scores,stdevs] = predict(B,X)also returns standard
deviations of the computed scores for classification. stdevs is a matrix
with one row per observation and one column per class, with standard
deviations taken over the ensemble of the grown trees.

Y = predict(B,X,'param1',val1,'param2',val2,...) specifies
optional parameter name/value pairs:
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'trees' Array of tree indices to use for computation of
responses. Default is 'all'.

'treeweights' Array of NTrees weights for weighting votes from
the specified trees.

'useifort' Logical matrix of size Nobs-by-NTrees indicating
which trees to use to make predictions for each
observation. By default all trees are used for all
observations.

See Also classregtree.eval, TreeBagger.predict
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Purpose Predict class label for test data

Syntax cpre = predict(nb,test)
cpre = predict(...,'HandleMissing',val)

Description cpre = predict(nb,test) classifies each row of data in test into one
of the classes according to the NaiveBayes classifier nb, and returns the
predicted class level cpre. test is an N-by-nb.ndims matrix, where N is
the number of observations in the test data. Rows of test correspond to
points, columns of test correspond to features. cpre is an N-by-1 vector
of the same type as nb.CLevels, and it indicates the class to which
each row of test has been assigned.

cpre = predict(...,'HandleMissing',val) specifies how predict
treats NaN (missing values). val can be one of the following:

'off'
(default)

Observations with NaN in any of the columns are not
classified into any class. The corresponding rows in
post and logp are NaN. The corresponding rows in
cpre are NaN (if obj.clevels is numeric or logical),
empty strings (if obj.clevels is char or cell array of
strings) or (if obj.clevels is categorical).

'on' For observations having NaN in some (but not all)
columns, post and predict computes cpre using the
columns with non-NaN values. Corresponding logp
values are NaN.

See Also NaiveBayes, fit, posterior
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Purpose Predict response

Syntax Y = predict(B,X)
Y = predict(B,X,'param1',val1,'param2',val2,...)

Description Y = predict(B,X) computes predicted response of the trained
ensemble B for data X. The output has one prediction for each row of X.
The returned Y is a cell array of strings for classification and a numeric
array for regression.

Y = predict(B,X,'param1',val1,'param2',val2,...) specifies
optional parameter name/value pairs:

'trees' Array of tree indices to use for computation of
responses. Default is 'all'.

'treeweights' Array of NTrees weights for weighting votes from
the specified trees.

'useifort' Logical matrix of size Nobs-by-NTrees indicating
which trees to use to make predictions for each
observation. By default all trees are used for all
observations.

See Also CompactTreeBagger.predict
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Purpose Principal component analysis on data

Syntax [COEFF,SCORE] = princomp(X)
[COEFF,SCORE,latent] = princomp(X)
[COEFF,SCORE,latent,tsquare] = princomp(X)
[...] = princomp(X,'econ')

Description COEFF = princomp(X) performs principal components analysis on the
n-by-p data matrix X, and returns the principal component coefficients,
also known as loadings. Rows of X correspond to observations, columns
to variables. COEFF is a p-by-p matrix, each column containing
coefficients for one principal component. The columns are in order of
decreasing component variance.

princomp centers X by subtracting off column means, but does not
rescale the columns of X. To perform principal components analysis
with standardized variables, that is, based on correlations, use
princomp(zscore(X)). To perform principal components analysis
directly on a covariance or correlation matrix, use pcacov.

[COEFF,SCORE] = princomp(X) returns SCORE, the principal
component scores; that is, the representation of X in the principal
component space. Rows of SCORE correspond to observations, columns
to components.

[COEFF,SCORE,latent] = princomp(X) returns latent, a vector
containing the eigenvalues of the covariance matrix of X.

[COEFF,SCORE,latent,tsquare] = princomp(X) returns tsquare,
which contains Hotelling’s T2 statistic for each data point.

The scores are the data formed by transforming the original data into
the space of the principal components. The values of the vector latent
are the variance of the columns of SCORE. Hotelling’s T2 is a measure
of the multivariate distance of each observation from the center of the
data set.

When n <= p, SCORE(:,n:p) and latent(n:p) are necessarily zero,
and the columns of COEFF(:,n:p) define directions that are orthogonal
to X.
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[...] = princomp(X,'econ') returns only the elements of latent
that are not necessarily zero, and the corresponding columns of COEFF
and SCORE, that is, when n <= p, only the first n-1. This can be
significantly faster when p is much larger than n.

Examples Compute principal components for the ingredients data in the Hald
data set, and the variance accounted for by each component.

load hald;
[pc,score,latent,tsquare] = princomp(ingredients);
pc,latent

pc =
0.0678 -0.6460 0.5673 -0.5062
0.6785 -0.0200 -0.5440 -0.4933

-0.0290 0.7553 0.4036 -0.5156
-0.7309 -0.1085 -0.4684 -0.4844

latent =
517.7969
67.4964
12.4054
0.2372

The following command and plot show that two components account for
98% of the variance:

cumsum(latent)./sum(latent)
ans =

0.86597
0.97886
0.9996

1
biplot(pc(:,1:2),'Scores',score(:,1:2),'VarLabels',...

{'X1' 'X2' 'X3' 'X4'})

18-1033



princomp

For a more detailed example and explanation of this analysis method,
see “Principal Component Analysis” on page 10-31.

References [1] Jackson, J. E., A User’s Guide to Principal Components, John Wiley
and Sons, 1991, p. 592.

[2] Jolliffe, I. T., Principal Component Analysis, 2nd edition, Springer,
2002.

[3] Krzanowski, W. J. Principles of Multivariate Analysis: A User’s
Perspective. New York: Oxford University Press, 1988.
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[4] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

See Also “Principal Component Analysis” on page 10-31

barttest, biplot, canoncorr, factoran, pcacov, pcares ,
rotatefactors
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TreeBagger.Prior property

Purpose Prior class probabilities

Description The Prior property is a vector with prior probabilities for classes. This
property is empty for ensembles of regression trees.

See Also classregtree
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ProbDist class

Purpose Object representing probability distribution

Description ProbDist is an abstract class representing a probability distribution.

Construction ProbDist is an abstract class. You cannot create instances of this
class directly. You can construct an object in a subclass, such as
ProbDistUnivParam or ProbDistUnivKernel, either by calling the
subclass constructors (ProbDistUnivParam.ProbDistUnivParam or
ProbDistUnivKernel.ProbDistUnivKernel) or by using the fitdist
function.

Methods cdf Return cumulative distribution
function (CDF) for ProbDist object

pdf Return probability density
function (PDF) for ProbDist object

random Generate random number drawn
from ProbDist object

Properties DistName Read-only string containing
probability distribution name of
ProbDist object

InputData Read-only structure containing
information about input data to
ProbDist object

Support Read-only structure containing
information about support of
ProbDist object

Copy
Semantics

Value. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.
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See Also fitdist
ProbDistParametric class
ProbDistKernel class
ProbDistUnivParam class
ProbDistUnivKernel class
ProbDistUnivParam.ProbDistUnivParam constructor
ProbDistUnivKernel.ProbDistUnivKernel constructor

18-1038



ProbDistKernel class

Superclasses ProbDist

Purpose Object representing nonparametric probability distribution defined
by kernel smoothing

Description ProbDistKernel is an abstract class defining the properties and methods
of a nonparametric distribution defined by a kernel smoothing function.

Construction ProbDistKernel is an abstract class. You cannot create instances
of this class directly. You can construct an object in a subclass,
ProbDistUnivKernel, either by calling the subclass constructor,
ProbDistUnivKernel.ProbDistUnivKernel, or by using the fitdist
function.

Methods cdf Return cumulative distribution
function (CDF) for ProbDist object

pdf Return probability density
function (PDF) for ProbDist object

random Generate random number drawn
from ProbDist object

Note The above methods are inherited from the ProbDist class.

Properties BandWidth Read-only value specifying
bandwidth of kernel smoothing
function for ProbDistKernel
object

DistName Read-only string containing
probability distribution name of
ProbDist object
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InputData Read-only structure containing
information about input data to
ProbDist object

Kernel Read-only string specifying name
of kernel smoothing function for
ProbDistKernel object

Support Read-only structure containing
information about support of
ProbDist object

Note Some of the above properties are inherited from the ProbDist
class.

Copy
Semantics

Value. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

See Also fitdist
ProbDist class
ProbDistUnivKernel class
ProbDistUnivKernel.ProbDistUnivKernel constructor
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Superclasses ProbDist

Purpose Object representing parametric probability distribution

Description ProbDistParametric is an abstract class defining the properties and
methods of a parametric probability distribution.

Construction ProbDistParametric is an abstract class. You cannot create instances
of this class directly. You can construct an object in its subclass,
ProbDistUnivParam, either by calling the subclass constructor,
ProbDistUnivParam.ProbDistUnivParam, or by using the fitdist
function.

Methods cdf Return cumulative distribution
function (CDF) for ProbDist object

pdf Return probability density
function (PDF) for ProbDist object

random Generate random number drawn
from ProbDist object

Note The above methods are inherited from the ProbDist class.

Properties DistName Read-only string containing
probability distribution name of
ProbDist object

InputData Read-only structure containing
information about input data to
ProbDist object
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NLogL Read-only value specifying
negative log likelihood for input
data to ProbDistParametric
object

NumParams Read-only value specifying
number of parameters of
ProbDistParametric object

ParamCov Read-only covariance matrix
of parameter estimates of
ProbDistParametric object

ParamDescription Read-only cell array specifying
descriptions of parameters of
ProbDistParametric object

ParamIsFixed Read-only logical array
specifying fixed parameters
of ProbDistParametric object

ParamNames Read-only cell array specifying
names of parameters of
ProbDistParametric object

Params Read-only array specifying
values of parameters of
ProbDistParametric object

Support Read-only structure containing
information about support of
ProbDist object

Note Some of the above properties are inherited from the ProbDist
class.

Copy
Semantics

Value. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.
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See Also fitdist
ProbDist class
ProbDistUnivParam class
ProbDistUnivParam.ProbDistUnivParam constructor
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Superclasses ProbDistKernel

Purpose Object representing univariate kernel probability distribution

Description A ProbDistUnivKernel object represents a univariate nonparametric
probability distribution defined by kernel smoothing. You create this
object using the fitdist function to fit the distribution to data.

Construction fitdist Fit probability distribution to
data

Methods cdf Return cumulative distribution
function (CDF) for ProbDist object

icdf Return inverse cumulative
distribution function (ICDF) for
ProbDistUnivKernel object

iqr Return interquartile range (IQR)
for ProbDistUnivKernel object

median Return median of
ProbDistUnivKernel object

pdf Return probability density
function (PDF) for ProbDist object

random Generate random number drawn
from ProbDist object

Note Some of the above methods are inherited from the
ProbDistKernel class.
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Properties BandWidth Read-only value specifying
bandwidth of kernel smoothing
function for ProbDistKernel
object

DistName Read-only string containing
probability distribution name of
ProbDist object

InputData Read-only structure containing
information about input data to
ProbDist object

Kernel Read-only string specifying name
of kernel smoothing function for
ProbDistKernel object

NLogL Read-only value specifying
negative log likelihood for input
data to ProbDistUnivKernel
object

Support Read-only structure containing
information about support of
ProbDist object

Note Some of the above properties are inherited from the
ProbDistKernel class.

Copy
Semantics

Value. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

References [1] Bowman, A. W., and A. Azzalini. Applied Smoothing Techniques for
Data Analysis. New York: Oxford University Press, 1997.
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See Also fitdist
ksdensity

ProbDist class
ProbDistKernel class
ProbDistUnivKernel.ProbDistUnivKernel constructor
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Purpose Construct ProbDistUnivKernel object

Syntax PD = ProbDistUnivKernel(X)
PD = ProbDistUnivKernel(X, param1, val1, param2, val2, ...)

Description
Tip Although you can use this constructor function to create a
ProbDistUnivKernel object, using the fitdist function is an easier way
to create the ProbDistUnivKernel object.

PD = ProbDistUnivKernel(X) creates PD, a ProbDistUnivKernel
object, which represents a nonparametric probability distribution,
based on a normal kernel smoothing function.

PD = ProbDistUnivKernel(X, param1, val1, param2, val2,
...) specifies optional parameter name/value pairs, as described in
the Parameter/Values table. Parameter and value names are case
insensitive.

Inputs X A column vector of data.

Note Any NaN values in X are ignored by the
fitting calculations.
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Parameter Values

'censoring' A Boolean vector the same size as X, containing 1s when
the corresponding elements in X are right-censored
observations and 0s when the corresponding elements
are exact observations. Default is a vector of 0s.

Note Any NaN values in this censoring vector are
ignored by the fitting calculations.

'frequency' A vector the same size as X, containing nonnegative
integers specifying the frequencies for the corresponding
elements in X. Default is a vector of 1s.

Note Any NaN values in this frequency vector are
ignored by the fitting calculations.

'kernel' A string specifying the type of kernel smoother to use.
Choices are:

• 'normal' (default)

• 'box'

• 'triangle'

• 'epanechnikov'
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Parameter Values

'support' Any of the following to specify the support:

• 'unbounded' — Default. If the density can extend
over the whole real line.

• 'positive'— To restrict it to positive values.

• A two-element vector giving finite lower and upper
limits for the support of the density.

'width' A value specifying the bandwidth of the kernel
smoothing window. The default is optimal for
estimating normal densities, but you may want to
choose a smaller value to reveal features such as
multiple modes.

Outputs PD An object in the ProbDistUnivKernel class,
which is derived from the ProbDist class.
It represents a nonparametric probability
distribution.

References [1] Bowman, A. W., and A. Azzalini. Applied Smoothing Techniques for
Data Analysis. New York: Oxford University Press, 1997.

See Also fitdist
ksdensity
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Superclasses ProbDistParametric

Purpose Object representing univariate parametric probability distribution

Description A ProbDistUnivParam object represents a univariate parametric
probability distribution. You create this object by using the constructor
(ProbDistUnivParam.ProbDistUnivParam) and supplying parameter
values, or by using the fitdist function to fit the distribution to data.

Construction fitdist Fit probability distribution to
data

ProbDistUnivParam Construct ProbDistUnivParam
object

Methods cdf Return cumulative distribution
function (CDF) for ProbDist object

icdf Return inverse cumulative
distribution function (ICDF) for
ProbDistUnivParam object

iqr Return interquartile range (IQR)
for ProbDistUnivParam object

mean Return mean of
ProbDistUnivParam object

median Return median of
ProbDistUnivParam object

paramci Return parameter confidence
intervals of ProbDistUnivParam
object

pdf Return probability density
function (PDF) for ProbDist object
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random Generate random number drawn
from ProbDist object

std Return standard deviation of
ProbDistUnivParam object

var Return variance of
ProbDistUnivParam object

Note Some of the above methods are inherited from the
ProbDistParametric class.

Properties DistName Read-only string containing
probability distribution name of
ProbDist object

InputData Read-only structure containing
information about input data to
ProbDist object

NLogL Read-only value specifying
negative log likelihood for input
data to ProbDistParametric
object

NumParams Read-only value specifying
number of parameters of
ProbDistParametric object

ParamCov Read-only covariance matrix
of parameter estimates of
ProbDistParametric object

ParamDescription Read-only cell array specifying
descriptions of parameters of
ProbDistParametric object
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ParamIsFixed Read-only logical array
specifying fixed parameters
of ProbDistParametric object

ParamNames Read-only cell array specifying
names of parameters of
ProbDistParametric object

Params Read-only array specifying
values of parameters of
ProbDistParametric object

Support Read-only structure containing
information about support of
ProbDist object

Note The above properties are inherited from the ProbDistParametric
class.

Note Parameter values are also properties. For example, if you
create PD, a univariate parametric probability distribution object
that represents a normal distribution, then PD.mu and PD.sigma are
properties that give the values of the mu and sigma parameters.

Copy
Semantics

Value. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

References [1] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous
Univariate Distributions. Vol. 1, Hoboken, NJ: Wiley-Interscience,
1993.
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[2] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous
Univariate Distributions. Vol. 2, Hoboken, NJ: Wiley-Interscience,
1994.

See Also fitdist
ProbDist class
ProbDistParametric class
ProbDistUnivParam.ProbDistUnivParam constructor
Appendix B, “Distribution Reference” — For more information on
parametric distributions
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Purpose Construct ProbDistUnivParam object

Syntax PD = ProbDistUnivParam(DistName, Params)

Description PD = ProbDistUnivParam(DistName, Params) creates PD, a
ProbDistUnivParam object, which represents a probability distribution.
This distribution is defined by the parametric distribution specified by
DistName, with parameters specified by the numeric vector Params.

Inputs DistName A string specifying a distribution. Choices are:

• 'beta'

• 'binomial'

• 'birnbaumsaunders'

• 'exponential'

• 'extreme value' or ev'

• 'gamma'

• 'generalized extreme value' or 'gev'

• 'generalized pareto' or 'gp'

• 'inversegaussian'

• 'logistic'

• 'loglogistic'

• 'lognormal'

• 'nakagami'

• 'negative binomial' or 'nbin'

• 'normal'

• 'poisson'
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• 'rayleigh'

• 'rician'

• 'tlocationscale'

• 'weibull' or 'wbl'

For more information on these parametric
distributions, see Appendix B, “Distribution
Reference”.

Params Numeric vector of distribution parameters.
The number and type of parameters
depends on the distribution you specify with
DistName. For information on parameters
for each distribution type, see Appendix B,
“Distribution Reference”.

Outputs PD An object in the ProbDistUnivParam class,
which is derived from the ProbDist class.
It represents a parametric probability
distribution.

Examples 1 Create an object representing a normal distribution with a mean of
100 and a standard deviation of 10.

pd = ProbDistUnivParam('normal',[100 10])

pd =

normal distribution

mu = 100
sigma = 10
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2 Generate a 4-by-5 matrix of random values from this distribution.

random(pd,4,5)

ans =

105.3767 103.1877 135.7840 107.2540 98.7586
118.3389 86.9231 127.6944 99.3695 114.8970
77.4115 95.6641 86.5011 107.1474 114.0903

108.6217 103.4262 130.3492 97.9503 114.1719

References [1] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous
Univariate Distributions. Vol. 1, Hoboken, NJ: Wiley-Interscience,
1993.

[2] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous
Univariate Distributions. Vol. 2, Hoboken, NJ: Wiley-Interscience,
1994.

See Also Appendix B, “Distribution Reference” — For more information on
parametric distributions
fitdist
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Purpose Probability plots

Syntax probplot(Y)
probplot(distribution,Y)
probplot(Y,cens,freq)
probplot(ax,Y)
probplot(...,'noref')
probplot(ax,PD)
probplot(ax,fun,params)
h = probplot(...)

Description probplot(Y) produces a normal probability plot comparing the
distribution of the data Y to the normal distribution. Y can be a single
vector, or a matrix with a separate sample in each column. The plot
includes a reference line useful for judging whether the data follow a
normal distribution.

probplot uses midpoint probability plotting positions. The ith sorted
value from a sample of size N is plotted against the midpoint in the
jump of the empirical CDF on the y axis. With uncensored data, that
midpoint is (i–0.5)/N. With censored data (see below), the y value is
more complicated to compute.

probplot(distribution,Y) creates a probability plot for the
distribution specified by distribution. Acceptable strings for
distribution are:

• 'exponential'— Exponential probability plot (nonnegative values)

• 'extreme value'— Extreme value probability plot (all values)

• 'lognormal'— Lognormal probability plot (positive values)

• 'normal' — Normal probability plot (all values)

• 'rayleigh'— Rayleigh probability plot (positive values)

• 'weibull'— Weibull probability plot (positive values)
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The y axis scale is based on the selected distribution. The x axis has a
log scale for the Weibull and lognormal distributions, and a linear scale
for the others.

Not all distributions are appropriate for all data sets, and probplot will
error when asked to create a plot with a data set that is inappropriate
for a specified distribution. Appropriate data ranges for each
distribution are given parenthetically in the list above.

probplot(Y,cens,freq) or probplot(distname,Y,cens,freq)
requires a vector Y. cens is a vector of the same size as Y and contains
1 for observations that are right-censored and 0 for observations that
are observed exactly. freq is a vector of the same size as Y, containing
integer frequencies for the corresponding elements in Y.

probplot(ax,Y) takes a handle ax to an existing probability plot, and
adds additional lines for the samples in Y. ax is a handle for a set of axes.

probplot(...,'noref') omits the reference line.

probplot(ax,PD) takes a probability distribution object, PD, and
adds a fitted line to the axes specified by ax to represent the
probability distribution specified by PD. PD is a ProbDist object of the
ProbDistUnivParam class or ProbDistUnivKernel class.

probplot(ax,fun,params) takes a function fun and a set of
parameters, params, and adds fitted lines to the axes of an existing
probability plot specified by ax. fun is a function handle to a cdf
function, specified with @ (for example, @wblcdf). params is the set of
parameters required to evaluate fun, and is specified as a cell array
or vector. The function must accept a vector of X values as its first
argument, then the optional parameters, and must return a vector of
cdf values evaluated at X.

h = probplot(...) returns handles to the plotted lines.

Examples Example 1

The following plot assesses two samples, one from a Weibull distribution
and one from a Rayleigh distribution, to see if they may have come
from a Weibull population.
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x1 = wblrnd(3,3,100,1);
x2 = raylrnd(3,100,1);
probplot('weibull',[x1 x2])
legend('Weibull Sample','Rayleigh Sample','Location','NW')

Example 2

Consider the following data, with about 20% outliers:

left_tail = -exprnd(1,10,1);
right_tail = exprnd(5,10,1);
center = randn(80,1);
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data = [left_tail;center;right_tail];

Neither a normal distribution nor a t distribution fits the tails very well:

probplot(data);
p = mle(data,'dist','tlo');
t = @(data,mu,sig,df)cdf('tlocationscale',data,mu,sig,df);
h = probplot(gca,t,p);
set(h,'color','r','linestyle','-')
title('{\bf Probability Plot}')
legend('Data','Normal','t','Location','NW')
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See Also normplot, ecdf, wblplot
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Purpose Procrustes analysis

Syntax d = procrustes(X,Y)
[d,Z] = procrustes(X,Y)
[d,Z,transform] = procrustes(X,Y)
[...] = procrustes(...,'scaling',flag)
[...] = procrustes(...,'reflection',flag)

Description d = procrustes(X,Y) determines a linear transformation (translation,
reflection, orthogonal rotation, and scaling) of the points in matrix Y to
best conform them to the points in matrix X. The goodness-of-fit criterion
is the sum of squared errors. procrustes returns the minimized value
of this dissimilarity measure in d. d is standardized by a measure of the
scale of X, given by:

sum(sum((X-repmat(mean(X,1),size(X,1),1)).^2,1))

That is, the sum of squared elements of a centered version of X.
However, if X comprises repetitions of the same point, the sum of
squared errors is not standardized.

X and Y must have the same number of points (rows), and procrustes
matches Y(i) to X(i). Points in Y can have smaller dimension (number
of columns) than those in X. In this case, procrustes adds columns
of zeros to Y as necessary.

[d,Z] = procrustes(X,Y) also returns the transformed Y values.

[d,Z,transform] = procrustes(X,Y) also returns the transformation
that maps Y to Z. transform is a structure array with fields:

• c — Translation component

• T — Orthogonal rotation and reflection component

• b — Scale component

That is:

c = transform.c;
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T = transform.T;
b = transform.b;

Z = b*Y*T + c;

[...] = procrustes(...,'scaling',flag), when flag is false,
allows you to compute the transformation without a scale component
(that is, with b equal to 1). The default flag is true.

[...] = procrustes(...,'reflection',flag), when flag is
false, allows you to compute the transformation without a reflection
component (that is, with det(T) equal to 1). The default flag is
'best', which computes the best-fitting transformation, whether
or not it includes a reflection component. A flag of true forces the
transformation to be computed with a reflection component (that is,
with det(T) equal to -1)

Examples This example creates some random points in two dimensions, then
rotates, scales, translates, and adds some noise to those points. It uses
procrustes to conform Y to X, then plots the original X and Y with the
transformed Y.

n = 10;
X = normrnd(0,1,[n 2]);
S = [0.5 -sqrt(3)/2; sqrt(3)/2 0.5];
Y = normrnd(0.5*X*S+2,0.05,n,2);
[d,Z,tr] = procrustes(X,Y);
plot(X(:,1),X(:,2),'rx',...

Y(:,1),Y(:,2),'b.',...
Z(:,1),Z(:,2),'bx');
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References [1] Kendall, David G. “A Survey of the Statistical Theory of Shape.”
Statistical Science. Vol. 4, No. 2, 1989, pp. 87–99.

[2] Bookstein, Fred L. Morphometric Tools for Landmark Data.
Cambridge, UK: Cambridge University Press, 1991.

[3] Seber, G. A. F.Multivariate Observations. Hoboken, NJ: John Wiley
& Sons, Inc., 1984.

See Also cmdscale, factoran
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Purpose Proximity matrix for data

Syntax prox = proximity(B,X)

Description prox = proximity(B,X) computes a numeric matrix of size
Nobs-by-Nobs of proximities for data X, where Nobs is the number of
observations (rows) in X. Proximity between any two observations in the
input data is defined as a fraction of trees in the ensemble B for which
these two observations land on the same leaf. This is a symmetric
matrix with ones on the diagonal and off-diagonal elements ranging
from 0 to 1.
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Purpose Proximity matrix for observations

Description The Proximity property is a numeric matrix of size Nobs-by-Nobs,
where Nobs is the number of observations in the training data,
containing measures of the proximity between observations. For any
two observations, their proximity is defined as the fraction of trees for
which these observations land on the same leaf. This is a symmetric
matrix with 1s on the diagonal and off-diagonal elements ranging from
0 to 1.

See Also CompactTreeBagger.proximity, classregtree.varimportance
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Purpose Prune tree

Syntax t2 = prune(t1,'level',level)
t2 = prune(t1,'nodes',nodes)
t2 = prune(t1)

Description t2 = prune(t1,'level',level) takes a decision tree t1 and a pruning
level level, and returns the decision tree t2 pruned to that level. If
level is 0, there is no pruning. Trees are pruned based on an optimal
pruning scheme that first prunes branches giving less improvement
in error cost.

t2 = prune(t1,'nodes',nodes) prunes the nodes listed in the nodes
vector from the tree. Any t1 branch nodes listed in nodes become leaf
nodes in t2, unless their parent nodes are also pruned. Use view to
display the node numbers for any node you select.

t2 = prune(t1) returns the decision tree t2 that is the full, unpruned
t1, but with optimal pruning information added. This is useful only if
t1 is created by pruning another tree, or by using the classregtree
function with the 'prune' parameter set to 'off'. If you plan to prune
a tree multiple times along the optimal pruning sequence, it is more
efficient to create the optimal pruning sequence first.

Pruning is the process of reducing a tree by turning some branch nodes
into leaf nodes and removing the leaf nodes under the original branch.

Examples Display the full tree for Fisher’s iris data:

load fisheriris;

t1 = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'},...
'splitmin',5)

t1 =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
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3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 if PW<1.55 then node 10 else node 11
8 class = versicolor
9 class = virginica

10 class = virginica
11 class = versicolor

view(t1)
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Display the next largest tree from the optimal pruning sequence:

t2 = prune(t1,'level',1)
t2 =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
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5 class = virginica
6 class = versicolor
7 class = virginica

view(t2)

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.
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See Also classregtree, test, view
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Purpose Flag to prune trees

Description The Prune property is true if decision trees are pruned and false if they
are not. Pruning decision trees is not recommended for ensembles. The
default value is false.

See Also classregtree.prune
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Purpose Generate quasi-random points from stream

Syntax x = qrand(q)
X = qrand(q,n)

Description x = qrand(q) returns the next value x in the quasi-random number
stream q of the qrandstream class. x is a 1-by-d vector, where d is the
dimension of the stream. The command sets q.State to the index in the
underlying point set of the next value to be returned.

X = qrand(q,n) returns the next n values X in an n-by-d matrix.

Objects q of the qrandstream class encapsulate properties of a specified
quasi-random number stream. Values of the stream are not generated
and stored in memory until q is accessed using qrand.

Examples Use qrandstream to construct a 3-D Halton stream, based on a point
set that skips the first 1000 values and then retains every 101st point:

q = qrandstream('halton',3,'Skip',1e3,'Leap',1e2)
q =

Halton quasi-random stream in 3 dimensions
Point set properties:

Skip : 1000
Leap : 100

ScrambleMethod : none

nextIdx = q.State
nextIdx =

1

Use qrand to generate two samples of size four:

X1 = qrand(q,4)
X1 =

0.0928 0.3475 0.0051
0.6958 0.2035 0.2371
0.3013 0.8496 0.4307
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0.9087 0.5629 0.6166
nextIdx = q.State
nextIdx =

5

X2 = qrand(q,4)
X2 =

0.2446 0.0238 0.8102
0.5298 0.7540 0.0438
0.3843 0.5112 0.2758
0.8335 0.2245 0.4694

nextIdx = q.State
nextIdx =

9

Use reset to reset the stream, then generate another sample:

reset(q)
nextIdx = q.State
nextIdx =

1

X = qrand(q,4)
X =

0.0928 0.3475 0.0051
0.6958 0.2035 0.2371
0.3013 0.8496 0.4307
0.9087 0.5629 0.6166

See Also qrandstream, reset
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Purpose Quasi-random point sets

Description qrandset is a base class that encapsulates a sequence of multi-
dimensional quasi-random numbers. This base class is abstract and
cannot be instantiated directly. Concrete subclasses include sobolset
and haltonset.

Construction qrandset Abstract quasi-random point set
class

Methods disp Display qrandset object

end Last index in indexing expression
for point set

length Length of point set

ndims Number of dimensions in matrix

net Generate quasi-random point set

scramble Scramble quasi-random point set

size Number of dimensions in matrix

subsref Subscripted reference for
qrandset

Properties Dimensions Number of dimensions

Leap Interval between points

ScrambleMethod Settings that control scrambling

18-1075



qrandset class

Skip Number of initial points to omit
from sequence

Type Name of sequence on which point
set Pis based

Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.

See Also “Quasi-Random Point Sets” on page 6-18
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Purpose Abstract quasi-random point set class

Description qrandset is an abstract class, and you cannot create instances of it
directly. You must use haltonset or sobolset to create a qrandset
object.

See Also haltonset, sobolset
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Purpose Quasi-random number streams

Construction qrandstream Construct quasi-random number
stream

Methods addlistener Add listener for event

delete Delete handle object

disp Display qrandstream object

eq Test handle equality

findobj Find objects matching specified
conditions

findprop Find property of MATLAB handle
object

ge Greater than or equal relation for
handles

gt Greater than relation for handles

isvalid Test handle validity

le Less than or equal relation for
handles

lt Less than relation for handles

ne Not equal relation for handles

notify Notify listeners of event

qrand Generate quasi-random points
from stream

rand Generate quasi-random points
from stream

reset Reset state
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Properties PointSet Point set from which stream is
drawn

State Current state of the stream

Copy
Semantics

Handle. To learn how this affects your use of the class, see
Comparing Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.
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Purpose Construct quasi-random number stream

Syntax q = qrandstream(type,d)
q = qrandstream(type,d,prop1,val1,prop2,val2,...)
q = qrandstream(p)

Description q = qrandstream(type,d) constructs a d-dimensional quasi-random
number stream q of the qrandstream class, of type specified by the
string type. type is either 'halton' or 'sobol', and q is based
on a point set from either the haltonset class or sobolset class,
respectively, with default property settings.

q = qrandstream(type,d,prop1,val1,prop2,val2,...) specifies
property name/value pairs for the point set on which the stream is
based. Applicable properties depend on type.

q = qrandstream(p) constructs a stream based on the specified point
set p. p must be a point set from either the haltonset class or sobolset
class.

Examples Construct a 3-D Halton stream, based on a point set that skips the first
1000 values and then retains every 101st point:

q = qrandstream('halton',3,'Skip',1e3,'Leap',1e2)
q =

Halton quasi-random stream in 3 dimensions
Point set properties:

Skip : 1000
Leap : 100

ScrambleMethod : none

nextIdx = q.State
nextIdx =

1

Use qrand to generate two samples of size four:

X1 = qrand(q,4)
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X1 =
0.0928 0.3475 0.0051
0.6958 0.2035 0.2371
0.3013 0.8496 0.4307
0.9087 0.5629 0.6166

nextIdx = q.State
nextIdx =

5

X2 = qrand(q,4)
X2 =

0.2446 0.0238 0.8102
0.5298 0.7540 0.0438
0.3843 0.5112 0.2758
0.8335 0.2245 0.4694

nextIdx = q.State
nextIdx =

9

Use reset to reset the stream, and then generate another sample:

reset(q)
nextIdx = q.State
nextIdx =

1

X = qrand(q,4)
X =

0.0928 0.3475 0.0051
0.6958 0.2035 0.2371
0.3013 0.8496 0.4307
0.9087 0.5629 0.6166

See Also haltonset,qrand, reset, sobolset
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Purpose Quantile-quantile plot

Syntax qqplot(X)
qqplot(X,Y)
qqplot(X,PD)
qqplot(X,Y,pvec)
h = qqplot(X,Y,pvec)

Description qqplot(X) displays a quantile-quantile plot of the sample quantiles
of X versus theoretical quantiles from a normal distribution. If the
distribution of X is normal, the plot will be close to linear.

qqplot(X,Y) displays a quantile-quantile plot of two samples. If the
samples do come from the same distribution, the plot will be linear.

qqplot(X,PD) makes an empirical quantile-quantile plot of
the quantiles of the data in the vector X versus the quantiles
of the distribution specified by PD, a ProbDist object of the
ProbDistUnivParam class or ProbDistUnivKernel class.

For matrix X and Y, qqplot displays a separate line for each pair of
columns. The plotted quantiles are the quantiles of the smaller data set.

The plot has the sample data displayed with the plot symbol '+'.
Superimposed on the plot is a line joining the first and third quartiles of
each distribution (this is a robust linear fit of the order statistics of the
two samples). This line is extrapolated out to the ends of the sample to
help evaluate the linearity of the data.

Use qqplot(X,Y,pvec) to specify the quantiles in the vector pvec.

h = qqplot(X,Y,pvec) returns handles to the lines in h.

Examples The following example shows a quantile-quantile plot of two samples
from Poisson distributions.

x = poissrnd(10,50,1);
y = poissrnd(5,100,1);
qqplot(x,y);
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See Also normplot
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Purpose Quantiles

Syntax Y = quantile(X,p)
Y = quantile(X,p,dim)

Description Y = quantile(X,p) returns quantiles of the values in X. p is a scalar
or a vector of cumulative probability values. When X is a vector, Y
is the same size as p, and Y(i) contains the p(i)th quantile. When
X is a matrix, the ith row of Y contains the p(i)th quantiles of each
column of X. For N-dimensional arrays, quantile operates along the
first nonsingleton dimension of X.

Y = quantile(X,p,dim) calculates quantiles along dimension dim. The
dimth dimension of Y has length length(P).

Quantiles are specified using cumulative probabilities from 0 to 1. For
an n-element vector X, quantile computes quantiles as follows:

1 The sorted values in X are taken as the (0.5/n), (1.5/n), ..., ([n-0.5]/n)
quantiles.

2 Linear interpolation is used to compute quantiles for probabilities
between (0.5/n) and ([n-0.5]/n).

3 The minimum or maximum values in X are assigned to quantiles for
probabilities outside that range.

quantile treats NaNs as missing values and removes them.

Examples y = quantile(x,.50); % the median of x
y = quantile(x,[.025 .25 .50 .75 .975]); % Summary of x

See Also prctile, iqr, median
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Purpose Generate quasi-random points from stream

Syntax rand
rand(q,n)
rand(q)
rand(q,m,n)
rand(q,[m,n])
rand(q,m,n,p,...)
rand(q,[m,n,p,...])

Description rand returns a matrix of quasi-random values and is intended to allow
objects of the qrandstream class to be used in code that contains calls
to the rand method of the MATLAB pseudo-random randstream class.
Due to the multidimensional nature of quasi-random numbers, only
some syntaxes of rand are supported by the qrandstream class.

rand(q,n) returns an n-by-n matrix only when n is equal to the number
of dimensions. Any other value of n produces an error.

rand(q) returns a scalar only when the stream is in one dimension.
Having more than one dimension in q produces an error.

rand(q,m,n) or rand(q,[m,n]) returns an m-by-n matrix only when n
is equal to the number of dimensions in the stream. Any other value of
n produces an error.

rand(q,m,n,p,...) or rand(q,[m,n,p,...]) produces an error unless
p and all following dimensions sizes are equal to one.

Examples Generate the first 256 points from a 5-D Sobol sequence:

q = qrandstream('sobol',5);
X = rand(q,256,5);

See Also qrandstream, qrand, rand
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Purpose Gamma random numbers

Syntax Y = randg
Y = randg(A)
Y = randg(A,m)
Y = randg(A,m,n,...)
Y = randg(A,[m,n,...])

Description Y = randg returns a scalar random value chosen from a gamma
distribution with unit scale and shape.

Y = randg(A) returns a matrix of random values chosen from gamma
distributions with unit scale. Y is the same size as A, and randg
generates each element of Y using a shape parameter equal to the
corresponding element of A.

Y = randg(A,m) returns an m-by-m matrix of random values chosen
from gamma distributions with shape parameters A. A is either an
m-by-m matrix or a scalar. If A is a scalar, randg uses that single shape
parameter value to generate all elements of Y.

Y = randg(A,m,n,...) or Y = randg(A,[m,n,...]) returns an
m-by-n-by-... array of random values chosen from gamma distributions
with shape parameters A. A is either an m-by-n-by-... array or a scalar.

randg produces pseudo-random numbers using the MATLAB functions
rand and randn. The sequence of numbers generated is determined by
the state of the default random number stream. Since MATLAB resets
the state at start-up, the sequence of numbers randg generates will be
the same in each session unless those states are changed.

To create reproducible output from randg, reset the state of the default
stream before calling randg. For example:

reset(RandStream.getDefaultStream,0);
r = randg(1,[10,1]);

always produces the same 10 values. See the RandStream
documentation for more information.
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Calling randg changes the current states of rand, randn, and randi,
and therefore alters the outputs of subsequent calls to those functions.

To generate gamma random numbers and specify both the scale and
shape parameters, you should call gamrnd rather than calling randg
directly.

References [1] Marsaglia, G., and W. W. Tsang. “A Simple Method for Generating
Gamma Variables.” ACM Transactions on Mathematical Software. Vol.
26, 2000, pp. 363–372.

See Also gamrnd
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Purpose Random numbers

Syntax Y = random(name,A)
Y = random(name,A,B)
Y = random(name,A,B,C)
Y = random(...,m,n,...)
Y = random(...,[m,n,...])

Description Y = random(name,A) where name is the name of a distribution
that takes a single parameter, returns random numbers Y from the
one-parameter family of distributions specified by name. Parameter
values for the distribution are given in A.

Y is the same size as A.

Y = random(name,A,B) returns random numbers Y from a
two-parameter family of distributions. Parameter values for the
distribution are given in A and B.

If A and B are arrays, they must be the same size. If either A or B are
scalars, they are expanded to constant matrices of the same size.

Y = random(name,A,B,C) returns random numbers Y from a
three-parameter family of distributions. Parameter values for the
distribution are given in A, B, and C.

If A, B, and C are arrays, they must be the same size. If any of A, B, or C
are scalars, they are expanded to constant matrices of the same size.

Y = random(...,m,n,...) or Y = random(...,[m,n,...]) returns
an m-by-n-by... matrix of random numbers.

If any of A, B, or C are arrays, then the specified dimensions must
match the common dimensions of A, B, and C after any necessary scalar
expansion.

The following table denotes the acceptable strings for name, as well as
the parameters for that distribution:
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name Distribution Input
Parameter
A

Input
Parameter
B

Input
Parameter
C

'beta' “Beta
Distribution”
on page B-4

a b —

'bino' “Binomial
Distribution”
on page B-7

n: number
of trials

p:
probability
of success
for each
trial

—

'chi2' “Chi-Square
Distribution”
on page
B-12

ν: degrees
of freedom

— —

'exp' “Exponential
Distribution”
on page
B-16

μ: mean — —

'ev' “Extreme
Value
Distribution”
on page
B-19

μ: location
parameter

σ: scale
parameter

—

'f' “F
Distribution”
on page
B-25

ν1:
numerator
degrees of
freedom

ν2:
denominator
degrees of
freedom

—

'gam' “Gamma
Distribution”
on page
B-27

a: shape
parameter

b: scale
parameter

—
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name Distribution Input
Parameter
A

Input
Parameter
B

Input
Parameter
C

'gev' “Generalized
Extreme
Value
Distribution”
on page
B-32

K: shape
parameter

μ: location
parameter

σ: scale
parameter

'gp' “Generalized
Pareto
Distribution”
on page
B-37

k: tail index
(shape)
parameter

σ: scale
parameter

μ: threshold
(location)
parameter

'geo' “Geometric
Distribution”
on page
B-41

p:
probability
parameter

— —

'hyge' “Hypergeometric
Distribution”
on page
B-43

M: size of the
population

K: number
of items
with the
desired
characteristic
in the
population

n: number
of samples
drawn

'logn' “Lognormal
Distribution”
on page
B-51

μ σ —

'nbin' “Negative
Binomial
Distribution”
on page
B-71

r: number
of successes

p:
probability
of success
in a single
trial

—
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name Distribution Input
Parameter
A

Input
Parameter
B

Input
Parameter
C

'ncf' “Noncentral
F
Distribution”
on page
B-77

ν1:
numerator
degrees of
freedom

ν2:
denominator
degrees of
freedom

δ:
noncentrality
parameter

'nct' “Noncentral
t
Distribution”
on page
B-79

ν: degrees
of freedom

δ:
noncentrality
parameter

—

'ncx2' “Noncentral
Chi-Square
Distribution”
on page
B-75

ν: degrees
of freedom

δ:
noncentrality
parameter

—

'norm' “Normal
Distribution”
on page
B-82

μ: mean σ: standard
deviation

—

'poiss' “Poisson
Distribution”
on page
B-88

λ: mean — —

'rayl' “Rayleigh
Distribution”
on page
B-90

b: scale
parameter

— —

't' “Student’s t
Distribution”
on page
B-94

ν: degrees
of freedom

— —
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name Distribution Input
Parameter
A

Input
Parameter
B

Input
Parameter
C

'unif' “Uniform
Distribution
(Continuous)”
on page
B-98

a: lower
endpoint
(minimum)

b: upper
endpoint
(maximum)

—

'unid' “Uniform
Distribution
(Discrete)”
on page
B-100

N:
maximum
observable
value

— —

'wbl' “Weibull
Distribution”
on page
B-102

a: scale
parameter

b: shape
parameter

—

Examples Generate a 2-by-4 array of random values from the normal distribution
with mean 0 and standard deviation 1:

x1 = random('Normal',0,1,2,4)
x1 =

1.1650 0.0751 -0.6965 0.0591
0.6268 0.3516 1.6961 1.7971

The order of the parameters is the same as for normrnd.

Generate a single random value from Poisson distributions with rate
parameters 1, 2, ..., 6, respectively:

x2 = random('Poisson',1:6,1,6)
x2 =

0 0 1 2 5 7

See Also cdf, pdf, icdf, mle
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Purpose Random numbers from Gaussian mixture distribution

Syntax y = random(obj)
Y = random(obj,n)
[Y,idx] = random(obj,n)

Description y = random(obj) generates a 1-by-d vector y drawn at random from
the d-dimensional Gaussian mixture distribution defined by obj. obj is
an object created by gmdistribution or fit.

Y = random(obj,n) generates an n-by-d matrix Y of n d-dimensional
random samples.

[Y,idx] = random(obj,n) also returns an n-by-1 vector idx, where
idx(I) is the index of the component used to generate Y(I,:).

Examples Create a gmdistribution object defining a two-component mixture of
bivariate Gaussian distributions:

MU = [1 2;-3 -5];
SIGMA = cat(3,[2 0;0 .5],[1 0;0 1]);
p = ones(1,2)/2;
obj = gmdistribution(MU,SIGMA,p);

ezcontour(@(x,y)pdf(obj,[x y]),[-10 10],[-10 10])
hold on
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Generate 1000 random values:

Y = random(obj,1000);

scatter(Y(:,1),Y(:,2),10,'.')
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See Also gmdistribution, fit, mvnrnd
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Purpose Random numbers from piecewise distribution

Syntax r = random(obj)
R = random(obj,n)
R = random(obj,m,n)
R = random(obj,[m,n])
R = random(obj,m,n,p,...)
R = random(obj,[m,n,p,...])

Description r = random(obj) generates a pseudo-random number r drawn from
the piecewise distribution object obj.

R = random(obj,n) generates an n-by-n matrix of pseudo-random
numbers R.

R = random(obj,m,n) or R = random(obj,[m,n]) generates an
m-by-n matrix of pseudo-random numbers R.

R = random(obj,m,n,p,...) or R = random(obj,[m,n,p,...])
generates an m-by-n-by-p-by-... array of pseudo-random numbers R.

Examples Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and
0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);

r = random(obj)
r =

0.8285

See Also paretotails, cdf, icdf
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Purpose Generate random number drawn from ProbDist object

Syntax Y = random(PD)
Y = random(PD, N)
Y = random(PD, N, M, ...)

Description Y = random(PD) generates a random number drawn from the
distribution specified by PD, a ProbDist object.

Y = random(PD, N) generates an N-by-N array of random numbers
drawn from the distribution specified by PD, a ProbDist object.

Y = random(PD, N, M, ...) generates an N-by-M-by... array of
random numbers drawn from the distribution specified by PD, a
ProbDist object.

Inputs PD An object of the class ProbDistUnivParam or
ProbDistUnivKernel.

N A positive integer.

M A positive integer.

Outputs Y A random number drawn from the distribution
specified by PD.

See Also random
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Purpose Random sample

Syntax y = randsample(n,k)
y = randsample(population,k)
y = randsample(...,replace)
y = randsample(...,true,w)
y = randsample(s, ...)

Description y = randsample(n,k) returns a k-by-1 vector y of values sampled
uniformly at random, without replacement, from the integers 1 to n.

y = randsample(population,k), where population is a vector of two
or more values, returns a vector of values sampled uniformly at random,
without replacement, from the values in the vector population. The
orientation of y (row or column) is the same as population.

y = randsample(...,replace) returns a sample taken with
replacement if replace is true, or without replacement if replace is
false. The default is false.

y = randsample(...,true,w) returns a weighted sample taken with
replacement, using a vector of positive weights w, whose length is
n. The probability that the integer i is selected for an entry of y is
w(i)/sum(w). Usually, w is a vector of probabilities. randsample does
not support weighted sampling without replacement.

y = randsample(s, ...) uses the stream s for random number
generation. s is a member of the RandStream class. Default is the
MATLAB default random number stream.

Examples The following command generates a random sequence of the characters
A, C, G, and T, with replacement, according to the specified probabilities.

R = randsample('ACGT',48,true,[0.15 0.35 0.35 0.15])

See Also rand, randperm
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Purpose Interactive random number generation

Syntax randtool

Description randtool opens the Random Number Generation Tool.

The Random Number Generation Tool is a graphical user interface that
generates random samples from specified probability distributions and
displays the samples as histograms. Use the tool to explore the effects
of changing parameters and sample size on the distributions.

18-1099



randtool

����������	
���	�� ���������&�

��
���	�

�����

'��	��
��

��
���	�

�����

��
���	�

��	
�� ����	����

��
���	�
�
�����������
�
���	�������
���	
���	��

#$��
	�	�
"�
 �����

18-1100



randtool

Start by selecting a distribution, then enter the desired sample size.

You can also

• Use the controls at the bottom of the window to set parameter values
for the distribution and to change their upper and lower bounds.

• Draw another sample from the same distribution, with the same
size and parameters.

• Export the current sample to your workspace. A dialog box enables
you to provide a name for the sample.

See Also disttool, dfittool
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Purpose Range of values

Syntax range(X)
y = range(X,dim)

Description range(X) returns the difference between the maximum and the
minimum of a sample. For vectors, range(x) is the range of the
elements. For matrices, range(X) is a row vector containing the range
of each column of X. For N-dimensional arrays, range operates along
the first nonsingleton dimension of X.

y = range(X,dim) operates along the dimension dim of X.

range treats NaNs as missing values and ignores them.

The range is an easily-calculated estimate of the spread of a sample.
Outliers have an undue influence on this statistic, which makes it an
unreliable estimator.

Examples The range of a large sample of standard normal random numbers is
approximately six. This is the motivation for the process capability
indices Cp and Cpk in statistical quality control applications.

rv = normrnd(0,1,1000,5);
near6 = range(rv)
near6 =

6.1451 6.4986 6.2909 5.8894 7.0002

See Also std, iqr, mad

18-1102



ranksum

Purpose Wilcoxon rank sum test

Syntax p = ranksum(x,y)
[p,h] = ranksum(x,y)
[p,h] = ranksum(x,y,'alpha',alpha)
[p,h] = ranksum(...,'method',method)
[p,h,stats] = ranksum(...)

Description p = ranksum(x,y) performs a two-sided rank sum test of the null
hypothesis that data in the vectors x and y are independent samples
from identical continuous distributions with equal medians, against the
alternative that they do not have equal medians. x and y can have
different lengths. The p-value of the test is returned in p. The test is
equivalent to a Mann-Whitney U-test.

[p,h] = ranksum(x,y) returns the result of the test in h. h = 1
indicates a rejection of the null hypothesis at the 5% significance
level. h = 0 indicates a failure to reject the null hypothesis at the 5%
significance level.

[p,h] = ranksum(x,y,'alpha',alpha) performs the test at the
(100*alpha)% significance level. The default, when unspecified, is
alpha = 0.05.

[p,h] = ranksum(...,'method',method) computes the p-value using
either an exact algorithm, when method is 'exact', or a normal
approximation, when method is 'approximate'. The default, when
unspecified, is the exact method for small samples and the approximate
method for large samples.

[p,h,stats] = ranksum(...) returns the structure stats with the
following fields:

• ranksum — Value of the rank sum test statistic

• zval— Value of the z-statistic (computed only for large samples)
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Examples Test the hypothesis of equal medians for two independent unequal-sized
samples. The sampling distributions are identical except for a shift
of 0.25.

x = unifrnd(0,1,10,1);
y = unifrnd(0.25,1.25,15,1);
[p,h] = ranksum(x,y)
p =

0.0375
h =

1

The test rejects the null hypothesis of equal medians at the default
5% significance level.

References [1] Gibbons, J. D. Nonparametric Statistical Inference. New York:
Marcel Dekker, 1985.

[2] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods.
Hoboken, NJ: John Wiley & Sons, Inc., 1999.

See Also kruskalwallis, signrank, signtest, ttest2
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Purpose Rayleigh cumulative distribution function

Syntax P = raylcdf(X,B)

Description P = raylcdf(X,B) computes the Rayleigh cdf at each of the values in
X using the corresponding scale parameter, B. X and B can be vectors,
matrices, or multidimensional arrays that all have the same size. A
scalar input for X or B is expanded to a constant array with the same
dimensions as the other input.

The Rayleigh cdf is

Examples x = 0:0.1:3;
p = raylcdf(x,1);
plot(x,p)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

References [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions.
Hoboken, NJ: Wiley-Interscience, 2000. pp. 134–136.

See Also cdf, raylpdf, raylinv, raylstat, raylfit, raylrnd

“Rayleigh Distribution” on page B-90
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Purpose Rayleigh parameter estimates

Syntax raylfit(data,alpha)
[phat,pci] = raylfit(data,alpha)

Description raylfit(data,alpha) returns the maximum likelihood estimates of the
parameter of the Rayleigh distribution given the data in the vector data.

[phat,pci] = raylfit(data,alpha) returns the maximum likelihood
estimate and 100(1 - alpha)% confidence interval given the data. The
default value of the optional parameter alpha is 0.05, corresponding to
95% confidence intervals.

See Also mle, raylpdf, raylcdf, raylinv, raylstat, raylrnd

“Rayleigh Distribution” on page B-90
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Purpose Rayleigh inverse cumulative distribution function

Syntax X = raylinv(P,B)

Description X = raylinv(P,B) returns the inverse of the Rayleigh cumulative
distribution function using the corresponding scale parameter, B at
the corresponding probabilities in P. P and B can be vectors, matrices,
or multidimensional arrays that all have the same size. A scalar input
for P or B is expanded to a constant array with the same dimensions
as the other input.

Examples x = raylinv(0.9,1)
x =

2.1460

See Also icdf, raylcdf, raylpdf, raylrnd, raylstat

“Rayleigh Distribution” on page B-90
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Purpose Rayleigh probability density function

Syntax Y = raylpdf(X,B)

Description Y = raylpdf(X,B) computes the Rayleigh pdf at each of the values in
X using the corresponding scale parameter, B. X and B can be vectors,
matrices, or multidimensional arrays that all have the same size, which
is also the size of Y. A scalar input for X or B is expanded to a constant
array with the same dimensions as the other input.

The Rayleigh pdf is

Examples x = 0:0.1:3;
p = raylpdf(x,1);
plot(x,p)

See Also pdf, raylcdf, raylinv, raylstat, raylfit, raylrnd

“Rayleigh Distribution” on page B-90
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Purpose Rayleigh random numbers

Syntax R = raylrnd(B)
R = raylrnd(B,v)
R = raylrnd(B,m,n)

Description R = raylrnd(B) returns a matrix of random numbers chosen from
the Rayleigh distribution with scale parameter, B. B can be a vector, a
matrix, or a multidimensional array. The size of R is the size of B.

R = raylrnd(B,v) returns a matrix of random numbers chosen from
the Rayleigh distribution with parameter B, where v is a row vector. If v
is a 1-by-2 vector, R is a matrix with v(1) rows and v(2) columns. If v
is 1-by-n, R is an n-dimensional array.

R = raylrnd(B,m,n) returns a matrix of random numbers chosen from
the Rayleigh distribution with parameter B, where scalars m and n are
the row and column dimensions of R.

Examples r = raylrnd(1:5)
r =

1.7986 0.8795 3.3473 8.9159 3.5182

See Also random, raylpdf, raylcdf, raylinv, raylstat, raylfit

“Rayleigh Distribution” on page B-90
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Purpose Rayleigh mean and variance

Syntax [M,V] = raylstat(B)

Description [M,V] = raylstat(B) returns the mean of and variance for the
Rayleigh distribution with scale parameter B.

The mean of the Rayleigh distribution with parameter b is and
the variance is

Examples [mn,v] = raylstat(1)
mn =

1.2533
v =

0.4292

See Also raylpdf, raylcdf, raylinv, raylfit, raylrnd

“Rayleigh Distribution” on page B-90
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Purpose Residual case order plot

Syntax rcoplot(r,rint)

Description rcoplot(r,rint) displays an errorbar plot of the confidence intervals
on the residuals from a regression. The residuals appear in the plot in
case order. Inputs r and rint are outputs from the regress function.

Examples The following plots residuals and prediction intervals from a regression
of a linearly additive model to the data in moore.mat:

load moore
X = [ones(size(moore,1),1) moore(:,1:5)];
y = moore(:,6);
alpha = 0.05;
[betahat,Ibeta,res,Ires,stats] = regress(y,X,alpha);
rcoplot(res,Ires)

18-1111



rcoplot

The interval around the first residual, shown in red, does not contain
zero. This indicates that the residual is larger than expected in 95% of
new observations, and suggests the data point is an outlier.

See Also regress
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Purpose Add reference curve to plot

Syntax refcurve(p)
refcurve
hcurve = refcurve(...)

Description refcurve(p) adds a polynomial reference curve with coefficients p to
the current axes. If p is a vector with n+1 elements, the curve is:

y = p(1)*x^n + p(2)*x^(n-1) + ... + p(n)*x + p(n+1)

refcurve with no input arguments adds a line along the x axis.

hcurve = refcurve(...) returns the handle hcurve to the curve.

Examples Example 1

Plot data from a population with a polynomial trend and use refcurve
to add both the population and fitted mean functions:

p = [1 -2 -1 0];
t = 0:0.1:3;
y = polyval(p,t) + 0.5*randn(size(t));

plot(t,y,'ro')
h = refcurve(p);
set(h,'Color','r')

q = polyfit(t,y,3);
refcurve(q)
legend('Data','Population Mean','Fitted Mean',...

'Location','NW')
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Example 2

Plot trajectories of a batted baseball, with and without air resistance.

Relevant physical constants are:

M = 0.145; % Mass (kg)
R = 0.0366; % Radius (m)
A = pi*R^2; % Area (m^2)
rho = 1.2; % Density of air (kg/m^3)
C = 0.5; % Drag coefficient
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D = rho*C*A/2;
% Drag proportional to the square of the speed
g = 9.8; % Acceleration due to gravity (m/s^2)

First, simulate the trajectory with drag proportional to the square of
the speed, assuming constant acceleration in each time interval:

dt = 1e-2; % Simulation time interval (s)
r0 = [0 1]; % Initial position (m)
s0 = 50; % Initial speed (m/s)
alpha0 = 35; % Initial angle (deg)
v0=s0*[cosd(alpha0) sind(alpha0)]; % Initial velocity (m/s)

r = r0;
v = v0;
trajectory = r0;
while r(2) > 0

a = [0 -g]-(D/M)*norm(v)*v;
v = v + a*dt;
r = r + v*dt + (1/2)*a*(dt^2);
trajectory = [trajectory;r];

end

Second, use refcurve to add the drag-free parabolic trajectory (found
analytically) to a plot of trajectory:

plot(trajectory(:,1),trajectory(:,2),'m','LineWidth',2)
xlim([0,250])
h = refcurve([-g/(2*v0(1)^2),...

(g*r0(1)/v0(1)^2)+(v0(2)/v0(1)),...
(-g*r0(1)^2/(2*v0(1)^2))-(v0(2)*r0(1)/v0(1))+r0(2)]);

set(h,'Color','c','LineWidth',2)
axis equal
ylim([0,50])
grid on
xlabel('Distance (m)')
ylabel('Height (m)')
title('{\bf Baseball Trajectories}')
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legend('With Drag','Without Drag')

See Also refline, lsline, gline, polyfit
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Purpose Add reference line to plot

Syntax refline(m,b)
refline(coeffs)
refline
hline = refline(...)

Description refline(m,b) adds a reference line with slope m and intercept b to
the current axes.

refline(coeffs), where coeffs is a two-element coefficient vector,
adds the line

y = coeffs(1)*x + coeffs(2)

to the figure.

refline with no input arguments is equivalent to lsline.

hline = refline(...) returns the handle hline to the line.

Examples Add a reference line at the mean of a data scatter and its least-squares
line:

x = 1:10;

y = x + randn(1,10);
scatter(x,y,25,'b','*')

lsline

mu = mean(y);
hline = refline([0 mu]);
set(hline,'Color','r')
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See Also refcurve, lsline, gline
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Purpose Multiple linear regression

Syntax b = regress(y,X)
[b,bint] = regress(y,X)
[b,bint,r] = regress(y,X)
[b,bint,r,rint] = regress(y,X)
[b,bint,r,rint,stats] = regress(y,X)
[...] = regress(y,X,alpha)

Description b = regress(y,X) returns a p-by-1 vector b of coefficient estimates for
a multilinear regression of the responses in y on the predictors in X. X
is an n-by-p matrix of p predictors at each of n observations. y is an
n-by-1 vector of observed responses.

regress treats NaNs in X or y as missing values, and ignores them.

If the columns of X are linearly dependent, regress obtains a basic
solution by setting the maximum number of elements of b to zero.

[b,bint] = regress(y,X) returns a p-by-2 matrix bint of 95%
confidence intervals for the coefficient estimates. The first column of
bint contains lower confidence bounds for each of the p coefficient
estimates; the second column contains upper confidence bounds.

If the columns of X are linearly dependent, regress returns zeros in
elements of bint corresponding to the zero elements of b.

[b,bint,r] = regress(y,X) returns an n-by-1 vector r of residuals.

[b,bint,r,rint] = regress(y,X) returns an n-by-2 matrix rint of
intervals that can be used to diagnose outliers. If the interval rint(i,:)
for observation i does not contain zero, the corresponding residual is
larger than expected in 95% of new observations, suggesting an outlier.

In a linear model, observed values of y are random variables, and so are
their residuals. Residuals have normal distributions with zero mean
but with different variances at different values of the predictors. To put
residuals on a comparable scale, they are “Studentized,” that is, they are
divided by an estimate of their standard deviation that is independent
of their value. Studentized residuals have t distributions with known
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degrees of freedom. The intervals returned in rint are shifts of the 95%
confidence intervals of these t distributions, centered at the residuals.

[b,bint,r,rint,stats] = regress(y,X) returns a 1-by-4 vector
stats that contains, in order, the R2 statistic, the F statistic and its
p-value, and an estimate of the error variance.

Note When computing statistics, X should include a column of 1s so
that the model contains a constant term. The F statistic and its p-value
are computed under this assumption, and they are not correct for models
without a constant. The R2 statistic can be negative for models without
a constant, indicating that the model is not appropriate for the data.

[...] = regress(y,X,alpha) uses a 100*(1-alpha)% confidence
level to compute bint and rint.

Examples Load data on cars; identify weight and horsepower as predictors,
mileage as the response:

load carsmall
x1 = Weight;
x2 = Horsepower; % Contains NaN data
y = MPG;

Compute regression coefficients for a linear model with an interaction
term:

X = [ones(size(x1)) x1 x2 x1.*x2];
b = regress(y,X) % Removes NaN data
b =

60.7104
-0.0102
-0.1882
0.0000

Plot the data and the model:
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scatter3(x1,x2,y,'filled')
hold on
x1fit = min(x1):100:max(x1);
x2fit = min(x2):10:max(x2);
[X1FIT,X2FIT] = meshgrid(x1fit,x2fit);
YFIT = b(1) + b(2)*X1FIT + b(3)*X2FIT + b(4)*X1FIT.*X2FIT;
mesh(X1FIT,X2FIT,YFIT)
xlabel('Weight')
ylabel('Horsepower')
zlabel('MPG')
view(50,10)
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References [1] Chatterjee, S., and A. S. Hadi. “Influential Observations, High
Leverage Points, and Outliers in Linear Regression.” Statistical Science.
Vol. 1, 1986, pp. 379–416.

See Also regstats, mvregress, robustfit, stepwisefit, rcoplot
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Purpose Regression diagnostics

Syntax regstats(y,X,model)
stats = regstats(...)
stats = regstats(y,X,model,whichstats)

Description regstats(y,X,model) performs a multilinear regression of the
responses in y on the predictors in X. X is an n-by-pmatrix of p predictors
at each of n observations. y is an n-by-1 vector of observed responses.

Note By default, regstats adds a first column of 1s to X, corresponding
to a constant term in the model. Do not enter a column of 1s directly
into X.

The optional input model controls the regression model. By default,
regstats uses a linear additive model with a constant term. model can
be any one of the following strings:

• 'linear'— Constant and linear terms (the default)

• 'interaction'— Constant, linear, and interaction terms

• 'quadratic'— Constant, linear, interaction, and squared terms

• 'purequadratic'— Constant, linear, and squared terms

To specify a polynomial model of arbitrary order, or a model without a
constant term, use a matrix for model as described in x2fx.

With this syntax, the function displays a graphical user interface (GUI)
with a list of diagnostic statistics, as shown in the following figure.
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When you select check boxes corresponding to the statistics you want
to compute and click OK, regstats returns the selected statistics to
the MATLAB workspace. The names of the workspace variables are
displayed on the right-hand side of the interface. You can change the
name of the workspace variable to any valid MATLAB variable name.

stats = regstats(...) creates the structure stats, whose fields
contain all of the diagnostic statistics for the regression. This syntax
does not open the GUI. The fields of stats are listed in the following
table.

Field Description

Q Q from the QR decomposition of the design matrix

R R from the QR decomposition of the design matrix

beta Regression coefficients

covb Covariance of regression coefficients

yhat Fitted values of the response data

r Residuals

mse Mean squared error

rsquare R2 statistic

adjrsquare Adjusted R2 statistic

leverage Leverage

hatmat Hat matrix

s2_i Delete-1 variance

beta_i Delete-1 coefficients

standres Standardized residuals

studres Studentized residuals

dfbetas Scaled change in regression coefficients

dffit Change in fitted values
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Field Description

dffits Scaled change in fitted values

covratio Change in covariance

cookd Cook’s distance

tstat t statistics for coefficients

fstat F statistic

dwstat Durbin-Watson statistic

Note that the fields names of stats correspond to the names of the
variables returned to the MATLAB workspace when you use the GUI.
For example, stats.beta corresponds to the variable beta that is
returned when you select Coefficients in the GUI and click OK.

stats = regstats(y,X,model,whichstats) returns only the statistics
that you specify in whichstats. whichstats can be a single string
such as 'leverage' or a cell array of strings such as {'leverage'
'standres' 'studres'}. Set whichstats to 'all' to return all of
the statistics.

Note The F statistic is computed under the assumption that the model
contains a constant term. It is not correct for models without a constant.
The R2 statistic can be negative for models without a constant, which
indicates that the model is not appropriate for the data.

Examples Open the regstats GUI using data from hald.mat:

load hald
regstats(heat,ingredients,'linear');

Select Fitted Values and Residuals in the GUI:

18-1126



regstats

Click OK to export the fitted values and residuals to the MATLAB
workspace in variables named yhat and r, respectively.

You can create the same variables using the stats output, without
opening the GUI:

whichstats = {'yhat','r'};
stats = regstats(heat,ingredients,'linear',whichstats);
yhat = stats.yhat;
r = stats.r;

References [1] Belsley, D. A., E. Kuh, and R. E. Welsch. Regression Diagnostics.
Hoboken, NJ: John Wiley & Sons, Inc., 1980.

[2] Chatterjee, S., and A. S. Hadi. “Influential Observations, High
Leverage Points, and Outliers in Linear Regression.” Statistical Science.
Vol. 1, 1986, pp. 379–416.

[3] Cook, R. D., and S. Weisberg. Residuals and Influence in Regression.
New York: Chapman & Hall/CRC Press, 1983.

[4] Goodall, C. R. “Computation Using the QR Decomposition.”
Handbook in Statistics. Vol. 9, Amsterdam: Elsevier/North-Holland,
1993.

See Also x2fx, regress, stepwise, leverage
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gmdistribution.RegV property

Purpose Value of 'Regularize' parameter

Description The value of the parameter 'Regularize'.

Note This property applies only to gmdistribution objects constructed
with fit.

18-1128



categorical.reorderlevels

Purpose Reorder levels

Syntax B = reorderlevels(A,newlevels)

Description B = reorderlevels(A,newlevels) reorders the levels of the
categorical array A. newlevels is a cell array of strings or a 2-D
character matrix that specifies the new order. newlevels must be a
reordering of getlabels(A).

The order of the levels of an ordinal array has significance for relational
operators, minimum and maximum, and for sorting.

Examples Reorder hockey standings:

standings = ordinal(1:3,{'Leafs','Canadiens','Bruins'});
getlabels(standings)
ans =

'Leafs' 'Canadiens' 'Bruins'

standings = reorderlevels(standings,...
{'Canadiens','Leafs','Bruins'});

getlabels(standings)
ans =

'Canadiens' 'Leafs' 'Bruins'

See Also addlevels,droplevels, getlabels, islevel,mergelevels
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Purpose Repartition data for cross-validation

Syntax cnew = repartition(c)

Description cnew = repartition(c) constructs an object cnew of the cvpartition
class defining a random partition of the same type as c, where c is also
an object of the cvpartition class.

Repartitioning is useful for Monte-Carlo repetitions of cross-validation
analyses. repartition is called by crossval when the 'mcreps'
parameter is specified.

Examples Partition and repartition 100 observations for 3-fold cross-validation:

c = cvpartition(100,'kfold',3)
c =
K-fold cross validation partition

N: 100
NumTestSets: 3

TrainSize: 67 66 67
TestSize: 33 34 33

cnew = repartition(c)
cnew =
K-fold cross validation partition

N: 100
NumTestSets: 3

TrainSize: 67 66 67
TestSize: 33 34 33

Check for equality of the test data in the first fold:

isequal(test(c,1),test(cnew,1))
ans =

0

See Also cvpartition

18-1130



dataset.replacedata

Purpose Replace dataset variables

Syntax B = replacedata(A,X)
B = replacedata(A,X,vars)

Description B = replacedata(A,X) creates a dataset array B with the same
variables as the dataset array A, but with the data for those variables
replaced by the data in the array X. replacedata creates each variable
in B using one or more columns from X, in order. X must have as many
columns as the total number of columns in all of the variables in A, and
as many rows as A has observations.

B = replacedata(A,X,vars) creates a dataset array B with the same
variables as the dataset array A, but with the data for the variables
specified in vars replaced by the data in the array X. The remaining
variables in B are copies of the corresponding variables in A. vars is a
positive integer, a vector of positive integers, a variable name, a cell
array containing one or more variable names, or a logical vector. Each
variable in B has as many columns as the corresponding variable in A. X
must have as many columns as the total number of columns in all the
variables specified in vars.

Examples Use double or single as complementary operations with replacedata
when processing variables outside of a dataset array:

data = dataset({rand(3,3),'Var1','Var2','Var3'})
data =

Var1 Var2 Var3
0.81472 0.91338 0.2785
0.90579 0.63236 0.54688
0.12699 0.09754 0.95751

X = double(data,'Var2');
X = zscore(X);
data = replacedata(data,X,'Var2')
data =

Var1 Var2 Var3
0.81472 0.88219 0.2785
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0.90579 0.20413 0.54688
0.12699 -1.0863 0.95751

See Also dataset
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Purpose Replicate and tile categorical array

Syntax B = repmat(A,m,n)
B = repmat(A,[m n p ...])

Description B = repmat(A,m,n) creates a large array B consisting of an m-by-n
tiling of copies of the categorical array A. The size of B is [size(A,1)*M
size(A,2)*N, size(A,3), ...]. repmat(A,n) creates an n-by-n
tiling.

B = repmat(A,[m n p ...]) tiles the categorical array A to produce
a multidimensional array B composed of copies of A. The size of B is
[size(A,1)*M, size(A,2)*N, size(A,3)*P, ...].

See Also ndims, size
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Purpose Reset state

Syntax reset(q)

Description reset(q) resets the state of the quasi-random number stream q of the
qrandstream class back to its initial state, 1. Subsequent points drawn
from the stream will be the same as those drawn from a new stream.
The command is equivalent to q.State = 1.

Examples Use qrandstream to construct a 3-D Halton stream, based on a point
set that skips the first 1000 values and then retains every 101st point:

q = qrandstream('halton',3,'Skip',1e3,'Leap',1e2)
q =

Halton quasi-random stream in 3 dimensions
Point set properties:

Skip : 1000
Leap : 100

ScrambleMethod : none

nextIdx = q.State
nextIdx =

1

Use qrand to generate two samples of size four:

X1 = qrand(q,4)
X1 =

0.0928 0.3475 0.0051
0.6958 0.2035 0.2371
0.3013 0.8496 0.4307
0.9087 0.5629 0.6166

nextIdx = q.State
nextIdx =

5

X2 = qrand(q,4)
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X2 =
0.2446 0.0238 0.8102
0.5298 0.7540 0.0438
0.3843 0.5112 0.2758
0.8335 0.2245 0.4694

nextIdx = q.State
nextIdx =

9

Use reset to reset the stream, then generate another sample:

reset(q)
nextIdx = q.State
nextIdx =

1

X = qrand(q,4)
X =

0.0928 0.3475 0.0051
0.6958 0.2035 0.2371
0.3013 0.8496 0.4307
0.9087 0.5629 0.6166

See Also qrandstream, qrand
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Purpose Resize categorical array

Syntax B = reshape(A,M,N)
B = reshape(A,m,n,p,...)
reshape(A,[m n p ...])
B = reshape(A,...,[],...)

Description B = reshape(A,M,N) returns an m-by-n categorical matrix whose
elements are taken columnwise from the categorical array A. An error
results if A does not have m*n elements.

B = reshape(A,m,n,p,...) or reshape(A,[m n p ...]) returns
an array with the same elements as A but reshaped to have the size
m-by-n-by-p-by-... . m*n*p*... must be the same as numel(A).

B = reshape(A,...,[],...) calculates the length of the dimension
represented by[], such that the product of the dimensions equals
numel(A). numel(A) must be evenly divisible by the product of the
known dimensions. You can use only one occurrence of [].

In general, reshape(A,siz) returns an array with the same elements
as A but reshaped to the size siz. prod(siz) must be the same as
numel(A).

See Also shiftdim, squeeze

18-1136



ridge

Purpose Ridge regression

Syntax b = ridge(y,X,k)
b = ridge(y,X,k,scaled)

Description b = ridge(y,X,k) returns a vector b of coefficient estimates for a
multilinear ridge regression of the responses in y on the predictors in X.
X is an n-by-p matrix of p predictors at each of n observations. y is an
n-by-1 vector of observed responses. k is a vector of ridge parameters. If
k has m elements, b is p-by-m. By default, b is computed after centering
and scaling the predictors to have mean 0 and standard deviation 1.
The model does not include a constant term, and X should not contain
a column of 1s.

b = ridge(y,X,k,scaled) uses the {0,1}-valued flag scaled to
determine if the coefficient estimates in b are restored to the scale of the
original data. ridge(y,X,k,0) performs this additional transformation.
In this case, b contains p+1 coefficients for each value of k, with the first
row corresponding to a constant term in the model. ridge(y,X,k,1)
is the same as ridge(y,X,k). In this case, b contains p coefficients,
without a coefficient for a constant term.

The relationship between b0 = ridge(y,X,k,0) and b1 =
ridge(y,X,k,1) is given by

m = mean(X);
s = std(X,0,1)';
b1_scaled = b1./s;
b0 = [mean(y)-m*b1_scaled; b1_scaled]

This can be seen by replacing the xi (i = 1, ..., n) in the multilinear
model y = b0

0 + b1
0x1 + ... + bn

0xn with the z-scores zi = (xi – μi)/σi , and
replacing y with y – μy.

In general, b1 is more useful for producing plots in which the coefficients
are to be displayed on the same scale, such as a ridge trace (a plot of
the regression coefficients as a function of the ridge parameter). b0 is
more useful for making predictions.
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Coefficient estimates for multiple linear regression models rely on
the independence of the model terms. When terms are correlated
and the columns of the design matrix X have an approximate linear
dependence, the matrix (XTX)–1 becomes close to singular. As a result,
the least-squares estimate

ˆ ( ) = −X X X yT T1

becomes highly sensitive to random errors in the observed response y,
producing a large variance. This situation of multicollinearity can arise,
for example, when data are collected without an experimental design.

Ridge regression addresses the problem by estimating regression
coefficients using

ˆ ( ) = + −X X kI X yT T1

where k is the ridge parameter and I is the identity matrix. Small
positive values of k improve the conditioning of the problem and reduce
the variance of the estimates. While biased, the reduced variance of
ridge estimates often result in a smaller mean square error when
compared to least-squares estimates.

Examples Load the data in acetylene.mat, with observations of the predictor
variables x1, x2, x3, and the response variable y:

load acetylene

Plot the predictor variables against each other:

subplot(1,3,1)
plot(x1,x2,'.')
xlabel('x1'); ylabel('x2'); grid on; axis square

subplot(1,3,2)
plot(x1,x3,'.')
xlabel('x1'); ylabel('x3'); grid on; axis square
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subplot(1,3,3)
plot(x2,x3,'.')
xlabel('x2'); ylabel('x3'); grid on; axis square

Note the correlation between x1 and the other two predictor variables.

Use ridge and x2fx to compute coefficient estimates for a multilinear
model with interaction terms, for a range of ridge parameters:

X = [x1 x2 x3];
D = x2fx(X,'interaction');
D(:,1) = []; % No constant term
k = 0:1e-5:5e-3;
b = ridge(y,D,k);

Plot the ridge trace:

figure
plot(k,b,'LineWidth',2)
ylim([-100 100])
grid on
xlabel('Ridge Parameter')
ylabel('Standardized Coefficient')
title('{\bf Ridge Trace}')
legend('x1','x2','x3','x1x2','x1x3','x2x3')
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The estimates stabilize to the right of the plot. Note that the coefficient
of the x2x3 interaction term changes sign at a value of the ridge
parameter ≈ 5 × 10–4.
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References [1] Hoerl, A. E., and R. W. Kennard. “Ridge Regression: Biased
Estimation for Nonorthogonal Problems.” Technometrics. Vol. 12, No.
1, 1970, pp. 55–67.

[2] Hoerl, A. E., and R. W. Kennard. “Ridge Regression: Applications
to Nonorthogonal Problems.” Technometrics. Vol. 12, No. 1, 1970, pp.
69–82.

[3] Marquardt, D.W. “Generalized Inverses, Ridge Regression, Biased
Linear Estimation, and Nonlinear Estimation.” Technometrics. Vol. 12,
No. 3, 1970, pp. 591–612.

[4] Marquardt, D. W., and R.D. Snee. “Ridge Regression in Practice.”
The American Statistician. Vol. 29, No. 1, 1975, pp. 3–20.

See Also regress, stepwise
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Purpose Node risks

Syntax r = risk(t)
r = risk(t,nodes)

Description r = risk(t) returns an n-element vector r of the risk of the nodes
in the tree t, where n is the number of nodes. The risk r(i) for node
i is the node error e(i) (computed by nodeerr) weighted by the node
probability p(i) (computed by nodeprob).

r = risk(t,nodes) takes a vector nodes of node numbers and returns
the risk values for the specified nodes.

Examples Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})

t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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e = nodeerr(t);
p = nodeprob(t);
r = risk(t);

r
r =

0.6667
0

0.3333
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0.0333
0.0067
0.0067
0.0133

0
0

e.*p
ans =

0.6667
0

0.3333
0.0333
0.0067
0.0067
0.0133

0
0

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also classregtree, nodeerr, nodeprob
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Purpose Interactive robust regression

Syntax robustdemo
robustdemo(x,y)

Description robustdemo shows the difference between ordinary least squares and
robust regression for data with a single predictor. With no input
arguments, robustdemo displays a scatter plot of a sample of roughly
linear data with one outlier. The bottom of the figure displays equations
of lines fitted to the data using ordinary least squares and robust
methods, together with estimates of the root mean squared errors.

Use the right mouse button to click on a point and view its least-squares
leverage and robust weight.

Use the left mouse button to click-and-drag a point. The displays will
update.

robustdemo(x,y) uses x and y data vectors you supply, in place of the
sample data supplied with the function.

Examples The following steps show you how to use robustdemo.

1 Start the demo. To begin using robustdemo with the built-in data,
simply type the function name:

robustdemo
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The resulting figure shows a scatter plot with two fitted lines. The
red line is the fit using ordinary least-squares regression. The green
line is the fit using robust regression. At the bottom of the figure are
the equations for the fitted lines, together with the estimated root
mean squared errors for each fit.

2 View leverages and robust weights. Right-click on any data point
to see its least-squares leverage and robust weight:
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In the built-in data, the right-most point has a relatively high
leverage of 0.35. The point exerts a large influence on the
least-squares fit, but its small robust weight shows that it is
effectively excluded from the robust fit.

3 See how changes in the data affect the fits. With the left mouse
button, click and hold on any data point and drag it to a new location.
When you release the mouse button, the displays update:
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Bringing the right-most data point closer to the least-squares line
makes the two fitted lines nearly identical. The adjusted right-most
data point has significant weight in the robust fit.

See Also robustfit, leverage
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Purpose Robust regression

Syntax b = robustfit(X,y)
b = robustfit(X,y,wfun,tune)
b = robustfit(X,y,wfun,tune,const)
[b,stats] = robustfit(...)

Description b = robustfit(X,y) returns a p-by-1 vector b of coefficient estimates for
a robust multilinear regression of the responses in y on the predictors
in X. X is an n-by-p matrix of p predictors at each of n observations. y is
an n-by-1 vector of observed responses. By default, the algorithm uses
iteratively reweighted least squares with a bisquare weighting function.

Note By default, robustfit adds a first column of 1s to X,
corresponding to a constant term in the model. Do not enter a column of
1s directly into X. You can change the default behavior of robustfit
using the input const, below.

robustfit treats NaNs in X or y as missing values, and removes them.

b = robustfit(X,y,wfun,tune) specifies a weighting function wfun.
tune is a tuning constant that is divided into the residual vector before
computing weights.

The weighting function wfun can be any one of the following strings:

Weight
Function Equation

Default
Tuning
Constant

'andrews' w = (abs(r)<pi) .* sin(r) ./ r 1.339

'bisquare'
(default)

w = (abs(r)<1) .* (1 -
r.^2).^2

4.685

'cauchy' w = 1 ./ (1 + r.^2) 2.385
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Weight
Function Equation

Default
Tuning
Constant

'fair' w = 1 ./ (1 + abs(r)) 1.400

'huber' w = 1 ./ max(1, abs(r)) 1.345

'logistic' w = tanh(r) ./ r 1.205

'ols' Ordinary least squares (no
weighting function)

None

'talwar' w = 1 * (abs(r)<1) 2.795

'welsch' w = exp(-(r.^2)) 2.985

If tune is unspecified, the default value in the table is used. Default
tuning constants give coefficient estimates that are approximately
95% as statistically efficient as the ordinary least-squares estimates,
provided the response has a normal distribution with no outliers.
Decreasing the tuning constant increases the downweight assigned
to large residuals; increasing the tuning constant decreases the
downweight assigned to large residuals.

The value r in the weight functions is

r = resid/(tune*s*sqrt(1-h))

where resid is the vector of residuals from the previous iteration, h
is the vector of leverage values from a least-squares fit, and s is an
estimate of the standard deviation of the error term given by

s = MAD/0.6745

Here MAD is the median absolute deviation of the residuals from their
median. The constant 0.6745 makes the estimate unbiased for the
normal distribution. If there are p columns in X, the smallest p absolute
deviations are excluded when computing the median.

You can write your own M-file weight function. The function must take
a vector of scaled residuals as input and produce a vector of weights as
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output. In this case, wfun is specified using a function handle @ (as in
@myfun), and the input tune is required.

b = robustfit(X,y,wfun,tune,const) controls whether or not
the model will include a constant term. const is 'on' to include
the constant term (the default), or 'off' to omit it. When const is
'on', robustfit adds a first column of 1s to X. When const is 'off',
robustfit does not alter X.

[b,stats] = robustfit(...) returns the structure stats, whose
fields contain diagnostic statistics from the regression. The fields of
stats are:

• ols_s— Sigma estimate (RMSE) from ordinary least squares

• robust_s — Robust estimate of sigma

• mad_s — Estimate of sigma computed using the median absolute
deviation of the residuals from their median; used for scaling
residuals during iterative fitting

• s— Final estimate of sigma, the larger of robust_s and a weighted
average of ols_s and robust_s

• se — Standard error of coefficient estimates

• t — Ratio of b to se

• p — p-values for t

• covb— Estimated covariance matrix for coefficient estimates

• coeffcorr— Estimated correlation of coefficient estimates

• w — Vector of weights for robust fit

• h — Vector of leverage values for least-squares fit

• dfe — Degrees of freedom for error

• R — R factor in QR decomposition of X

18-1151



robustfit

The robustfit function estimates the variance-covariance matrix of
the coefficient estimates using inv(X'*X)*stats.s^2. Standard errors
and correlations are derived from this estimate.

Examples Generate data with the trend y = 10-2*x, then change one value to
simulate an outlier:

x = (1:10)';
y = 10 - 2*x + randn(10,1);
y(10) = 0;

Use both ordinary least squares and robust regression to estimate a
straight-line fit:

bls = regress(y,[ones(10,1) x])
bls =

7.2481
-1.3208

brob = robustfit(x,y)
brob =

9.1063
-1.8231

A scatter plot of the data together with the fits shows that the robust fit
is less influenced by the outlier than the least-squares fit:

scatter(x,y,'filled'); grid on; hold on
plot(x,bls(1)+bls(2)*x,'r','LineWidth',2);
plot(x,brob(1)+brob(2)*x,'g','LineWidth',2)
legend('Data','Ordinary Least Squares','Robust Regression')
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See Also regress, robustdemo
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categorical.rot90

Purpose Rotate categorical matrix 90 degrees

Syntax B = rot90(A)
B = rot90(A,k)

Description B = rot90(A) returns the 90 degree counterclockwise rotation of the
2-D categorical matrix A.

B = rot90(A,k) returns the k*90 degree rotation of A, k =
+-1,+-2,....

See Also flipdim, fliplr, flipud
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Purpose Rotate factor loadings

Syntax B = rotatefactors(A)
B = rotatefactors(A,'Method','orthomax','Coeff',gamma)
B = rotatefactors(A,'Method','procrustes','Target',target)
B = rotatefactors(A,'Method','pattern','Target',target)
B = rotatefactors(A,'Method','promax')
[B,T] = rotatefactors(A,...)

Description B = rotatefactors(A) rotates the d-by-m loadings matrix A to
maximize the varimax criterion, and returns the result in B. Rows of
A and B correspond to variables and columns correspond to factors, for
example, the (i, j)th element of A is the coefficient for the i th variable
on the j th factor. The matrix A usually contains principal component
coefficients created with princomp or pcacov, or factor loadings
estimated with factoran.

B = rotatefactors(A,'Method','orthomax','Coeff',gamma)
rotates A to maximize the orthomax criterion with the coefficient gamma,
i.e., B is the orthogonal rotation of A that maximizes

sum(D*sum(B.^4,1) - GAMMA*sum(B.^2,1).^2)

The default value of 1 for gamma corresponds to varimax rotation.
Other possibilities include gamma = 0, m/2, and d(m - 1)/(d + m - 2),
corresponding to quartimax, equamax, and parsimax. You can also
supply the strings 'varimax', 'quartimax', 'equamax', or 'parsimax'
for the 'method' parameter and omit the 'Coeff' parameter.

If 'Method' is 'orthomax', 'varimax', 'quartimax', 'equamax', or
'parsimax', then additional parameters are

• 'Normalize'— Flag indicating whether the loadings matrix should
be row-normalized for rotation. If 'on' (the default), rows of A
are normalized prior to rotation to have unit Euclidean norm, and
unnormalized after rotation. If 'off', the raw loadings are rotated
and returned.
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• 'Reltol' — Relative convergence tolerance in the iterative
algorithm used to find T. The default is sqrt(eps).

• 'Maxit'— Iteration limit in the iterative algorithm used to find T.
The default is 250.

B = rotatefactors(A,'Method','procrustes','Target',target)
performs an oblique procrustes rotation of A to the d-by-m target
loadings matrix target.

B = rotatefactors(A,'Method','pattern','Target',target)
performs an oblique rotation of the loadings matrix A to the d-by-m
target pattern matrix target, and returns the result in B. target
defines the "restricted" elements of B, i.e., elements of B corresponding
to zero elements of target are constrained to have small magnitude,
while elements of B corresponding to nonzero elements of target are
allowed to take on any magnitude.

If 'Method' is 'procrustes' or 'pattern', an additional parameter is
'Type', the type of rotation. If 'Type' is 'orthogonal', the rotation
is orthogonal, and the factors remain uncorrelated. If 'Type' is
'oblique' (the default), the rotation is oblique, and the rotated factors
might be correlated.

When 'Method' is 'pattern', there are restrictions on target. If A has
m columns, then for orthogonal rotation, the jth column of target must
contain at least m - j zeros. For oblique rotation, each column of target
must contain at least m - 1 zeros.

B = rotatefactors(A,'Method','promax') rotates A to maximize
the promax criterion, equivalent to an oblique Procrustes rotation
with a target created by an orthomax rotation. Use the four orthomax
parameters to control the orthomax rotation used internally by promax.

An additional parameter for ’promax’ is 'Power', the exponent for
creating promax target matrix. 'Power' must be 1 or greater. The
default is 4.

[B,T] = rotatefactors(A,...) returns the rotation matrix T used to
create B, that is, B = A*T. inv(T'*T) is the correlation matrix of the
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rotated factors. For orthogonal rotation, this is the identity matrix,
while for oblique rotation, it has unit diagonal elements but nonzero
off-diagonal elements.

Examples X = randn(100,10);

% Default (normalized varimax) rotation:
% first three principle components.
LPC = princomp(X);
[L1,T] = rotatefactors(LPC(:,1:3));

% Equamax rotation:
% first three principle components.
[L2,T] = rotatefactors(LPC(:,1:3),...

'method','equamax');

% Promax rotation:
% first three factors.
LFA = factoran(X,3,'Rotate','none');
[L3,T] = rotatefactors(LFA(:,1:3),...

'method','promax',...
'power',2);

% Pattern rotation:
% first three factors.
Tgt = [1 1 1 1 1 0 1 0 1 1; ...

0 0 0 1 1 1 0 0 0 0; ...
1 0 0 1 0 1 1 1 1 0]';

[L4,T] = rotatefactors(LFA(:,1:3),...
'method','pattern',...
'target',Tgt);

inv(T'*T) % Correlation matrix of the rotated factors

References [1] Harman, H. H.Modern Factor Analysis. 3rd ed. Chicago: University
of Chicago Press, 1976.
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[2] Lawley, D. N., and A. E. Maxwell. Factor Analysis as a Statistical
Method. 2nd ed. New York: American Elsevier Publishing, 1971.

See Also biplot, factoran, princomp, pcacov, procrustes
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Purpose Row exchange

Syntax dRE = rowexch(nfactors,nruns)
[dRE,X] = rowexch(nfactors,nruns)
[dRE,X] = rowexch(nfactors,nruns,model)
[dRE,X] = rowexch(...,param1,val1,param2,val2,...)

Description dRE = rowexch(nfactors,nruns) uses a row-exchange algorithm to
generate a D-optimal design dRE with nruns runs (the rows of dRE) for a
linear additive model with nfactors factors (the columns of dRE). The
model includes a constant term.

[dRE,X] = rowexch(nfactors,nruns) also returns the associated
design matrix X, whose columns are the model terms evaluated at each
treatment (row) of dRE.

[dRE,X] = rowexch(nfactors,nruns,model) uses the linear
regression model specified in model. model is one of the following
strings:

• 'linear'— Constant and linear terms. This is the default.

• 'interaction'— Constant, linear, and interaction terms

• 'quadratic'— Constant, linear, interaction, and squared terms

• 'purequadratic'— Constant, linear, and squared terms

The order of the columns of X for a full quadratic model with n terms is:

1 The constant term

2 The linear terms in order 1, 2, ..., n

3 The interaction terms in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n–1, n)

4 The squared terms in order 1, 2, ..., n

Other models use a subset of these terms, in the same order.
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Alternatively, model can be a matrix specifying polynomial terms of
arbitrary order. In this case, model should have one column for each
factor and one row for each term in the model. The entries in any row
of model are powers for the factors in the columns. For example, if a
model has factors X1, X2, and X3, then a row [0 1 2] in model specifies
the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model
specifies a constant term, which can be omitted.

[dRE,X] = rowexch(...,param1,val1,param2,val2,...) specifies
additional parameter/value pairs for the design. Valid parameters and
their values are listed in the following table.

Parameter Value

'bounds' Lower and upper bounds for each factor, specified as
a 2-by-nfactors matrix. Alternatively, this value
can be a cell array containing nfactors elements,
each element specifying the vector of allowable
values for the corresponding factor.

'categorical' Indices of categorical predictors.

'display' Either 'on' or 'off' to control display of the
iteration counter. The default is 'on'.

'excludefun' Handle to a function that excludes undesirable
runs. If the function is f, it must support the syntax
b = f(S), where S is a matrix of treatments with
nfactors columns and b is a vector of Boolean
values with the same number of rows as S. b(i) is
true if the ith row S should be excluded.

'init' Initial design as an nruns-by-nfactors matrix. The
default is a randomly selected set of points.

'levels' Vector of number of levels for each factor.
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Parameter Value

'maxiter' Maximum number of iterations. The default is 10.

'tries' Number of times to try to generate a design from
a new starting point. The algorithm uses random
points for each try, except possibly the first. The
default is 1.

Algorithm Both cordexch and rowexch use iterative search algorithms. They
operate by incrementally changing an initial design matrix X to increase
D = |XTX| at each step. In both algorithms, there is randomness
built into the selection of the initial design and into the choice of the
incremental changes. As a result, both algorithms may return locally,
but not globally, D-optimal designs. Run each algorithm multiple times
and select the best result for your final design. Both functions have a
'tries' parameter that automates this repetition and comparison.

At each step, the row-exchange algorithm exchanges an entire row of
X with a row from a design matrix C evaluated at a candidate set of
feasible treatments. The rowexch function automatically generates a C
appropriate for a specified model, operating in two steps by calling the
candgen and candexch functions in sequence. Provide your own C by
calling candexch directly. In either case, if C is large, its static presence
in memory can affect computation.

Examples Suppose you want a design to estimate the parameters in the following
three-factor, seven-term interaction model:

y x x x x x x x x x= + + + + + + +       0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3

Use rowexch to generate a D-optimal design with seven runs:

nfactors = 3;
nruns = 7;
[dRE,X] = rowexch(nfactors,nruns,'interaction','tries',10)
dRE =

-1 -1 1
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1 -1 1
1 -1 -1
1 1 1

-1 -1 -1
-1 1 -1
-1 1 1

X =
1 -1 -1 1 1 -1 -1
1 1 -1 1 -1 1 -1
1 1 -1 -1 -1 -1 1
1 1 1 1 1 1 1
1 -1 -1 -1 1 1 1
1 -1 1 -1 -1 1 -1
1 -1 1 1 -1 -1 1

Columns of the design matrix X are the model terms evaluated at each
row of the design dRE. The terms appear in order from left to right:
constant term, linear terms (1, 2, 3), interaction terms (12, 13, 23). Use
X to fit the model, as described in “Linear Regression” on page 9-3, to
response data measured at the design points in dRE.

See Also candgen, candexch, cordexch
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Purpose Interactive response surface demonstration

Syntax rsmdemo

Description rsmdemo opens a group of three graphical user interfaces for
interactively investigating response surface methodology (RSM),
nonlinear fitting, and the design of experiments.

The interfaces allow you to collect and model data from a simulated
chemical reaction. Experimental predictors are concentrations of three
reactants (hydrogen, n-Pentane, and isopentane) and the response is
the reaction rate. The reaction rate is simulated by a Hougen-Watson
model (Bates and Watts, [2], pp. 271–272):

rate
x x

x x x
= −

+ + +
 
  

1 2 3 5

2 1 3 2 4 31
/

where rate is the reaction rate, x1, x2, and x3 are the concentrations of
hydrogen, n-pentane, and isopentane, respectively, and β1, β2, ... , β5 are
fixed parameters. Random errors are used to perturb the reaction rate
for each combination of reactants.

Collect data using one of two methods:

1 Manually set reactant concentrations in the Reaction Simulator
interface by editing the text boxes or by adjusting the associated
sliders.
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When you click Run, the concentrations and simulated reaction rate
are recorded on the Trial and Error Data interface.
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You are allowed up to 13 independent experimental runs for data
collection.

2 Use a designed experiment to set reactant concentrations in the
Experimental Data interface by clicking the Do Experiment
button.

A 13-run D-optimal design for a full quadratic model is generated
by the cordexch function, and the concentrations and simulated
reaction rates are recorded on the same interface.
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Once data is collected, scatter plots of reaction rates vs. individual
predictors are generated by selecting one of the following from the Plot
pop-up menu below the recorded data:

• Hydrogen vs. Rate

• n-Pentane vs. Rate

• Isopentane vs. Rate

Fit a response surface model to the data by clicking the Analyze button
below the trial-and-error data or the Response Surface button below
the experimental data. Both buttons load the data into the Response
Surface Tool rstool. By default, trial-and-error data is fit with a linear
additive model and experimental data is fit with a full quadratic model,
but the models can be adjusted in the Response Surface Tool.

For experimental data, you have the additional option of fitting a
Hougen-Watson model. Click the Nonlinear Model button to load the
data and the model in hougen into the Nonlinear Fitting Tool nlintool.
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See Also hougen, cordexch, rstool, nlintool
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Purpose Interactive response surface modeling

Syntax rstool
rstool(X,Y,model)
rstool(x,y,model,alpha)
rstool(x,y,model,alpha,xname,yname)

Description rstool opens a graphical user interface for interactively investigating
one-dimensional contours of multidimensional response surface models.

By default, the interface opens with the data from hald.mat and a fitted
response surface with constant, linear, and interaction terms.

A sequence of plots is displayed, each showing a contour of the response
surface against a single predictor, with all other predictors held fixed.
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95% global confidence intervals for new observations are shown as
dashed red curves above and below the response. Predictor values are
displayed in the text boxes on the horizontal axis and are marked by
vertical dashed blue lines in the plots. Predictor values are changed by
editing the text boxes or by dragging the dashed blue lines. When you
change the value of a predictor, all plots update to show the new point
in predictor space.

The pop-up menu at the lower left of the interface allows you to choose
among the following models:

• Linear— Constant and linear terms (the default)

• Pure Quadratic— Constant, linear, and squared terms

• Interactions— Constant, linear, and interaction terms

• Full Quadratic— Constant, linear, interaction, and squared terms

Click Export to open the following dialog box:

The dialog allows you to save information about the fit to MATLAB
workspace variables with valid names.

rstool(X,Y,model) opens the interface with the predictor data
in X, the response data in Y, and the fitted model model. Distinct
predictor variables should appear in different columns of X. Y can be a
vector, corresponding to a single response, or a matrix, with columns
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corresponding to multiple responses. Y must have as many elements (or
rows, if it is a matrix) as X has rows.

The optional input model can be any one of the following strings:

• 'linear'— Constant and linear terms (the default)

• 'purequadratic'— Constant, linear, and squared terms

• 'interaction'— Constant, linear, and interaction terms

• 'quadratic'— Constant, linear, interaction, and squared terms

To specify a polynomial model of arbitrary order, or a model without a
constant term, use a matrix for model as described in x2fx.

rstool(x,y,model,alpha) uses 100(1-alpha)% global confidence
intervals for new observations in the plots.

rstool(x,y,model,alpha,xname,yname) labels the axes using the
strings in xname and yname. To label each subplot differently, xname and
yname can be cell arrays of strings.

Examples The following uses rstool to visualize a quadratic response surface
model of the 3-D chemical reaction data in reaction.mat:

load reaction
alpha = 0.01; % Significance level
rstool(reactants,rate,'quadratic',alpha,xn,yn)
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The rstool interface is used by rsmdemo to visualize the results of
simulated experiments with data like that in reaction.mat. As
described in “Response Surface Designs” on page 14-9, rsmdemo uses a
response surface model to generate simulated data at combinations of
predictors specified by either the user or by a designed experiment.

See Also x2fx, rsmdemo, nlintool
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Purpose Run test for randomness

Syntax h = runstest(x)
h = runstest(x,v)
h = runstest(x,'ud')
h = runstest(...,param1,val1,param2,val2,...)
[h,p] = runstest(...)
[h,p,stats] = runstest(...)

Description h = runstest(x) performs a runs test on the sequence of observations
in the vector x. This is a test of the null hypothesis that the values in
x come in random order, against the alternative that they do not. The
test is based on the number of runs of consecutive values above or below
the mean of x. Too few runs indicate a tendency for high and low values
to cluster. Too many runs indicate a tendency for high and low values
to alternate. The test returns the logical value h = 1 if it rejects the null
hypothesis at the 5% significance level, and h = 0 if it cannot. The test
treats NaN values in x as missing values, and ignores them.

runstest uses a test statistic which is approximately normally
distributed when the null hypothesis is true. It is the difference between
the number of runs and its mean, divided by its standard deviation.

h = runstest(x,v) performs the test using runs above or below the
value v. Values exactly equal to v are discarded.

h = runstest(x,'ud') performs a test for the number of runs up
or down. This also tests the hypothesis that the values in x come in
random order. Too few runs indicate a trend. Too many runs indicate an
oscillation. Values exactly equal to the preceding value are discarded.

h = runstest(...,param1,val1,param2,val2,...) specifies
additional parameters and their values. Valid parameter/value pairs
are the following:

• 'alpha'— A scalar giving the significance level of the test

• 'method' — Either 'exact' to compute the p-value using an exact
algorithm, or 'approximate' to use a normal approximation. The
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default is 'exact' for runs above/below, and for runs up/down when
the length of x is 50 or less. The 'exact' method is not available for
runs up/down when the length of x is 51 or greater.

• 'tail'— Performs the test against one of the following alternative
hypotheses:

- 'both'— two-tailed test (sequence is not random)

- 'right' — right-tailed test (like values separate for runs
above/below, direction alternates for runs up/down)

- 'left'— left-tailed test (like values cluster for runs above/below,
values trend for runs up/down)

[h,p] = runstest(...) returns the p-value of the test. The output p
is computed from either the test statistic or the exact distribution of the
number of runs, depending on the value of the 'method' parameter.

[h,p,stats] = runstest(...) returns a structure stats with the
following fields:

• nruns — The number of runs

• n1 — The number of values above v

• n0 — The number of values below v

• z — The test statistic

Examples x = randn(40,1);
[h,p] = runstest(x,median(x))
h =

0
p =

0.6286

See Also signrank, signtest
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TreeBagger.SampleWithReplacement property

Purpose Flag to sample with replacement

Description The SampleWithReplacement property is a logical flag specifying if
data are sampled for each decision tree with replacement. True if
TreeBagger samples data with replacement and false otherwise. True
by default.
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Purpose Sample size and power of test

Syntax n = sampsizepwr(testtype,p0,p1)
n = sampsizepwr(testtype,p0,p1,power)
power = sampsizepwr(testtype,p0,p1,[],n)
p1 = sampsizepwr(testtype,p0,[],power,n)
[...] = sampsizepwr(...,n,param1,val1,param2,val2,...)

Description n = sampsizepwr(testtype,p0,p1) returns the sample size n required
for a two-sided test of the specified type to have a power (probability
of rejecting the null hypothesis when the alternative hypothesis is
true) of 0.90 when the significance level (probability of rejecting the
null hypothesis when the null hypothesis is true) is 0.05. p0 specifies
parameter values under the null hypothesis. p1 specifies the single
parameter value being tested under the alternative hypothesis.

The following values are available for testtype:

• 'z' — z-test for normally distributed data with known standard
deviation. p0 is a two-element vector [mu0 sigma0] of the mean and
standard deviation, respectively, under the null hypothesis. p1 is the
value of the mean under the alternative hypothesis.

• 't' — t-test for normally distributed data with unknown standard
deviation. p0 is a two-element vector [mu0 sigma0] of the mean and
standard deviation, respectively, under the null hypothesis. p1 is the
value of the mean under the alternative hypothesis.

• 'var'— Chi-square test of variance for normally distributed data.
p0 is the variance under the null hypothesis. p1 is the variance under
the alternative hypothesis.

• 'p' — Test of the p parameter (success probability) for a binomial
distribution. p0 is the value of p under the null hypothesis. p1 is the
value of p under the alternative hypothesis.

The 'p' test is a discrete test for which increasing the sample size
does not always increase the power. For n values larger than 200,
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there may be values smaller than the returned n value that also
produce the desired size and power.

n = sampsizepwr(testtype,p0,p1,power) returns the sample size n
such that the power is power for the parameter value p1.

power = sampsizepwr(testtype,p0,p1,[],n) returns the power
achieved for a sample size of n when the true parameter value is p1.

p1 = sampsizepwr(testtype,p0,[],power,n) returns the parameter
value detectable with the specified sample size n and power power.

When computing p1 for the 'p' test, if no alternative can be rejected for
a given null hypothesis and significance level, the function displays a
warning message and returns NaN.

[...] = sampsizepwr(...,n,param1,val1,param2,val2,...)
specifies one or more of the following name/value pairs:

• 'alpha'— Significance level of the test (default 0.05)

• 'tail'— The type of test is one of the following:

- 'both'— Two-sided test for an alternative not equal to p0

- 'right'— One-sided test for an alternative larger than p0

- 'left'— One-sided test for an alternative smaller than p0

Examples Compute the mean closest to 100 that can be determined to be
significantly different from 100 using a t-test with a sample size of 60
and a power of 0.8.

mu1 = sampsizepwr('t',[100 10],[],0.8,60)
mu1 =

103.6770

Compute the sample size n required to distinguish p = 0.26 from p = 0.6
with a binomial test. The result is approximate, so make a plot to see if
any smaller n values also have the required power of 0.5.
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napprox = sampsizepwr('p',0.2,0.26,0.6)

Warning: Values N>200 are approximate. Plotting the power as a function

of N may reveal lower N values that have the required power.

napprox =

244

nn = 1:250;

pwr = sampsizepwr('p',0.2,0.26,[],nn);

nexact = min(nn(pwr>=0.6))

nexact =

213

plot(nn,pwr,'b-',[napprox nexact],pwr([napprox nexact]),'ro');

grid on
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See Also vartest, ttest, ztest, binocdf
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Purpose Scatter plot with marginal histograms

Syntax scatterhist(x,y)
scatterhist(x,y,nbins)
h = scatterhist(...)

Description scatterhist(x,y) creates a 2-D scatterplot of the data in the vectors x
and y, and puts a univariate histogram on the horizontal and vertical
axes of the plot. x and y must be the same length.

The function is useful for viewing properties of random samples
produced by functions such as copularnd, mvnrnd, lhsdesign.

scatterhist(x,y,nbins) also accepts a two-element vector nbins
specifying the number of bins for the x and y histograms. The default is
to compute the number of bins using a Scott rule based on the sample
standard deviation. Any NaN values in either x or y are treated as
missing, and are removed from both x and y. Therefore the plots reflect
points for which neither x nor y has a missing value.

h = scatterhist(...) returns a vector of three axes handles for the
scatterplot, the histogram along the horizontal axis, and the histogram
along the vertical axis, respectively.

Examples Example 1

Independent normal and lognormal random samples:

x = randn(1000,1);
y = exp(.5*randn(1000,1));
scatterhist(x,y)
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Example 2

Marginal uniform samples that are not independent:

u = copularnd('Gaussian',.8,1000);
scatterhist(u(:,1),u(:,2))
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Example 3

Mixed discrete and continuous data:

cars = load('carsmall');
scatterhist(cars.Weight,cars.Cylinders,[10 3])
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See Also scatter, hist
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Purpose Scramble quasi-random point set

Syntax ps = scramble(p,type)
ps = scramble(p,'clear')
ps = scramble(p)

Description ps = scramble(p,type) returns a scrambled copy ps of the point set p
of the qrandset class, created using the scramble type specified in the
string type. Point sets from different subclasses of qrandset support
different scramble types, as indicated in the following table.

Subclass Scramble Types

haltonset class 'RR2' — A permutation of the radical inverse
coefficients derived by applying a reverse-radix
operation to all of the possible coefficient values.
The scramble is described in [1].

sobolset 'MatousekAffineOwen' — A random linear
scramble combined with a random digital shift.
The scramble is described in [2]

ps = scramble(p,'clear') removes all scramble settings from p and
returns the result in ps.

ps = scramble(p) removes all scramble settings from p and then adds
them back in the order they were originally applied. This typically
results in a different point set because of the randomness of the
scrambling algorithms.

Examples Use haltonset to generate a 3-D Halton point set, skip the first 1000
values, and then retain every 101st point:

p = haltonset(3,'Skip',1e3,'Leap',1e2)
p =

Halton point set in 3 dimensions (8.918019e+013 points)
Properties:

Skip : 1000
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Leap : 100
ScrambleMethod : none

Use scramble to apply reverse-radix scrambling:

p = scramble(p,'RR2')
p =

Halton point set in 3 dimensions (8.918019e+013 points)
Properties:

Skip : 1000
Leap : 100

ScrambleMethod : RR2

Use net to generate the first four points:

X0 = net(p,4)
X0 =

0.0928 0.6950 0.0029
0.6958 0.2958 0.8269
0.3013 0.6497 0.4141
0.9087 0.7883 0.2166

Use parenthesis indexing to generate every third point, up to the 11th
point:

X = p(1:3:11,:)
X =

0.0928 0.6950 0.0029
0.9087 0.7883 0.2166
0.3843 0.9840 0.9878
0.6831 0.7357 0.7923

References [1] Kocis, L., and W. J. Whiten. “Computational Investigations of
Low-Discrepancy Sequences.” ACM Transactions on Mathematical
Software. Vol. 23, No. 2, 1997, pp. 266–294.

[2] Matousek, J. “On the L2-Discrepancy for Anchored Boxes.” Journal
of Complexity. Vol. 14, No. 4, 1998, pp. 527–556.
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See Also haltonset, sobolset
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qrandset.ScrambleMethod property

Purpose Settings that control scrambling

Description The ScrambleMethod property contains a structure that defines which
scrambles to apply to the sequence. The structure consists of two fields:

• Type: A string containing the name of the scramble.

Options: A cell array of parameter values for the scramble.

Different point sets support different scramble types as outlined in
the help for each point set class. An error occurs if you set an invalid
scramble type for a given point set.

The ScrambleMethod property also accepts an empty matrix as a value.
This will clear all scrambling and set the property to contain a (0x0)
structure.

The scramble method provides an alternative, easier way to set
scrambles.

Examples Apply a random linear scramble combined with a random digital shift
to a sobolset point set class:

P = sobolset(5);
P = scramble(P, 'MatousekAffineOwen');
P.ScrambleMethod

See Also sobolset | scramble

18-1187



piecewisedistribution.segment

Purpose Segments containing values

Syntax S = segment(obj,X,P)

Description S = segment(obj,X,P) returns an array S of integers indicating which
segment of the piecewise distribution object obj contains each value
of X or, alternatively, P. One of X and P must be empty ([]). If X is
nonempty, S is determined by comparing X with the quantile boundary
values defined for obj. If P is nonempty, S is determined by comparing
P with the probability boundary values.

Examples Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and
0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);

pvals = 0:0.2:1;
s = segment(obj,[],pvals)
s =

1 2 2 2 2 3

See Also paretotails, boundary, nsegments
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Purpose Sequential feature selection

Syntax inmodel = sequentialfs(fun,X,y)
inmodel = sequentialfs(fun,X,Y,Z,...)
[inmodel,history] = sequentialfs(fun,X,...)
[] = sequentialfs(...,param1,val1,param2,val2,...)

Description inmodel = sequentialfs(fun,X,y) selects a subset of features from
the data matrix X that best predict the data in y by sequentially
selecting features until there is no improvement in prediction. Rows
of X correspond to observations; columns correspond to variables or
features. y is a column vector of response values or class labels for each
observation in X. X and y must have the same number of rows. fun is a
function handle to a function that defines the criterion used to select
features and to determine when to stop. The output inmodel is a logical
vector indicating which features are finally chosen.

Starting from an empty feature set, sequentialfs creates candidate
feature subsets by sequentially adding each of the features not yet
selected. For each candidate feature subset, sequentialfs performs
10-fold cross-validation by repeatedly calling fun with different training
subsets of X and y, XTRAIN and ytrain, and test subsets of X and y,
XTEST and ytest, as follows:

criterion = fun(XTRAIN,ytrain,XTEST,ytest)

XTRAIN and ytrain contain the same subset of rows of X and Y, while
XTEST and ytest contain the complementary subset of rows. XTRAIN
and XTEST contain the data taken from the columns of X that correspond
to the current candidate feature set.

Each time it is called, fun must return a scalar value criterion.
Typically, fun uses XTRAIN and ytrain to train or fit a model, then
predicts values for XTEST using that model, and finally returns some
measure of distance, or loss, of those predicted values from ytest.
In the cross-validation calculation for a given candidate feature set,
sequentialfs sums the values returned by fun and divides that sum
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by the total number of test observations. It then uses that mean value
to evaluate each candidate feature subset.

Typical loss measures include sum of squared errors for regression
models (sequentialfs computes the mean-squared error in this case),
and the number of misclassified observations for classification models
(sequentialfs computes the misclassification rate in this case).

Note sequentialfs divides the sum of the values returned by
fun across all test sets by the total number of test observations.
Accordingly, fun should not divide its output value by the number of
test observations.

After computing the mean criterion values for each candidate
feature subset, sequentialfs chooses the candidate feature subset
that minimizes the mean criterion value. This process continues until
adding more features does not decrease the criterion.

inmodel = sequentialfs(fun,X,Y,Z,...) allows any number of
input variables X, Y, Z, ... . sequentialfs chooses features (columns)
only from X, but otherwise imposes no interpretation on X, Y, Z, ... . All
data inputs, whether column vectors or matrices, must have the same
number of rows. sequentialfs calls fun with training and test subsets
of X, Y, Z, ... as follows:

criterion = fun(XTRAIN,YTRAIN,ZTRAIN,...,
XTEST,YTEST,ZTEST,...)

sequentialfs creates XTRAIN, YTRAIN, ZTRAIN, ... , XTEST, YTEST,
ZTEST, ... by selecting subsets of the rows of X, Y, Z, ... . fun must return
a scalar value criterion, but may compute that value in any way.
Elements of the logical vector inmodel correspond to columns of X and
indicate which features are finally chosen.

[inmodel,history] = sequentialfs(fun,X,...) returns
information on which feature is chosen at each step. history is a scalar
structure with the following fields:
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• Crit — A vector containing the criterion values computed at each
step.

• In— A logical matrix in which row i indicates the features selected
at step i.

[] = sequentialfs(...,param1,val1,param2,val2,...) specifies
optional parameter name/value pairs from the following table.

Parameter Value

'cv' The validation method used to compute the
criterion for each candidate feature subset.

• When the value is a positive integer k,
sequentialfs uses k-fold cross-validation
without stratification.

• When the value is an object of the cvpartition
class, other forms of cross-validation can be
specified.

• When the value is 'resubstitution', the
original data are passed to fun as both the
training and test data to compute the criterion.

• When the value is 'none', sequentialfs
calls fun as criterion = fun(X,Y,Z,...),
without separating test and training sets.

The default value is 10, that is, 10-fold
cross-validation without stratification.

So-called wrapper methods use a function fun
that implements a learning algorithm. These
methods usually apply cross-validation to select
features. So-called filter methods use a function
fun that measures characteristics of the data
(such as correlation) to select features.
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Parameter Value

'mcreps' A positive integer indicating the number of
Monte-Carlo repetitions for cross-validation. The
default value is 1. The value must be 1 if the
value of 'cv' is 'resubstitution' or 'none'.

'direction' The direction of the sequential search. The
default is 'forward'. A value of 'backward'
specifies an initial candidate set including all
features and an algorithm that removes features
sequentially until the criterion increases.

'keepin' A logical vector or a vector of column numbers
specifying features that must be included. The
default is empty.

'keepout' A logical vector or a vector of column numbers
specifying features that must be excluded. The
default is empty.

'nfeatures' The number of features at which sequentialfs
should stop. inmodel includes exactly this
many features. The default value is empty,
indicating that sequentialfs should stop when
a local minimum of the criterion is found. A
nonempty value overrides values of 'MaxIter'
and 'TolFun' in 'options'.

'nullmodel' A logical value, indicating whether or not the null
model (containing no features from X) should be
included in feature selection and in the history
output. The default is false.
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Parameter Value

'options' Options structure for the iterative sequential
search algorithm, as created by statset.
sequentialfs uses the following statset
parameters:

• Display— Amount of information displayed
by the algorithm. The default is 'off'.

• MaxIter — Maximum number of iterations
allowed. The default is Inf.

• TolFun — Termination tolerance for the
objective function value. The default is 1e-6 if
'direction' is 'forward'; 0 if 'direction'
is 'backward'.

• TolTypeFun — Use absolute or relative
objective function tolerances. The default is
'rel'.

Examples Perform sequential feature selection for classification of noisy features:

load fisheriris;
X = randn(150,10);
X(:,[1 3 5 7 ])= meas;
y = species;

c = cvpartition(y,'k',10);
opts = statset('display','iter');
fun = @(XT,yT,Xt,yt)...

(sum(~strcmp(yt,classify(Xt,XT,yT,'quadratic'))));

[fs,history] = sequentialfs(fun,X,y,'cv',c,'options',opts)

Start forward sequential feature selection:
Initial columns included: none
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Columns that can not be included: none
Step 1, added column 7, criterion value 0.04
Step 2, added column 5, criterion value 0.0266667
Final columns included: 5 7

fs =
0 0 0 0 1 0 1 0 0 0

history =
In: [2x10 logical]

Crit: [0.0400 0.0267]

history.In
ans =

0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0

See Also crossval, cvpartition, stepwisefit, statset
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Purpose Set and display properties

Syntax set(A)
set(A,PropertyName)
A = set(A,PropertyName,PropertyValue,...)
B = set(A,PropertyName,value)

Description set(A) displays all properties of the dataset array A and their possible
values.

set(A,PropertyName) displays possible values for the property
specified by the string PropertyName.

A = set(A,PropertyName,PropertyValue,...) sets property
name/value pairs.

B = set(A,PropertyName,value) returns a dataset array B that is a
copy of A, but with the property 'PropertyName' set to the value value.

Note Using set(A,'PropertyName',value) without assigning
to a variable does not modify A’s properties. Use A =
set(A,'PropertyName',value) to modify A.

Examples Create a dataset array from Fisher’s iris data and add a description:

load fisheriris
NumObs = size(meas,1);
NameObs = strcat({'Obs'},num2str((1:NumObs)','%-d'));
iris = dataset({nominal(species),'species'},...

{meas,'SL','SW','PL','PW'},...
'ObsNames',NameObs);

iris = set(iris,'Description','Fisher''s Iris Data');
get(iris)

Description: 'Fisher's Iris Data'
Units: {}
DimNames: {'Observations' 'Variables'}
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UserData: []
ObsNames: {150x1 cell}
VarNames: {'species' 'SL' 'SW' 'PL' 'PW'}

See Also get, summary
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CompactTreeBagger.SetDefaultYfit

Purpose Set default value for predict

Syntax B = SetDefaultYfit(B,Yfit)

Description B = SetDefaultYfit(B,Yfit) sets the default prediction for ensemble
B to Yfit. The default prediction must be a character variable for
classification or a numeric scalar for regression. This setting controls
what predicted value CompactTreeBagger returns when no prediction
is possible, for example when the predict method needs to predict
for an observation which has only false values in the matrix supplied
through 'useifort' argument.

See Also DefaultYfit, predict, TreeBagger.DefaultYfit
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Purpose Set difference for categorical arrays

Syntax C = setdiff(A,B)
[C,I] = setdiff(A,B)

Description C = setdiff(A,B) when A and B are categorical arrays returns a
categorical vector C containing the values in A that are not in B. The
result C is sorted. The set of categorical levels for C is the sorted union
of the sets of levels of the inputs, as determined by their labels.

[C,I] = setdiff(A,B) also returns index vectors I such that C =
A(I).

See Also intersect, ismember, setxor, union, unique
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Purpose Label levels

Syntax A = setlabels(A,labels)
A = setlabels(A,labels,levels)

Description A = setlabels(A,labels) labels the levels in the categorical array A
using the cell array of strings or 2-D character matrix labels. Labels
are assigned in the order given in labels.

A = setlabels(A,labels,levels) labels only the levels specified in
the cell array of strings or 2-D character matrix levels.

Examples Example 1

Relabel the species in Fisher’s iris data using new categories:

load fisheriris
species = nominal(species);
species = mergelevels(...

species,{'setosa','virginica'},'parent');
species = setlabels(species,'hybrid','versicolor');
getlabels(species)
ans =

'hybrid' 'parent'

Example 2

1 Load patient data from the CSV file hospital.dat and store the
information in a dataset array with observation names given by the
first column in the data (patient identification):

patients = dataset('file','hospital.dat',...
'delimiter',',',...
'ReadObsNames',true);

2 Make the {0,1}-valued variable smoke nominal, and change the labels
to 'No' and 'Yes':

patients.smoke = nominal(patients.smoke,{'No','Yes'});
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3 Add new levels to smoke as placeholders for more detailed histories
of smokers:

patients.smoke = addlevels(patients.smoke,...
{'0-5 Years','5-10 Years','LongTerm'});

4 Assuming the nonsmokers have never smoked, relabel the 'No' level:

patients.smoke = setlabels(patients.smoke,'Never','No');

5 Drop the undifferentiated 'Yes' level from smoke:

patients.smoke = droplevels(patients.smoke,'Yes');

Warning: OLDLEVELS contains categorical levels that
were present in A, caused some array elements to have
undefined levels.

Note that smokers now have an undefined level.

6 Set each smoker to one of the new levels, by observation name:

patients.smoke('YPL-320') = '5-10 Years';

See Also getlabels
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Purpose Set exclusive-or for categorical arrays

Syntax C = setxor(A,B)
[C,IA,IB] = setxor(A,B)

Description C = setxor(A,B) when A and B are categorical arrays returns a
categorical vector C containing the values not in the intersection of A and
B. The result C is sorted. The set of categorical levels for C is the sorted
union of the sets of levels of the inputs, as determined by their labels.

[C,IA,IB] = setxor(A,B) also returns index vectors IA and IB such
that C is a sorted combination of the elements A(IA) and B(IB).

See Also intersect, ismember, setdiff, union, unique
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gmdistribution.SharedCov property

Purpose true if all covariance matrices are restricted to be the same

Description Logical true if all the covariance matrices are restricted to be the same
(pooled estimate); logical false otherwise.
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Purpose Shift dimensions of categorical array

Syntax B = shiftdim(A,n)
[B,nshifts] = shiftdim(A)

Description B = shiftdim(A,n) shifts the dimensions of the categorical array A
by N. When n is positive, shiftdim shifts the dimensions to the left
and wraps the n leading dimensions to the end. When n is negative,
shiftdim shifts the dimensions to the right and pads with singletons.

[B,nshifts] = shiftdim(A) returns the array B with the same
number of elements as A but with any leading singleton dimensions
removed. nshifts returns the number of dimensions that are removed.
If A is a scalar, shiftdim has no effect.

See Also circshift, reshape, squeeze
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gmdistribution.Sigma property

Purpose Input array of covariances

Description Input array of covariances SIGMA.
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Purpose Wilcoxon signed rank test

Syntax p = signrank(x)
p = signrank(x,m)
p = signrank(x,y)
[p,h] = signrank(...)
[p,h] = signrank(...,'alpha',alpha)
[p,h] = signrank(...,'method',method)
[p,h,stats] = signrank(...)

Description p = signrank(x) performs a two-sided signed rank test of the
null hypothesis that data in the vector x comes from a continuous,
symmetric distribution with zero median, against the alternative that
the distribution does not have zero median. The p-value of the test
is returned in p.

p = signrank(x,m) performs a two-sided signed rank test of the null
hypothesis that data in the vectors x and y are independent samples
from a continuous, symmetric distribution with median m, against the
alternative that the distribution does not have median m. m must be a
scalar.

p = signrank(x,y) performs a paired, two-sided signed rank test of
the null hypothesis that data in the vector x-y come from a continuous,
symmetric distribution with zero median, against the alternative that
the distribution does not have zero median. x and y must have equal
lengths. Note that a hypothesis of zero median for x-y is not equivalent
to a hypothesis of equal median for x and y.

[p,h] = signrank(...) returns the result of the test in h. h = 1
indicates a rejection of the null hypothesis at the 5% significance
level. h = 0 indicates a failure to reject the null hypothesis at the 5%
significance level.

[p,h] = signrank(...,'alpha',alpha) performs the test at the
(100*alpha)% significance level. The default, when unspecified, is
alpha = 0.05.
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[p,h] = signrank(...,'method',method) computes the p-value
using either an exact algorithm, when method is 'exact', or a normal
approximation, when method is 'approximate'. The default, when
unspecified, is the exact method for small samples and the approximate
method for large samples.

[p,h,stats] = signrank(...) returns the structure stats with the
following fields:

• signedrank— Value of the signed rank test statistic

• zval— Value of the z-statistic (computed only for large samples)

Examples Test the hypothesis of zero median for the difference between two
paired samples.

before = lognrnd(2,.25,10,1);
after = before+trnd(2,10,1);
[p,h] = signrank(before,after)
p =

0.5566
h =

0

The sampling distribution of the difference between before and after
is symmetric with zero median. At the default 5% significance level, the
test fails to reject to the null hypothesis of zero median in the difference.

References [1] Gibbons, J. D. Nonparametric Statistical Inference. New York:
Marcel Dekker, 1985.

[2] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods.
Hoboken, NJ: John Wiley & Sons, Inc., 1999.

See Also ranksum, ttest, ztest
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Purpose Sign test

Syntax p = signtest(x)
p = signtest(x,m)
p = signtest(x,y)
[p,h] = signtest(...)
[p,h] = signtest(...,'alpha',alpha)
[p,h] = signtest(...,'method',method)
[p,h,stats] = signtest(...)

Description p = signtest(x) performs a two-sided sign test of the null hypothesis
that data in the vector x come from a continuous distribution with zero
median, against the alternative that the distribution does not have zero
median. The p-value of the test is returned in p

p = signtest(x,m) performs a two-sided sign test of the null
hypothesis that data in the vector x come from a continuous distribution
with median m, against the alternative that the distribution does not
have median m. m must be a scalar.

p = signtest(x,y) performs a paired, two-sided sign test of the
null hypothesis that data in the vector x-y come from a continuous
distribution with zero median, against the alternative that the
distribution does not have zero median. x and y must be the same
length. Note that a hypothesis of zero median for x-y is not equivalent
to a hypothesis of equal median for x and y.

[p,h] = signtest(...) returns the result of the test in h. h = 1
indicates a rejection of the null hypothesis at the 5% significance
level. h = 0 indicates a failure to reject the null hypothesis at the 5%
significance level.

[p,h] = signtest(...,'alpha',alpha) performs the test at the
(100*alpha)% significance level. The default, when unspecified, is
alpha = 0.05.

[p,h] = signtest(...,'method',method) computes the p-value
using either an exact algorithm, when method is 'exact', or a normal
approximation, when method is 'approximate'. The default, when
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unspecified, is the exact method for small samples and the approximate
method for large samples.

[p,h,stats] = signtest(...) returns the structure stats with the
following fields:

• sign — Value of the sign test statistic

• zval— Value of the z-statistic (computed only for large samples)

Examples Test the hypothesis of zero median for the difference between two
paired samples.

before = lognrnd(2,.25,10,1);
after = before + (lognrnd(0,.5,10,1) - 1);
[p,h] = signtest(before,after)
p =

0.3438
h =

0

The sampling distribution of the difference between before and after
is symmetric with zero median. At the default 5% significance level, the
test fails to reject to the null hypothesis of zero median in the difference.

References [1] Gibbons, J. D. Nonparametric Statistical Inference. New York:
Marcel Dekker, 1985.

[2] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods.
Hoboken, NJ: John Wiley & Sons, Inc., 1999.

See Also ranksum, signrank, ttest, ztest
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Purpose Silhouette plot

Syntax silhouette(X,clust)
s = silhouette(X,clust)
[s,h] = silhouette(X,clust)
[...] = silhouette(X,clust,metric)
[...] = silhouette(X,clust,distfun,p1,p2,...)

Description silhouette(X,clust) plots cluster silhouettes for the n-by-p data
matrix X, with clusters defined by clust. Rows of X correspond to
points, columns correspond to coordinates. clust can be a categorical
variable, numeric vector, character matrix, or cell array of strings
containing a cluster name for each point. (See “Grouped Data” on page
2-33.) silhouette treats NaNs or empty strings in clust as missing
values, and ignores the corresponding rows of X. By default, silhouette
uses the squared Euclidean distance between points in X.

s = silhouette(X,clust) returns the silhouette values in the n-by-1
vector s, but does not plot the cluster silhouettes.

[s,h] = silhouette(X,clust) plots the silhouettes, and returns the
silhouette values in the n-by-1 vector s, and the figure handle in h.

[...] = silhouette(X,clust,metric) plots the silhouettes using
the inter-point distance function specified in metric. Choices for metric
are given in the following table.

Metric Description

'Euclidean' Euclidean distance

'sqEuclidean' Squared Euclidean distance (default)

'cityblock' Sum of absolute differences

'cosine' One minus the cosine of the included angle
between points (treated as vectors)

'correlation' One minus the sample correlation between points
(treated as sequences of values)
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Metric Description

'Hamming' Percentage of coordinates that differ

'Jaccard' Percentage of nonzero coordinates that differ

Vector A numeric distance matrix in upper triangular
vector form, such as is created by pdist. X is
not used in this case, and can safely be set to [].

[...] = silhouette(X,clust,distfun,p1,p2,...) accepts a
function handle distfun to a metric of the form

d = distfun(X0,X,p1,p2,...)

where X0 is a 1-by-p point, X is an n-by-pmatrix of points, and p1,p2,...
are optional additional arguments. The function distfun returns an
n-by-1 vector d of distances between X0 and each point (row) in X. The
arguments p1, p2,... are passed directly to the function distfun.

Remarks The silhouette value for each point is a measure of how similar that
point is to points in its own cluster compared to points in other clusters,
and ranges from -1 to +1. It is defined as

S(i) = (min(b(i,:),2) - a(i)) ./ max(a(i),min(b(i,:)))

where a(i) is the average distance from the ith point to the other
points in its cluster, and b(i,k) is the average distance from the ith
point to points in another cluster k.

Examples X = [randn(10,2)+ones(10,2);
randn(10,2)-ones(10,2)];
cidx = kmeans(X,2,'distance','sqeuclid');
s = silhouette(X,cidx,'sqeuclid');

References [1] Kaufman L., and P. J. Rousseeuw. Finding Groups in Data: An
Introduction to Cluster Analysis. Hoboken, NJ: John Wiley & Sons,
Inc., 1990.
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See Also “Grouped Data” on page 2-33

dendrogram, kmeans, linkage, pdist
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categorical.single

Purpose Convert categorical array to single array

Syntax B = single(A)

Description B = single(A) converts the categorical array A to a single array.
Each element of B contains the internal categorical level code for the
corresponding element of A.

See Also double
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Purpose Convert dataset variables to single array

Syntax B = single(A)
B = single(A,vars)

Description B = single(A) returns the contents of the dataset A, converted to one
single array. The classes of the variables in the dataset must support
the conversion.

B = single(A,vars) returns the contents of the dataset variables
specified by vars. vars is a positive integer, a vector of positive
integers, a variable name, a cell array containing one or more variable
names, or a logical vector.

See Also dataset, double, replacedata
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Purpose Size of categorical array

Syntax d = size(A)
[m,n] = size(A)
[m1,m2,m3,...,mn] = size(A)
m = size(A,dim)

Description d = size(A) returns the two-element row vector d = [m,n] containing
the number of rows and columns in the matrix for an m-by-n categorical
matrix A. For n-D categorical arrays, size(A) returns a 1-by-n vector of
dimension lengths. Trailing singleton dimensions are ignored.

[m,n] = size(A) for a categorical matrix A, returns the number of
rows and columns in A as separate output variables.

[m1,m2,m3,...,mn] = size(A), for n>1, returns the sizes of the
first n dimensions of the categorical array A. If the number of output
arguments n does not equal ndims(A), then for:

n > ndims(A) size returns ones in the "extra" variables,
i.e., outputs ndims(A)+1 through n.

n < ndims(A) mn contains the product of the sizes of
dimensions n through ndims(A).

m = size(A,dim) returns the length of the dimension specified by the
scalar dim. For example, size(A,1) returns the number of rows. If
dim > ndims(A), m will be 1.

See Also length, ndims, numel
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Purpose Size of dataset array

Syntax B = single(A)
B = single(A,vars)

Description B = single(A) returns the contents of the dataset A, converted to one
single array. The classes of the variables in the dataset must support
the conversion.

B = single(A,vars) returns the contents of the dataset variables
specified by vars. vars is a positive integer, a vector of positive
integers, a variable name, a cell array containing one or more variable
names, or a logical vector.

See Also length, ndims, numel
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Purpose Number of dimensions in matrix

Syntax d = size(p)
[m,n] = size(p)
m = size(p,dim)

Description d = size(p) returns the two-element row vector d = [m,n] containing
the number of points in the point set and the number of dimensions
the points are in, for the point set p. These correspond to the number
of rows and columns in the matrix that would be produced by the
expression p(:,:).

[m,n] = size(p) returns the number of points and dimensions for p as
separate output variables.

m = size(p,dim) returns the length of the dimension specified by the
scalar dim. For example, size(p,1) returns the number of rows (points
in the point set). If dim is greater than 2, m will be 1.

Examples The commands

P = sobolset(12);
d = size(P)

return

d = [9.0072e+015 12]

The command

[m,n] = size(P)

returns

m = 9.0072e+015
n = 12

The command
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m2 = size(P, 2)

returns

m2 = 12

See Also length, ndims, qrandset
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Purpose Slice sampler

Syntax rnd = slicesample(initial,nsamples,'pdf',pdf)
rnd = slicesample(...,'width',w)
rnd = slicesample(...,'burnin',k)
rnd = slicesample(...,'thin',m)
[rnd,neval] = slicesample(...)

Description rnd = slicesample(initial,nsamples,'pdf',pdf) generates
nsamples random samples from a target distribution whose density
function is defined by pdf using the slice sampling method. initial
is a row vector or scalar containing the initial value of the random
sample sequences. initial must be within the domain of the target
distribution. nsamples is the number of samples to be generated. pdf is
a function handle created using @. pdf accepts only one argument that
must be the same type and size as initial. It defines a function that is
proportional to the target density function. If the log density function
is preferred, 'pdf' can be replaced with 'logpdf'. The log density
function is not necessarily normalized.

rnd = slicesample(...,'width',w) performs slice sampling for the
target distribution with a typical width w. w is a scalar or vector. If it is
a scalar, all dimensions are assumed to have the same typical widths.
If it is a vector, each element of the vector is the typical width of the
marginal target distribution in that dimension. The default value of
w is 10.

rnd = slicesample(...,'burnin',k) generates random samples
with values between the starting point and the kth point omitted in
the generated sequence. Values beyond the kth point are kept. k is a
nonnegative integer with default value of 0.

rnd = slicesample(...,'thin',m) generates random samples with
m-1 out of m values omitted in the generated sequence. m is a positive
integer with default value of 1.

[rnd,neval] = slicesample(...) also returns neval, the averaged
number of function evaluations that occurred in the slice sampling.
neval is a scalar.
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Examples Generate random samples from a distribution with a user-defined pdf.

First, define the function that is proportional to the pdf for a
multi-modal distribution.

f = @(x) exp( -x.^2/2).*(1+(sin(3*x)).^2).* ...
(1+(cos(5*x).^2));

Next, use the slicesample function to generate the random samples for
the function defined above.

x = slicesample(1,2000,'pdf',f,'thin',5,'burnin',1000);

Now, plot a histogram of the random samples generated.

hist(x,50)
set(get(gca,'child'),'facecolor',[0.8 .8 1]);
hold on
xd = get(gca,'XLim'); % Gets the xdata of the bins
binwidth = (xd(2)-xd(1)); % Finds the width of each bin
% Use linspace to normalize the histogram
y = 5.6398*binwidth*f(linspace(xd(1),xd(2),1000));
plot(linspace(xd(1),xd(2),1000),y,'r','LineWidth',2)
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See Also rand, mhsample, randsample
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Purpose Skewness

Syntax y = skewness(X)
y = skewness(X,flag)

Description y = skewness(X) returns the sample skewness of X. For vectors,
skewness(x) is the skewness of the elements of x. For matrices,
skewness(X) is a row vector containing the sample skewness of each
column. For N-dimensional arrays, skewness operates along the first
nonsingleton dimension of X.

y = skewness(X,flag) specifies whether to correct for bias (flag = 0)
or not (flag = 1, the default). When X represents a sample from a
population, the skewness of X is biased; that is, it will tend to differ
from the population skewness by a systematic amount that depends
on the size of the sample. You can set flag = 0 to correct for this
systematic bias.

skewness(X,flag,dim) takes the skewness along dimension dim of X.

skewness treats NaNs as missing values and removes them.

Remarks Skewness is a measure of the asymmetry of the data around the sample
mean. If skewness is negative, the data are spread out more to the
left of the mean than to the right. If skewness is positive, the data are
spread out more to the right. The skewness of the normal distribution
(or any perfectly symmetric distribution) is zero.

The skewness of a distribution is defined as

where µ is the mean of x, σ is the standard deviation of x, and E(t)
represents the expected value of the quantity t.

Examples X = randn([5 4])
X =
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1.1650 1.6961 -1.4462 -0.3600
0.6268 0.0591 -0.7012 -0.1356
0.0751 1.7971 1.2460 -1.3493
0.3516 0.2641 -0.6390 -1.2704

-0.6965 0.8717 0.5774 0.9846

y = skewness(X)
y =

-0.2933 0.0482 0.2735 0.4641

See Also kurtosis, mean, moment, std, var
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Purpose Number of initial points to omit from sequence

Description The Skip property of a point set contains a positive integer which
specifies the number of initial points in the sequence to omit from the
point set. The default Skip value is 0.

Initial points of a sequence sometimes exhibit undesirable properties,
for example the first point is often (0,0,0,...) and this may
"unbalance" the sequence since its counterpart, (1,1,1,...), never
appears. Another common reason is that initial points often exhibit
correlations among different dimensions which disappear later in the
sequence.

Examples Examine the difference between skipping and not skipping points:

% No skipping produces the standard Sobol sequence.
P = sobolset(5);
P(1:3,:)

% Skip the first point of the sequence. The point set now
% starts at the second point of the basic Sobol sequence.
P.Skip = 1;
P(1:3,:)

See Also Leap | net | qrandset | subsref
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Superclasses qrandset

Purpose Sobol quasi-random point sets

Description sobolset is a quasi-random point set class that produces points from
the Sobol sequence. The Sobol sequence is a base-2 digital sequence
that fills space in a highly uniform manner.

Construction sobolset Construct Sobol quasi-random
point set

Methods Inherited Methods

Methods in the following table are inherited from qrandset.

disp Display qrandset object

end Last index in indexing expression
for point set

length Length of point set

ndims Number of dimensions in matrix

net Generate quasi-random point set

scramble Scramble quasi-random point set

size Number of dimensions in matrix

subsref Subscripted reference for
qrandset

Properties PointOrder Point generation method

Inherited Properties

Properties in the following table are inherited from qrandset.
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Dimensions Number of dimensions

Leap Interval between points

ScrambleMethod Settings that control scrambling

Skip Number of initial points to omit
from sequence

Type Name of sequence on which point
set Pis based

Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.

References [1] Bratley, P., and B. L. Fox, "ALGORITHM 659 Implementing
Sobol’s Quasirandom Sequence Generator," ACM Transactions on
Mathematical Software, Vol. 14, No. 1, pp. 88-100, 1988.

[2] Joe, S., and F. Y. Kuo, "Remark on Algorithm 659: Implementing
Sobol’s Quasirandom Sequence Generator," ACM Transactions on
Mathematical Software, Vol. 29, No. 1, pp. 49-57, 2003.

[3] Hong, H. S., and F. J. Hickernell, "ALGORITHM 823: Implementing
Scrambled Digital Sequences," ACM Transactions on Mathematical
Software, Vol. 29, No. 2, pp. 95-109, 2003.

[4] Matousek, J., "On the L2-discrepancy for anchored boxes," Journal
of Complexity, Vol. 14, pp. 527-556, 1998.

See Also haltonset
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Purpose Construct Sobol quasi-random point set

Syntax p = sobolset(d)
p = sobolset(d,prop1,val1,prop2,val2,...)

Description p = sobolset(d) constructs a d-dimensional point set p of the
sobolset class, with default property settings.

p = sobolset(d,prop1,val1,prop2,val2,...) specifies property
name/value pairs used to construct p.

The object p returned by sobolset encapsulates properties of a
specified quasi-random sequence. The point set is finite, with a length
determined by the Skip and Leap properties and by limits on the size
of point set indices (maximum value of 253). Values of the point set are
not generated and stored in memory until you access p using net or
parenthesis indexing.

Examples Generate a 3-D Sobol point set, skip the first 1000 values, and then
retain every 101st point:

p = sobolset(3,'Skip',1e3,'Leap',1e2)
p =

Sobol point set in 3 dimensions (8.918019e+013 points)
Properties:

Skip : 1000
Leap : 100

ScrambleMethod : none
PointOrder : standard

Use scramble to apply a random linear scramble combined with a
random digital shift:

p = scramble(p,'MatousekAffineOwen')
p =

Sobol point set in 3 dimensions (8.918019e+013 points)
Properties:

Skip : 1000
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Leap : 100
ScrambleMethod : MatousekAffineOwen

PointOrder : standard

Use net to generate the first four points:

X0 = net(p,4)
X0 =

0.7601 0.5919 0.9529
0.1795 0.0856 0.0491
0.5488 0.0785 0.8483
0.3882 0.8771 0.8755

Use parenthesis indexing to generate every third point, up to the 11th
point:

X = p(1:3:11,:)
X =

0.7601 0.5919 0.9529
0.3882 0.8771 0.8755
0.6905 0.4951 0.8464
0.1955 0.5679 0.3192

References [1] Bratley, P., and B. L. Fox. “Algorithm 659 Implementing
Sobol’s Quasirandom Sequence Generator.” ACM Transactions on
Mathematical Software. Vol. 14, No. 1, 1988, pp. 88–100.

[2] Joe, S., and F. Y. Kuo. “Remark on Algorithm 659: Implementing
Sobol’s Quasirandom Sequence Generator.” ACM Transactions on
Mathematical Software. Vol. 29, No. 1, 2003, pp. 49–57.

[3] Hong, H. S., and F. J. Hickernell. “Algorithm 823: Implementing
Scrambled Digital Sequences.” ACM Transactions on Mathematical
Software. Vol. 29, No. 2, 2003, pp. 95–109.

[4] Matousek, J. “On the L2-Discrepancy for Anchored Boxes.” Journal
of Complexity. Vol. 14, No. 4, 1998, pp. 527–556.
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See Also haltonset, net, scramble
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Purpose Sort elements of ordinal array

Syntax B = sort(A)
B = sort(A,dim)
B = sort(A,dim,mode)
[B,I] = sort(A,...)

Description B = sort(A), when A is an ordinal vector, sorts the elements of A in
ascending order. For ordinal matrices, sort(A) sorts each column of
A in ascending order. For N-D ordinal arrays, sort(A) sorts the along
the first nonsingleton dimension of A. B is an ordinal array with the
same levels as A.

B = sort(A,dim) sorts A along dimension dim.

B = sort(A,dim,mode) sorts A in the order specified by mode. mode is
'ascend' for ascending order, or 'descend' for descending order.

[B,I] = sort(A,...) also returns an index matrix I. If A is a vector,
then B = A(I). If A is an m-by-n matrix and dim is 1, then B(:,j) =
A(I(:,j),j) for j = 1:n.

Elements with undefined levels are sorted to the end.

Examples Sort the columns of an ordinal array in ascending order:

A = ordinal([6 2 5; 2 4 1; 3 2 4],...
{'lo','med','hi'},[],[0 2 4 6])

A =
hi med hi
med hi lo
med med hi

B = sort(A)
B =

med med lo
med med hi
hi hi hi
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See Also sortrows
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Purpose Sort rows of dataset array

Syntax B = sortrows(A)
B = sortrows(A,vars)
B = sortrows(A,'obsnames')
B = sortrows(A,vars,mode)
[B,idx] = sortrows(A)

Description B = sortrows(A) returns a copy of the dataset array A, with the
observations sorted in ascending order by all of the variables in A. The
observations in B are sorted first by the first variable, next by the second
variable, and so on. The variables in A must be scalar valued (i.e.,
column vectors) and be from a class for which a sort method exists.

B = sortrows(A,vars) sorts the observations in A by the variables
specified by vars. vars is a positive integer, a vector of positive
integers, variable names, a cell array containing one or more variable
names, or a logical vector.

B = sortrows(A,'obsnames') sorts the observations in A by
observation name.

B = sortrows(A,vars,mode) sorts in the direction specified by mode.
mode is 'ascend' (the default) or 'descend'. Use [] for vars to sort
using all variables.

[B,idx] = sortrows(A) also returns an index vector idx such that
B = A(idx,:).

Examples Sort the data in hospital.mat by age and then by last name:

load hospital
hospital(1:5,1:3)
ans =

LastName Sex Age
YPL-320 'SMITH' Male 38
GLI-532 'JOHNSON' Male 43
PNI-258 'WILLIAMS' Female 38
MIJ-579 'JONES' Female 40
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XLK-030 'BROWN' Female 49

hospital = sortrows(hospital,{'Age','LastName'});
hospital(1:5,1:3)
ans =

LastName Sex Age
REV-997 'ALEXANDER' Male 25
FZR-250 'HALL' Male 25
LIM-480 'HILL' Female 25
XUE-826 'JACKSON' Male 25
SCQ-914 'JAMES' Male 25

See Also sortrows
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Purpose Sort rows

Syntax B = sortrows(A)
B = sortrows(A,col)
[B,I] = sortrows(A)
[B,I] = sortrows(A,col)

Description B = sortrows(A) sorts the rows of the 2-D ordinal matrix A in
ascending order, as a group. B is an ordinal array with the same levels
as A.

B = sortrows(A,col) sorts A based on the columns specified in the
vector col. If an element of col is positive, the corresponding column
in A is sorted in ascending order; if an element of col is negative, the
corresponding column in A is sorted in descending order.

[B,I] = sortrows(A) and [B,I] = sortrows(A,col) also returns an
index matrix I such that B = A(I,:).

Elements with undefined levels are sorted to the end.

Examples Sort the rows of an ordinal array in ascending order for the first column,
and then in descending order for the second column:

A = ordinal([6 2 5; 2 4 1; 3 2 4],...
{'lo','med','hi'},[],[0 2 4 6])

A =
hi med hi
med hi lo
med med hi

B = sortrows(A,[1 -2])
B =

med hi lo
med med hi
hi med hi

See Also sort, sortrows
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Purpose Format distance matrix

Syntax Z = squareform(y)
y = squareform(Z)
Z = squareform(y,'tovector')
Y = squareform(Z,'tomatrix')

Description Z = squareform(y), where y is a vector as created by the pdist
function, converts y into a square, symmetric format Z, in which Z(i,j)
denotes the distance between the ith and jth objects in the original
data.

y = squareform(Z), where Z is a square, symmetric matrix with zeros
along the diagonal, creates a vector y containing the Z elements below
the diagonal. y has the same format as the output from the pdist
function.

Z = squareform(y,'tovector') forces squareform to treat y as a
vector.

Y = squareform(Z,'tomatrix') forces squareform to treat Z as a
matrix.

The last two formats are useful if the input has a single element, so that
it is ambiguous whether the input is a vector or square matrix.

Examples y = 1:6
y =

1 2 3 4 5 6

X = [0 1 2 3; 1 0 4 5; 2 4 0 6; 3 5 6 0]
X =

0 1 2 3
1 0 4 5
2 4 0 6
3 5 6 0

Then squareform(y) = X and squareform(X) = y.
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See Also pdist
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Purpose Squeeze singleton dimensions from categorical array

Syntax B = squeeze(A)

Description B = squeeze(A) returns an array B with the same elements as the
categorical array A but with all the singleton dimensions removed. A
singleton is a dimension such that size(A,dim)==1. 2-D arrays are
unaffected by squeeze so that row vectors remain rows.

See Also shiftdim
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Purpose Stack data from multiple variables into single variable

Syntax tall = stack(wide,datavar)
[tall,iwide] = stack(wide,datavar)
tall = stack(wide,datavar,Parameter,value)

Description tall = stack(wide,datavar) converts a wide-format dataset array
into a tall-format array, by stacking multiple variables in wide into a
single variable in tall. In general, tall contains fewer variables but
more observations than wide.

datavar specifies a group of m data variables in wide. stack creates a
single data variable in tall by interleaving their values, and if wide
has n observations, then tall has m-by-n observations. In other words,
stack takes the m data values from each observation in wide and stacks
them up to create m observations in tall. datavar is a positive integer,
a vector of positive integers, a variable name, a cell array containing
one or more variable names, or a logical vector. stack also creates a
grouping variable in tall to indicate which of the m data variables in
wide each observation in tall corresponds to.

stack copies the remaining variables from wide to tall without
stacking, by replicating each of their values m times. These variables are
typically grouping variables. Because their values are constant across
each group of m observations in tall, they identify which observation in
wide an observation in tall came from.

[tall,iwide] = stack(wide,datavar) returns an index vector iwide
indicating the correspondence between observations in tall and those
in wide. stack creates tall(j,:) using wide(iwide(j),datavars).

For more information on grouping variables, see “Grouping Variables”
on page 2-33.

Inputs tall = stack(wide,datavar,Parameter,value) uses the following
parameter name/value pairs to control how stack converts variables in
wide to variables in tall:
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'ConstVars' Variables in wide to copy to tall
without stacking. ConstVars
is a positive integer, a vector
of positive integers, a variable
name, a cell array containing
one or more variable names, or a
logical vector. The default is all
variables in wide not specified in
datavar.

'NewDataVarName' A name for the data variable to be
created in tall. The default is a
concatenation of the names of the
m variables that are stacked up.

'DataIndVarName' A name for the grouping variable
to create in tall to indicate the
source of each value in the new
data variable. The default is
based on the 'NewDataVarNames'
parameter.

You can also specify multiple groups of data variables in wide, each of
which becomes a variable in tall. All groups must contain the same
number of variables. Use a cell array to contain multiple parameter
values for datavar, and a cell array of strings to contain multiple
'NewDataVarNames'.

Examples Convert a wide format data set to tall format, and then back to a
different wide format:

load flu
flu2 = stack(flu, 2:11, 'NewDataVarName','FluRate',...
'IndVarName','Region')
dateNames = cellstr(datestr(flu.Date,'mmm_DD_YYYY'));
flu3 = unstack(flu2, 'FluRate', 'Date',...
'NewDataVarNames',dateNames)
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See Also dataset.unstack | dataset.join | dataset.grpstats

How To • “Grouping Variables” on page 2-33
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Purpose Current state of the stream

Description The State property of a quasi-random stream contains the index into
the associated point set of the next point to draw in the stream. Getting
and resetting the State property allows you to return a stream to a
previous state. The initial value of State is 1.

Examples Q = qrandstream('sobol', 5);
s = Q.State;
u1 = qrand(Q, 10)
Q.State = s;
u2 = qrand(Q, 10) % contains exactly the same values as u1

See Also qrand
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Purpose Access values in statistics options structure

Syntax val = statget(options,param)
val = statget(options,param,default)

Description val = statget(options,param) returns the value of the parameter
specified by the string param in the statistics options structure options.
If the parameter is undefined in options, statget returns []. You need
to type only enough leading characters to define the parameter name
uniquely. statget ignores case for parameter names. For available
options, see Inputs.

val = statget(options,param,default) returns default if the
specified parameter is undefined in the optimization options structure
options.

Inputs DerivStep

Relative difference used in finite difference derivative calculations.
A positive scalar, or a vector of positive scalars the same size
as the vector of parameters estimated by the Statistics Toolbox
function using the options structure.

Display

Amount of information displayed by the algorithm.

• 'off' — Displays no information.

• 'final' — Displays the final output.

• 'iter' — Displays iterative output to the command window
for some functions; otherwise displays the final output.

FunValCheck

Check for invalid values, such as NaN or Inf, from the objective
function.

• 'off'
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• 'on'

GradObj

Flags whether the objective function returns a gradient vector
as a second output.

• 'off'

• 'on'

Jacobian

Flags whether the objective function returns a Jacobian as a
second output.

• 'off'

• 'on'

MaxFunEvals

Maximum number of objective function evaluations allowed.
Positive integer.

MaxIter

Maximum number of iterations allowed. Positive integer.

OutputFcn

The solver calls all output functions after each iteration.

• Function handle specified using @

• a cell array with function handles

• an empty array (default)

Robust

Invoke robust fitting option.
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• 'off'

• 'on'

TolBnd

Parameter bound tolerance. Positive scalar.

TolFun

Termination tolerance for the objective function value. Positive
scalar.

TolTypeFun

Use TolFun for absolute or relative objective function tolerances.

• 'abs'

• 'rel'

TolTypeX

Use TolX for absolute or relative parameter tolerances.

• 'abs'

• 'rel'

TolX

Termination tolerance for the parameters. Positive scalar.

Tune

The tuning constant used in robust fitting to normalize the
residuals before applying the weight function. The default value
depends upon the weight function. This parameter is necessary
if you specify the weight function as a function handle. Positive
scalar.

WgtFun
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A weight function for robust fitting. Valid only when Robust is
'on'. Can also be a function handle that accepts a normalized
residual as input and returns the robust weights as output.

• 'bisquare'

• 'andrews'

• 'cauchy'

• 'fair'

• 'huber'

• 'logistic'

• 'talwar'

• 'welsch'

Examples This statement returns the value of the Display statistics options
parameter from the structure called my_options.

val = statget(my_options,'Display')

Return the value of the Display statistics options parameter from
the structure called my_options (as in the previous example). If the
Display parameter is undefined, statget returns the value 'final'.

optnew = statget(my_options,'Display','final');

See Also statset
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Purpose Create statistics options structure

Syntax statset
statset(statfun)
options = statset(...)
options = statset(fieldname1,val1,fieldname2,val2,...)
options = statset(oldopts,fieldname1,val1,fieldname2,val2,

...)
options = statset(oldopts,newopts)

Description statset with no input arguments and no output arguments displays all
fields of a statistics options structure and their possible values.

statset(statfun) displays fields and default values used by the
Statistics Toolbox function statfun. Specify statfun using a string
name or a function handle.

options = statset(...) creates a statistics options structure options.
With no input arguments, all fields of the options structure are an
empty array ([]). With a specified statfun, function-specific fields are
default values and the remaining fields are []. Function-specific fields
set to [] indicate that the function is to use its default value for that
parameter. For available options, see Inputs.

options = statset(fieldname1,val1,fieldname2,val2,...)
creates an options structure in which the named fields have the
specified values. Any unspecified values are []. Use strings for field
names. For fields that are string-valued, you must input the complete
string for the value. If you provide an invalid string for a value, statset
uses the default.

options =
statset(oldopts,fieldname1,val1,fieldname2,val2,...)
creates a copy of oldopts with the named parameters changed to
the specified values.

options = statset(oldopts,newopts) combines an existing options
structure, oldopts, with a new options structure, newopts. Any
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parameters in newopts with nonempty values overwrite corresponding
parameters in oldopts.

Inputs DerivStep

Relative difference used in finite difference derivative calculations.
A positive scalar, or a vector of positive scalars the same size
as the vector of parameters estimated by the Statistics Toolbox
function using the options structure.

Display

Amount of information displayed by the algorithm.

• 'off' — Displays no information.

• 'final' — Displays the final output.

• 'iter' — Displays iterative output to the command window
for some functions; otherwise displays the final output.

FunValCheck

Check for invalid values, such as NaN or Inf, from the objective
function.

• 'off'

• 'on'

GradObj

Flags whether the objective function returns a gradient vector
as a second output.

• 'off'

• 'on'

Jacobian

18-1246



statset

Flags whether the objective function returns a Jacobian as a
second output.

• 'off'

• 'on'

MaxFunEvals

Maximum number of objective function evaluations allowed.
Positive integer.

MaxIter

Maximum number of iterations allowed. Positive integer.

OutputFcn

The solver calls all output functions after each iteration.

• Function handle specified using @

• a cell array with function handles

• an empty array (default)

Robust

Invoke robust fitting option.

• 'off'

• 'on'

TolBnd

Parameter bound tolerance. Positive scalar.

TolFun

Termination tolerance for the objective function value. Positive
scalar.

TolTypeFun

18-1247



statset

Use TolFun for absolute or relative objective function tolerances.

• 'abs'

• 'rel'

TolTypeX

Use TolX for absolute or relative parameter tolerances.

• 'abs'

• 'rel'

TolX

Termination tolerance for the parameters. Positive scalar.

Tune

The tuning constant used in robust fitting to normalize the
residuals before applying the weight function. The default value
depends upon the weight function. This parameter is necessary
if you specify the weight function as a function handle. Positive
scalar.

WgtFun

A weight function for robust fitting. Valid only when Robust is
'on'. Can also be a function handle that accepts a normalized
residual as input and returns the robust weights as output.

• 'bisquare'

• 'andrews'

• 'cauchy'

• 'fair'

• 'huber'

• 'logistic'
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• 'talwar'

• 'welsch'

Examples Suppose you want to change the default parameter values for the
function evfit, which fits an extreme value distribution to data. The
defaults parameter values are:

statset('evfit')
ans =

Display: 'off'
MaxFunEvals: []

MaxIter: []
TolBnd: []
TolFun: []

TolX: 1.0000e-006
GradObj: []

DerivStep: []
FunValCheck: []

Robust: []
WgtFun: []

Tune: []

The only parameters that evfit uses are Display and TolX. To create
an options structure with the value of TolX set to 1e-8, enter:

options = statset('TolX',1e-8)
% Pass options to evfit:
mu = 1;
sigma = 1;
data = evrnd(mu,sigma,1,100);

paramhat = evfit(data,[],[],[],options)

See Also statget
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Purpose Return standard deviation of ProbDistUnivParam object

Syntax S = std(PD)

Description S = std(PD) returns S, the standard deviation of the
ProbDistUnivParam object PD.

Inputs PD An object of the class ProbDistUnivParam.

Outputs S The standard deviation of the
ProbDistUnivParam object PD.

See Also std
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Purpose Interactive stepwise regression

Syntax stepwise
stepwise(X,y)
stepwise(X,y,inmodel,penter,premove)

Description stepwise uses the sample data in hald.mat to display a graphical user
interface for performing stepwise regression of the response values in
heat on the predictive terms in ingredients.
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The upper left of the interface displays estimates of the coefficients for
all potential terms, with horizontal bars indicating 90% (colored) and
95% (grey) confidence intervals. The red color indicates that, initially,
the terms are not in the model. Values displayed in the table are those
that would result if the terms were added to the model.

The middle portion of the interface displays summary statistics for the
entire model. These statistics are updated with each step.
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The lower portion of the interface,Model History, displays the RMSE
for the model. The plot tracks the RMSE from step to step, so you can
compare the optimality of different models. Hover over the blue dots
in the history to see which terms were in the model at a particular
step. Click on a blue dot in the history to open a copy of the interface
initialized with the terms in the model at that step.

Initial models, as well as entrance/exit tolerances for the p-values
of F-statistics, are specified using additional input arguments to
stepwise. Defaults are an initial model with no terms, an entrance
tolerance of 0.05, and an exit tolerance of 0.10.

To center and scale the input data (compute z-scores) to improve
conditioning of the underlying least-squares problem, select Scale
Inputs from the Stepwise menu.

You proceed through a stepwise regression in one of two ways:

1 Click Next Step to select the recommended next step. The
recommended next step either adds the most significant term or
removes the least significant term. When the regression reaches a
local minimum of RMSE, the recommended next step is “Move no
terms.” You can perform all of the recommended steps at once by
clicking All Steps.

2 Click a line in the plot or in the table to toggle the state of the
corresponding term. Clicking a red line, corresponding to a term not
currently in the model, adds the term to the model and changes the
line to blue. Clicking a blue line, corresponding to a term currently
in the model, removes the term from the model and changes the line
to red.

To call addedvarplot and produce an added variable plot from the
stepwise interface, select Added Variable Plot from the Stepwise
menu. A list of terms is displayed. Select the term you want to add,
and then click OK.

Click Export to display a dialog box that allows you to select
information from the interface to save to the MATLAB workspace.
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Check the information you want to export and, optionally, change the
names of the workspace variables to be created. Click OK to export
the information.

stepwise(X,y) displays the interface using the p predictive terms in
the n-by-p matrix X and the response values in the n-by-1 vector y.
Distinct predictive terms should appear in different columns of X.

Note stepwise automatically includes a constant term in all models.
Do not enter a column of 1s directly into X.

stepwise treats NaN values in either X or y as missing values, and
ignores them.

stepwise(X,y,inmodel,penter,premove) additionally specifies the
initial model (inmodel) and the entrance (penter) and exit (premove)
tolerances for the p-values of F-statistics. inmodel is either a logical
vector with length equal to the number of columns of X, or a vector of
indices, with values ranging from 1 to the number of columns in X. The
value of penter must be less than or equal to the value of premove.

See Also stepwisefit, addedvarplot, regress
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Purpose Stepwise regression

Syntax b = stepwisefit(X,y)
[b,se,pval,inmodel,stats,nextstep,history] = stepwisefit(...)
[...] = stepwisefit(X,y,param1,val1,param2,val2,...)

Description b = stepwisefit(X,y) uses a stepwise method to perform a
multilinear regression of the response values in the n-by-1 vector y
on the p predictive terms in the n-by-p matrix X. Distinct predictive
terms should appear in different columns of X. b is a p-by-1 vector of
estimated coefficients for all of the terms in X. The value in b for a term
not included in the final model is the coefficient estimate that would
result from adding the term to the model.

Note stepwisefit automatically includes a constant term in all
models. Do not enter a column of 1s directly into X.

stepwisefit treats NaN values in either X or y as missing values, and
ignores them.

[b,se,pval,inmodel,stats,nextstep,history] =
stepwisefit(...) returns the following additional information:

• se — A vector of standard errors for b

• pval— A vector of p-values for testing whether elements of b are 0

• inmodel — A logical vector, with length equal to the number of
columns in X, specifying which terms are in the final model

• stats— A structure of additional statistics with the following fields.
All statistics pertain to the final model except where noted.

- source — The string 'stepwisefit'

- dfe — Degrees of freedom for error

- df0 — Degrees of freedom for the regression
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- SStotal— Total sum of squares of the response

- SSresid — Sum of squares of the residuals

- fstat— F-statistic for testing the final model vs. no model (mean
only)

- pval — p-value of the F-statistic

- rmse — Root mean square error

- xr — Residuals for predictors not in the final model, after
removing the part of them explained by predictors in the model

- yr— Residuals for the response using predictors in the final model

- B — Coefficients for terms in final model, with values for a term
not in the model set to the value that would be obtained by adding
that term to the model

- SE — Standard errors for coefficient estimates

- TSTAT — t statistics for coefficient estimates

- PVAL — p-values for coefficient estimates

- intercept — Estimated intercept

- wasnan— Indicates which rows in the data contained NaN values

• nextstep — The recommended next step—either the index of the
next term to move in or out of the model, or 0 if no further steps are
recommended

• history— A structure containing information on steps taken, with
the following fields:

- rmse— Root mean square errors for the model at each step

- df0— Degrees of freedom for the regression at each step

- in — Logical array indicating which predictors are in the model
at each step
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[...] = stepwisefit(X,y,param1,val1,param2,val2,...)
specifies one or more of the name/value pairs described in the following
table.

Parameter Value

'inmodel' A logical vector specifying terms to include in the
initial fit. The default is to specify no terms.

'penter' The maximum p-value for a term to be added. The
default is 0.05.

'premove' The minimum p-value for a term to be removed. The
default is the maximum of the value of 'penter' and
0.10.

'display' 'on' displays information about each step in the
command window. This is the default.

'off' omits the display.

'maxiter' The maximum number of steps in the regression. The
default is Inf.

'keep' A logical vector specifying terms to keep in their initial
state. The default is to specify no terms.

'scale' 'on' centers and scales each column of X (computes
z-scores) before fitting.

'off' does not scale the terms. This is the default.

Algorithm Stepwise regression is a systematic method for adding and removing
terms from a multilinear model based on their statistical significance
in a regression. The method begins with an initial model and then
compares the explanatory power of incrementally larger and smaller
models. At each step, the p-value of an F-statistic is computed to test
models with and without a potential term. If a term is not currently
in the model, the null hypothesis is that the term would have a zero
coefficient if added to the model. If there is sufficient evidence to reject
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the null hypothesis, the term is added to the model. Conversely, if a
term is currently in the model, the null hypothesis is that the term
has a zero coefficient. If there is insufficient evidence to reject the null
hypothesis, the term is removed from the model. The method proceeds
as follows:

1 Fit the initial model.

2 If any terms not in the model have p-values less than an entrance
tolerance (that is, if it is unlikely that they would have zero coefficient
if added to the model), add the one with the smallest p-value and
repeat this step; otherwise, go to step 3.

3 If any terms in the model have p-values greater than an exit tolerance
(that is, if it is unlikely that the hypothesis of a zero coefficient can
be rejected), remove the one with the largest p-value and go to step
2; otherwise, end.

Depending on the terms included in the initial model and the order in
which terms are moved in and out, the method may build different
models from the same set of potential terms. The method terminates
when no single step improves the model. There is no guarantee,
however, that a different initial model or a different sequence of steps
will not lead to a better fit. In this sense, stepwise models are locally
optimal, but may not be globally optimal.

Examples Load the data in hald.mat, which contains observations of the heat of
reaction of various cement mixtures:

load hald
whos

Name Size Bytes Class Attributes

Description 22x58 2552 char
hald 13x5 520 double
heat 13x1 104 double
ingredients 13x4 416 double
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The response (heat) depends on the quantities of the four predictors
(the columns of ingredients).

Use stepwisefit to carry out the stepwise regression algorithm,
beginning with no terms in the model and using entrance/exit tolerances
of 0.05/0.10 on the p-values:

stepwisefit(ingredients,heat,...
'penter',0.05,'premove',0.10);

Initial columns included: none
Step 1, added column 4, p=0.000576232
Step 2, added column 1, p=1.10528e-006
Final columns included: 1 4

'Coeff' 'Std.Err.' 'Status' 'P'
[ 1.4400] [ 0.1384] 'In' [1.1053e-006]
[ 0.4161] [ 0.1856] 'Out' [ 0.0517]
[-0.4100] [ 0.1992] 'Out' [ 0.0697]
[-0.6140] [ 0.0486] 'In' [1.8149e-007]

stepwisefit automatically includes an intercept term in the model, so
you do not add it explicitly to ingredients as you would for regress.
For terms not in the model, coefficient estimates and their standard
errors are those that result if the term is added.

The inmodel parameter is used to specify terms in an initial model:

initialModel = ...
[false true false false]; % Force in 2nd term

stepwisefit(ingredients,heat,...
'inmodel',initialModel,...
'penter',.05,'premove',0.10);

Initial columns included: 2
Step 1, added column 1, p=2.69221e-007
Final columns included: 1 2

'Coeff' 'Std.Err.' 'Status' 'P'
[ 1.4683] [ 0.1213] 'In' [2.6922e-007]
[ 0.6623] [ 0.0459] 'In' [5.0290e-008]
[ 0.2500] [ 0.1847] 'Out' [ 0.2089]
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[-0.2365] [ 0.1733] 'Out' [ 0.2054]

The preceding two models, built from different initial models, use
different subsets of the predictive terms. Terms 2 and 4, swapped in the
two models, are highly correlated:

term2 = ingredients(:,2);
term4 = ingredients(:,4);
R = corrcoef(term2,term4)
R =

1.0000 -0.9730
-0.9730 1.0000

To compare the models, use the stats output of stepwisefit:

[betahat1,se1,pval1,inmodel1,stats1] = ...
stepwisefit(ingredients,heat,...
'penter',.05,'premove',0.10,...
'display','off');

[betahat2,se2,pval2,inmodel2,stats2] = ...
stepwisefit(ingredients,heat,...

'inmodel',initialModel,...
'penter',.05,'premove',0.10,...
'display','off');

RMSE1 = stats1.rmse
RMSE1 =

2.7343
RMSE2 = stats2.rmse
RMSE2 =

2.4063

The second model has a lower Root Mean Square Error (RMSE).

References [1] Draper, N. R., and H. Smith. Applied Regression Analysis. Hoboken,
NJ: Wiley-Interscience, 1998. pp. 307–312.

See Also stepwise, addedvarplot, regress
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Purpose Subscripted assignment for categorical array

Syntax A = subsasgn(A,S,B)

Description A = subsasgn(A,S,B) is called for the syntax A(i)=B. S is a structure
array with the fields:

type String containing '()' specifying
the subscript type. Only
parenthesis subscripting is
allowed.

subs Cell array or string containing
the actual subscripts.

See Also categorical, subsref
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Purpose Subscripted reference for classregtree object

Syntax

Description Subscript assignment is not allowed for a classregtree object.

See Also classregtree
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Purpose Subscripted assignment to dataset array

Description A = subsasgn(A,S,B) is called for the syntax A(i,j)=B, A{i,j}=B, or
A. var=B when A is a dataset array. S is a structure array with the fields:

type String containing '()', '{}', or
'.' specifying the subscript type.

subs Cell array or string containing
the actual subscripts.

A(i,j) = B assigns the contents of the dataset array B to a subset of
the observations and variables in the dataset array A. i and j are one of
the following types:

• positive integers

• vectors of positive integers

• observation/variable names

• cell arrays containing one or more observation/variable names

• logical vectors

The assignment does not use observation names, variable names, or any
other properties of B to modify properties of A; however properties of A
are extended with default values if the assignment expands the number
of observations or variables in A. Elements of B are assigned into A by
position, not by matching names.

A{i,j} = B assigns the value B into an element of the dataset array A.
i and J are positive integers, or logical vectors. Cell indexing cannot
assign into multiple dataset elements, that is, the subscripts i and
j must each refer to only a single observation or variable. B is cast
to the type of the target variable if necessary. If the dataset element
already exists, A{i,j} may also be followed by further subscripting as
supported by the variable.
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For dataset variables that are cell arrays, assignments such as
A{1,'CellVar'} = B assign into the contents of the target dataset
element in the same way that {}-indexing of an ordinary cell array does.

For dataset variables that are n-D arrays, i.e., each observation is a
matrix or array, an assignment such as A{1,'ArrayVar'} = B assigns
into the second and following dimensions of the target dataset element,
i.e., the assignment adds a leading singleton dimension to B to account
for the observation dimension of the dataset variable.

A.var = B or A.(varname) = B assigns B to a dataset variable. var is
a variable name literal, or varname is a character variable containing a
variable name. If the dataset variable already exists, the assignment
completely replaces that variable. To assign into an element of the
variable, A.var or A.(varname) may be followed by further subscripting
as supported by the variable. In particular, A.var(obsnames,...) =
B and A.var{obsnames,...} = B (when supported by var) provide
assignment into a dataset variable using observation names.

A.properties.propertyname = P assigns to a dataset property.
propertyname is one of the following:

• 'ObsNames'

• 'VarNames'

• 'Description'

• 'Units'

• 'DimNames'

• 'UserData'

• 'VarDescription'

To assign into an element of the property, A.properties.propertyname
may also be followed by further subscripting as supported by the
property.

You cannot assign multiple values into dataset variables or
properties using assignments such as [A.CellVar{1:2}] = B,
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[A.StructVar(1:2).field] = B, or [A.Properties.ObsNames{1:2}]
= B. Use multiple assignments of the form A.CellVar{1} = B instead.

Similarly, if a dataset variable is a cell array with multiple columns
or is an n-D cell array, then the contents of that variable for a single
observation consists of multiple cells, and you cannot assign to all of
them using the syntax A{1,'CellVar'} = B. Use multiple assignments
of the form [A.CellVar{1,1}] = B instead.

See Also dataset, set, subsref

18-1265



gmdistribution.subsasgn

Purpose Subscripted reference for Gaussian mixture distribution object

Description Subscript assignment is not allowed for gmdistribution objects.

See Also gmdistribution
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Purpose Subscripted reference for NaiveBayes object

Description Subscript assignment is not allowed for a NaiveBayes object.
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Purpose Subscript index for categorical array

Syntax I = subsindex(A)

Description I = subsindex(A) is called for the syntax 'X(A)' when A is a
categorical array and X is one of the built-in types (most commonly
'double'). subsindex returns the internal categorical level codes
of A converted to zero-based integer indices. subsindex is invoked
separately on all the subscripts in an expression such as X(A,B).

Examples load fisheriris
a = ordinal(species,[],unique(species));
colmeans = grpstats(meas,a,@mean);
residuals = meas - colmeans(a,:);

See Also categorical, double
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Purpose Subscripted reference for classregtree object

Syntax B = subsref(T,S)

Description B = subsref(T,S) is called for the syntax T(X) when T is a
classregtree object. S is a structure array with the fields:

type String containing '()', '{}', or '.' specifying
the subscript type.

subs Cell array or string containing the actual
subscripts.

[...]=T(...) invokes the eval method for the tree T.

See Also classregtree, eval
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Purpose Subscripted reference for categorical array

Syntax A = subsref(A,S,B)

Description A = subsref(A,S,B) is called for the syntax A(I)=B. S is a structure
array with the fields:

type String containing '()' specifying
the subscript type. Only
parenthesis subscripting is
allowed.

subs Cell array or string containing
the actual subscripts.

See Also categorical, subsasgn
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Purpose Subscripted reference for dataset array

Syntax B = subsref(A,S)

Description B = subsref(A,S) is called for the syntax A(i,j), A{i,j}, or A.var
when A is a dataset array. S is a structure array with the fields:

type String containing '()', '{}', or '.' specifying the
subscript type.

subs Cell array or string containing the actual
subscripts.

B = A(i,j) returns a dataset array that contains a subset of the
observations and variables in the dataset array A. i and j are one of
the following types:

• positive integers

• vectors of positive integers

• observation/variable names

• cell arrays containing one or more observation/variable names

• logical vectors

B contains the same property values as A, subsetted for observations
or variables where appropriate.

B = A{i,j} returns an element of a dataset variable. i and j are
positive integers, or logical vectors. Cell indexing cannot return
multiple dataset elements, that is, the subscripts i and j must each
refer to only a single observation or variable. A{i,j} may also be
followed by further subscripting as supported by the variable.

For dataset variables that are cell arrays, expressions such as
A{1,'CellVar'} return the contents of the referenced dataset element
in the same way that {}-indexing on an ordinary cell array does. If the
dataset variable is a single column of cells, the contents of a single cell
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is returned. If the dataset variable has multiple columns or is n-D,
multiple outputs containing the contents of multiple cells are returned.

For dataset variables that are n-D arrays, i.e., each observation is
a matrix or an array, expressions such as A{1,'ArrayVar'} return
A.ArrayVar(1,:,...) with the leading singleton dimension squeezed
out.

B = A.var or A.(varname) returns a dataset variable. var is a
variable name literal, or varname is a character variable containing
a variable name. A.var or A.(varname) may also be followed by
further subscripting as supported by the variable. In particular,
A.var(obsnames,...) and A.var{obsnames,...} (when supported by
var) provide subscripting into a dataset variable using observation
names.

P = A.Properties.propertyname returns a dataset property.
propertyname is one of the following:

• 'ObsNames'

• 'VarNames'

• 'Description'

• 'Units'

• 'DimNames'

• 'UserData'

• 'VarDescription'

A.properties.propertyname may also be followed by further
subscripting as supported by the property.

Limitations

Subscripting expressions such as A.CellVar{1:2},
A.StructVar(1:2).field, or A.Properties.ObsNames{1:2}
are valid, but result in subsref returning multiple outputs in the
form of a comma-separated list. If you explicitly assign to output
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arguments on the left-hand side of an assignment, for example,
[cellval1,cellval2] = A.CellVar{1:2}, those variables will receive
the corresponding values. However, if there are no output arguments,
only the first output in the comma-separated list is returned.

Similarly, if a dataset variable is a cell array with multiple columns
or is an n-D cell array, then subscripting expressions such as
A{1,'CellVar'} result in subsref returning the contents of multiple
cells. You should explicitly assign to output arguments on the
left-hand side of an assignment, for example, [cellval1,cellval2]
= A{1,'CellVar'}.

See Also dataset, set, subsasgn
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Purpose Subscripted reference for Gaussian mixture distribution object

Syntax B = subsref(T,S)

Description B = subsref(T,S) is called for the syntax T(X) when T is a
gmdistribution object. S is a structure array with the following fields:

type String containing '()', '{}', or '.' specifying the
subscript type.

subs Cell array or string containing the actual subscripts.

See Also gmdistribution
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Purpose Subscripted reference for NaiveBayes object

Syntax b = subsref(nb,s)

Description b = subsref(nb,s) is called for the syntax nb(s) when nb is a
NaiveBayes object. S is a structure array with the fields:

type string containing ’()’, ’{}’, or ’.’
specifying the subscript type.

subs Cell array or string containing
the actual subscripts.
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Purpose Subscripted reference for qrandset

Syntax x = p(i,j)
x = subsref(p,s)

Description x = p(i,j) returns a matrix that contains a subset of the points from
the point set p. The indices in i select points from the set and the
indices in j select columns from those points. i and j are vector of
positive integers or logical vectors. A colon used as a subscript, as in
p(i,:), indicates the entire row (or column).

x = subsref(p,s) is called for the syntax p(i), p{i}, or p.i. s is a
structure array with the fields:

type string containing ’()’, ’{}’, or ’.’ specifying the subscript
type.

subs Cell array or string containing the actual subscripts.

Examples Command Returns

p = sobolset(5); The fifth point

x = p(1:10,:) All columns of the first 10 points

x = p(end,1) The first column of the last point

x = p([1,4,5], :) Points 1, 4, and 5

See Also qrandset
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Purpose Summary statistics for categorical array

Syntax summary(A)
C = summary(A)
[C,labels] = summary(A)

Description summary(A) displays the number of elements in the categorical array
A equal to each of the possible levels in A. If A contains any undefined
elements, the output also includes the number of undefined elements.

C = summary(A) returns counts of the number of elements in the
categorical array A equal to each of the possible levels in A. If A is
a matrix or N-dimensional array, C is a matrix or array with rows
corresponding to the levels of A. If A contains any undefined elements, C
contains one more row than the number of levels of A, with the number
of undefined elements in c(end) or c(end,:).

[C,labels] = summary(A) also returns the list of categorical level
labels corresponding to the counts in C.

Examples Count the number of patients in each age group in the data in
hospital.mat:

load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
AgeGroup = ordinal(hospital.Age,labels,[],edges);
[c,labels] = summary(AgeGroup);

Table = dataset({labels,'AgeGroup'},{c,'Count'});
Table(3:6,:)
ans =

AgeGroup Count
'20s' 15
'30s' 41
'40s' 42
'50s' 2
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See Also islevel, ismember, levelcounts
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Purpose Print summary of dataset array

Syntax summary(A)
s = summary(A)

Description summary(A) prints a summary of a dataset array and the variables
that it contains.

s = summary(A) returns a scalar structure s that contains a summary
of the dataset A and the variables that A contains. For more information
on the fields in s, see Outputs.

Summary information depends on the type of the variables in the data
set:

• For numerical variables, summary computes a five-number summary
of the data, giving the minimum, the first quartile, the median, the
third quartile, and the maximum.

• For logical variables, summary counts the number of trues and
falses in the data.

• For categorical variables, summary counts the number of data at
each level.

Outputs The following list describes the fields in the structure s:

• Description— A character array containing the dataset description.

• Variables — A structure array with one element for each dataset
variable in A. Each element has the following fields:

- Name— A character string containing the name of the variable.

- Description — A character string containing the variable’s
description.

- Units— A character string containing the variable’s units.

- Size— A numeric vector containing the size of the variable.
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- Class— A character string containing the class of the variable.

- Data— A scalar structure containing the following fields.

For numeric variables:

• Probabilities— A numeric vector containing the probabilities
[0.0 .25 .50 .75 1.0] and NaN (if any are present in the
corresponding dataset variable).

• Quantiles — A numeric vector containing the values that
correspond to ’Probabilities’ for the corresponding dataset
variable, and a count of NaNs (if any are present).

For logical variables:

• Values — The logical vector [true false].

• Counts— A numeric vector of counts for each logical value.
For categorical variables:

• Levels— A cell array containing the labels for each level of the
corresponding dataset variable.

• Counts— A numeric vector of counts for each level.

'Data' is empty if variable is not numeric, categorical, or
logical. If a dataset variable has more than one column, then the
corresponding 'Quantiles' or 'Counts' field is a matrix or an
array.

Examples Summarize Fisher’s iris data:

load fisheriris
species = nominal(species);
data = dataset(species,meas);
summary(data)
species: [150x1 nominal]

setosa versicolor virginica
50 50 50
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meas: [150x4 double]
min 4.3000 2 1 0.1000
1st Q 5.1000 2.8000 1.6000 0.3000
median 5.8000 3 4.3500 1.3000
3rd Q 6.4000 3.3000 5.1000 1.8000
max 7.9000 4.4000 6.9000 2.5000

Summarize the data in hospital.mat:

load hospital
summary(hospital)

Dataset array created from the data file hospital.dat.

The first column of the file ("id") is used for observation
names. Other columns ("sex" and "smoke") have been
converted from their original coded values into categorical
and logical variables. Two sets of columns ("sys" and
"dia", "trial1" through "trial4") have been combined into
single variables with multivariate observations. Column
headers have been replaced with more descriptive variable
names. Units have been added where appropriate.

LastName: [100x1 cell string]
Sex: [100x1 nominal]

Female Male
53 47

Age: [100x1 double, Units = Yrs]
min 1st Q median 3rd Q max
25 32 39 44 50

Weight: [100x1 double, Units = Lbs]
min 1st Q median 3rd Q max
111 130.5000 142.5000 180.5000 202
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Smoker: [100x1 logical]
true false

34 66

BloodPressure: [100x2 double, Units = mm Hg]
Systolic/Diastolic

min 109 68
1st Q 117.5000 77.5000
median 122 81.5000
3rd Q 127.5000 89
max 138 99

Trials: [100x1 cell, Units = Counts]
From zero to four measurement trials performed

See Also get, set, grpstats
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ProbDist.Support property

Purpose Read-only structure containing information about support of ProbDist
object

Description Support is a read-only property of the ProbDist class. Support is a
structure containing information about the support of a ProbDist object.
It includes the following fields:

• range

• closedbound

• iscontinuous

Values The values for the three fields in the structure are:

• range— A two-element vector [L, U], such that all of the probability
is contained from L to U.

• closedbound— A two-element logical vector indicating whether the
corresponding range endpoint is included. Possible values for each
endpoint are 1 (true) or 0 (false).

• iscontinuous — A logical value indicates if the distribution takes
values on the entire interval from L to U (true), or if it takes only
integer values within this range (false). Possible values are 1 (true)
or 0 (false).

Use this information to view and compare information about the
support of distributions.
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Purpose Interactive contour plot

Syntax surfht(Z)
surfht(x,y,Z)

Description surfht(Z) is an interactive contour plot of the matrix Z treating the
values in Z as height above the plane. The x-values are the column
indices of Z while the y-values are the row indices of Z.

surfht(x,y,Z) where x and y are vectors specify the x and y-axes on
the contour plot. The length of x must match the number of columns in
Z, and the length of y must match the number of rows in Z.

There are vertical and horizontal reference lines on the plot whose
intersection defines the current x-value and y-value. You can drag
these dotted white reference lines and watch the interpolated z-value
(at the top of the plot) update simultaneously. Alternatively, you can
get a specific interpolated z-value by typing the x-value and y-value into
editable text fields on the x-axis and y-axis respectively.

18-1284



tabulate

Purpose Frequency table

Syntax TABLE = tabulate(x)
tabulate(x)

Description TABLE = tabulate(x) creates a frequency table of data in vector x.
Information in TABLE is arranged as follows:

• 1st column — The unique values of x

• 2nd column — The number of instances of each value

• 3rd column — The percentage of each value

If x is a numeric array, TABLE is a numeric matrix. If the elements of x
are nonnegative integers, TABLE includes 0 counts for integers between
1 and max(x) that do not appear in x.

If x is a categorical variable, character array, or cell array of strings,
TABLE is a cell array.

tabulate(x) with no output arguments displays the table in the
command window.

Examples tabulate([1 2 4 4 3 4])
Value Count Percent
1 1 16.67%
2 1 16.67%
3 1 16.67%
4 3 50.00%

See Also “Grouped Data” on page 2-33

pareto
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Purpose Read tabular data from file

Syntax [data,varnames,casenames] = tblread
[data,varnames,casenames] = tblread(filename)
[data,varnames,casenames] = tblread(filename,delimiter)

Description [data,varnames,casenames] = tblread displays the File Open dialog
box for interactive selection of a tabular data file. The file format has
variable names in the first row, case names in the first column and data
starting in the (2, 2) position. Outputs are:

• data— Numeric matrix with a value for each variable-case pair

• varnames— String matrix containing the variable names in the first
row of the file

• casenames — String matrix containing the names of each case in
the first column of the file

[data,varnames,casenames] = tblread(filename) allows command
line specification of the name of a file in the current folder, or the
complete path name of any file, using the string filename.

[data,varnames,casenames] = tblread(filename,delimiter)
reads from the file using delimiter as the delimiting character.
Accepted values for delimiter are:

• ' ' or 'space'

• '\t' or 'tab'

• ',' or 'comma'

• ';' or 'semi'

• '|' or 'bar'

The default value of delimiter is 'space'.
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Examples [data,varnames,casenames] = tblread('sat.dat')
data =

470 530
520 480

varnames =
Male
Female

casenames =
Verbal
Quantitative

See Also tblwrite, tdfread, caseread
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Purpose Write tabular data to file

Syntax tblwrite(data,varnames,casenames)
tblwrite(data,varnames,casenames,filename)
tblwrite(data,varnames,casenames,filename,delimiter)

Description tblwrite(data,varnames,casenames) displays the File Open dialog
box for interactive specification of the tabular data output file. The
file format has variable names in the first row, case names in the first
column and data starting in the (2,2) position.

varnames is a string matrix containing the variable names. casenames
is a string matrix containing the names of each case in the first column.
data is a numeric matrix with a value for each variable-case pair.

tblwrite(data,varnames,casenames,filename) specifies a file in
the current folder, or the complete path name of any file in the string
filename.

tblwrite(data,varnames,casenames,filename,delimiter) writes
to the file using delimiter as the delimiting character. The following
table lists the accepted character values for delimiter and their
equivalent string values.

Character String

' ' 'space'

'\t' 'tab'

',' 'comma'

';' 'semi'

'|' 'bar'

The default value of delimiter is 'space'.

Examples Continuing the example from tblread:

tblwrite(data,varnames,casenames,'sattest.dat')
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type sattest.dat
Male Female

Verbal 470 530
Quantitative 520 480

See Also casewrite, tblread
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Purpose Student’s t cumulative distribution function

Syntax P = tcdf(X,V)

Description P = tcdf(X,V) computes Student’s t cdf at each of the values in X
using the corresponding degrees of freedom in V. X and V can be vectors,
matrices, or multidimensional arrays that all have the same size. A
scalar input is expanded to a constant array with the same dimensions
as the other inputs.

The t cdf is

The result, p, is the probability that a single observation from the
t distribution with ν degrees of freedom will fall in the interval [–∞, x).

Examples mu = 1; % Population mean
sigma = 2; % Population standard deviation
n = 100; % Sample size
x = normrnd(mu,sigma,n,1); % Random sample from population
xbar = mean(x); % Sample mean
s = std(x); % Sample standard deviation
t = (xbar-mu)/(s/sqrt(n)) % t-statistic
t =

0.2489
p = 1-tcdf(t,n-1) % Probability of larger t-statistic
p =

0.4020

This probability is the same as the p-value returned by a t-test of the
null hypothesis that the sample comes from a normal population with
mean μ:
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[h,ptest] = ttest(x,mu,0.05,'right')
h =

0
ptest =

0.4020

See Also cdf, tpdf, tinv, tstat, trnd

“Student’s t Distribution” on page B-94
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Purpose Read tab-delimited file

Syntax tdfread
tdfread(filename)
tdfread(filename,delimiter)
s = tdfread(filename,...)

Description tdfread displays the File Open dialog box for interactive selection
of a data file, then reads data from the file. The file should have
variable names separated by tabs in the first row, and data values
separated by tabs in the remaining rows. tdfread creates variables in
the workspace, one for each column of the file. The variable names
are taken from the first row of the file. If a column of the file contains
only numeric data in the second and following rows, tdfread creates a
double variable. Otherwise, tdfread creates a char variable. After all
values are imported, tdfread displays information about the imported
values using the format of the tdfread command.

tdfread(filename) allows command line specification of the name of a
file in the current folder, or the complete path name of any file, using
the string filename.

tdfread(filename,delimiter) indicates that the character specified
by delimiter separates columns in the file. Accepted values for
delimiter are:

• ' ' or 'space'

• '\t' or 'tab'

• ',' or 'comma'

• ';' or 'semi'

• '|' or 'bar'

The default delimiter is 'tab'.

s = tdfread(filename,...) returns a scalar structure s whose fields
each contain a variable.
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Examples The following displays the contents of the file sat2.dat:

type sat2.dat

Test,Gender,Score
Verbal,Male,470
Verbal,Female,530
Quantitative,Male,520
Quantitative,Female,480

The following creates the variables Gender, Score, and Test from the
file sat2.dat and displays the contents of the MATLAB workspace:

tdfread('sat2.dat',',')

Name Size Bytes Class Attributes

Gender 4x6 48 char
Score 4x1 32 double
Test 4x12 96 char

See Also tblread, caseread
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Purpose Error rate

Syntax cost = test(t,'resubstitution')
cost = test(t,'test',X,y)
cost = test(t,'crossvalidate',X,y)
[cost,secost,ntnodes,bestlevel] = test(...)
[...] = test(...,param1,val1,param2,val2,...)

Description cost = test(t,'resubstitution') computes the cost of the tree
t using a resubstitution method. t is a decision tree as created by
classregtree. The cost of the tree is the sum over all terminal nodes
of the estimated probability of a node times the cost of a node. If t is a
classification tree, the cost of a node is the sum of the misclassification
costs of the observations in that node. If t is a regression tree, the cost
of a node is the average squared error over the observations in that
node. cost is a vector of cost values for each subtree in the optimal
pruning sequence for t. The resubstitution cost is based on the same
sample that was used to create the original tree, so it under estimates
the likely cost of applying the tree to new data.

cost = test(t,'test',X,y) uses the matrix of predictors X and the
response vector y as a test sample, applies the decision tree t to that
sample, and returns a vector cost of cost values computed for the test
sample. X and y should not be the same as the learning sample, that
is, the sample that was used to fit the tree t.

cost = test(t,'crossvalidate',X,y) uses 10-fold cross-validation
to compute the cost vector. X and y should be the learning sample, that
is, the sample that was used to fit the tree t. The function partitions the
sample into 10 subsamples, chosen randomly but with roughly equal
size. For classification trees, the subsamples also have roughly the same
class proportions. For each subsample, test fits a tree to the remaining
data and uses it to predict the subsample. It pools the information from
all subsamples to compute the cost for the whole sample.

[cost,secost,ntnodes,bestlevel] = test(...) also returns the
vector secost containing the standard error of each cost value, the
vector ntnodes containing the number of terminal nodes for each
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subtree, and the scalar bestlevel containing the estimated best level
of pruning. A bestlevel of 0 means no pruning. The best level is the
one that produces the smallest tree that is within one standard error of
the minimum-cost subtree.

[...] = test(...,param1,val1,param2,val2,...) specifies
optional parameter name/value pairs for methods other than
'resubstitution', chosen from the following:

• 'weights' — Observation weights.

• 'nsamples' — The number of cross-validation samples (default is
10).

• 'treesize' — Either 'se' (default) to choose the smallest tree
whose cost is within one standard error of the minimum cost, or
'min' to choose the minimal cost tree.

Examples Find the best tree for Fisher’s iris data using cross-validation. Start
with a large tree:

load fisheriris;

t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'},...
'splitmin',5)

t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 if PW<1.55 then node 10 else node 11
8 class = versicolor
9 class = virginica

10 class = virginica
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11 class = versicolor

view(t)

Find the minimum-cost tree:

[c,s,n,best] = test(t,'cross',meas,species);
tmin = prune(t,'level',best)
tmin =
Decision tree for classification
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1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 class = versicolor
5 class = virginica

view(tmin)
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Plot the smallest tree within one standard error of the minimum cost
tree:

[mincost,minloc] = min(c);
plot(n,c,'b-o',...

n(best+1),c(best+1),'bs',...
n,(mincost+s(minloc))*ones(size(n)),'k--')

xlabel('Tree size (number of terminal nodes)')
ylabel('Cost')

The solid line shows the estimated cost for each tree size, the dashed
line marks one standard error above the minimum, and the square
marks the smallest tree under the dashed line.

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.
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See Also classregtree, eval, view, prune
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Purpose Test indices for cross-validation

Syntax idx = test(c)
idx = test(c,i)

Description idx = test(c) returns the logical vector idx of test indices for an object
c of the cvpartition class of type 'holdout' or 'resubstitution'.

If c.Type is 'holdout', idx specifies the observations in the test set.

If c.Type is 'resubstitution', idx specifies all observations.

idx = test(c,i) returns the logical vector idx of test indices for
repetition i of an object c of the cvpartition class of type 'kfold'
or 'leaveout'.

If c.Type is 'kfold', idx specifies the observations in the test set in
fold i.

If c.Type is 'leaveout', idx specifies the observation left out at
repetition i.

Examples Identify the test indices in the first fold of a partition of 10 observations
for 3-fold cross-validation:

c = cvpartition(10,'kfold',3)
c =
K-fold cross validation partition

N: 10
NumTestSets: 3

TrainSize: 7 6 7
TestSize: 3 4 3

test(c,1)
ans =

1
1
0
0
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0
0
0
0
1
0

See Also cvpartition, training
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cvpartition.TestSize property

Purpose Size of each test set

Description Value is a vector in partitions of type 'kfold' and 'leaveout'.
Value is a scalar in partitions of type 'holdout' and
'resubstitution'.
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Purpose Rank adjusted for ties

Syntax [R,TIEADJ] = tiedrank(X)
[R,TIEADJ] = tiedrank(X,1)
[R,TIEADJ] = tiedrank(X,0,1)

Description [R,TIEADJ] = tiedrank(X) computes the ranks of the values in the
vector X. If any X values are tied, tiedrank computes their average
rank. The return value TIEADJ is an adjustment for ties required by the
nonparametric tests signrank and ranksum, and for the computation
of Spearman’s rank correlation.

[R,TIEADJ] = tiedrank(X,1) computes the ranks of the values in
the vector X. TIEADJ is a vector of three adjustments for ties required
in the computation of Kendall’s tau. tiedrank(X,0) is the same as
tiedrank(X).

[R,TIEADJ] = tiedrank(X,0,1) computes the ranks from each end, so
that the smallest and largest values get rank 1, the next smallest and
largest get rank 2, etc. These ranks are used in the Ansari-Bradley test.

Examples Counting from smallest to largest, the two 20 values are 2nd and 3rd,
so they both get rank 2.5 (average of 2 and 3):

tiedrank([10 20 30 40 20])
ans =

1.0000 2.5000 4.0000 5.0000 2.5000

See Also ansaribradley, corr, partialcorr, ranksum, signrank
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Purpose Product of categorical arrays

Syntax C = times(A,B)

Description C = times(A,B) returns a categorical array each of whose elements
has the level formed from the concatenation of the levels of the
corresponding elements of A and B. The set of levels of C is the cartesian
product of the sets of levels of A and of B. The syntax A .* B calls C
= times(A,B).

See Also categorical
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Purpose Student’s t inverse cumulative distribution function

Syntax X = tinv(P,V)

Description X = tinv(P,V) computes the inverse of Student’s t cdf using the degrees
of freedom in V for the corresponding probabilities in P. P and V can be
vectors, matrices, or multidimensional arrays that are the same size. A
scalar input is expanded to a constant array with the same dimensions
as the other inputs. The values in P must lie on the interval [0 1].

The t inverse function in terms of the t cdf is

where

The result, x, is the solution of the cdf integral with parameter ν, where
you supply the desired probability p.

Examples What is the 99th percentile of the t distribution for one to six degrees
of freedom?

percentile = tinv(0.99,1:6)
percentile =

31.8205 6.9646 4.5407 3.7469 3.3649 3.1427

See Also icdf, tcdf, tpdf, trnd, tstat

“Student’s t Distribution” on page B-94
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Purpose Student’s t probability density function

Syntax Y = tpdf(X,V)

Description Y = tpdf(X,V) computes Student’s t pdf at each of the values in X
using the corresponding degrees of freedom in V. X and V can be vectors,
matrices, or multidimensional arrays that have the same size. A scalar
input is expanded to a constant array with the same dimensions as
the other inputs.

Student’s t pdf is

Examples The mode of the t distribution is at x = 0. This example shows that
the value of the function at the mode is an increasing function of the
degrees of freedom.

tpdf(0,1:6)
ans =

0.3183 0.3536 0.3676 0.3750 0.3796 0.3827

The t distribution converges to the standard normal distribution as the
degrees of freedom approaches infinity. How good is the approximation
for v = 30?

difference = tpdf(-2.5:2.5,30)-normpdf(-2.5:2.5)
difference =

0.0035 -0.0006 -0.0042 -0.0042 -0.0006 0.0035

See Also pdf, tcdf, tinv, tstat, trnd

“Student’s t Distribution” on page B-94
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Purpose Training indices for cross-validation

Syntax idx = training(c)
idx = training(c,i)

Description idx = training(c) returns the logical vector idx of training indices
for an object c of the cvpartition class of type 'holdout' or
'resubstitution'.

If c.Type is 'holdout', idx specifies the observations in the training
set.

If c.Type is 'resubstitution', idx specifies all observations.

idx = training(c,i) returns the logical vector idx of training indices
for repetition i of an object c of the cvpartition class of type 'kfold'
or 'leaveout'.

If c.Type is 'kfold', idx specifies the observations in the training
set in fold i.

If c.Type is 'leaveout', idx specifies the observations left in at
repetition i.

Examples Identify the training indices in the first fold of a partition of 10
observations for 3-fold cross-validation:

c = cvpartition(10,'kfold',3)
c =
K-fold cross validation partition

N: 10
NumTestSets: 3

TrainSize: 7 6 7
TestSize: 3 4 3

training(c,1)
ans =

0
0
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1
1
1
1
1
1
0
1

See Also cvpartition, test

18-1308



cvpartition.TrainSize property

Purpose Size of each training set

Description Value is a vector in partitions of type 'kfold' and 'leaveout'.
Value is a scalar in partitions of type 'holdout' and
'resubstitution'.

See Also type
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Purpose Transpose categorical matrix

Syntax B = transpose(A)

Description B = transpose(A) returns the transpose of the 2-D categorical matrix
A. ctranspose is identical to transpose for categorical arrays. The
syntax A.' calls transpose.

See Also ctranspose, permute
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TreeBagger.TreeArgs property

Purpose Cell array of arguments for classregtree

Description The TreeArgs property is a cell array of arguments for the
classregtree constructor. TreeBagger uses these arguments in
growing new trees for the ensemble.
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Purpose Bootstrap aggregation for ensemble of decision trees

Description TreeBagger bags an ensemble of decision trees for either classification
or regression. Bagging stands for bootstrap aggregation. Every tree in
the ensemble is grown on an independently drawn bootstrap replica of
input data. Observations not included in this replica are "out of bag"
for this tree. To compute prediction of an ensemble of trees for unseen
data, TreeBagger takes an average of predictions from individual
trees. To estimate the prediction error of the bagged ensemble, you
can compute predictions for each tree on its out-of-bag observations,
average these predictions over the entire ensemble for each observation
and then compare the predicted out-of-bag response with the true value
at this observation.

TreeBagger relies on the classregtree functionality for growing
individual trees. In particular, classregtree accepts the number of
features selected at random for each decision split as an optional input
argument.

The Compact property contains another class, CompactTreeBagger,
with sufficient information to make predictions using new data. This
information includes the tree ensemble, variable names, and class
names (for classification). CompactTreeBagger requires less memory
than TreeBagger, but only TreeBagger has methods for growing more
trees for the ensemble. Once you grow an ensemble of trees using
TreeBagger and no longer need access to the training data, you can opt
to work with the compact version of the trained ensemble from then on.

Construction TreeBagger Create ensemble of bagged
decision trees

Methods append Append new trees to ensemble

compact Compact ensemble of decision
trees
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error Error (misclassification
probability or MSE)

fillProximities Proximity matrix for training
data

growTrees Train additional trees and add to
ensemble

margin Classification margin

mdsProx Multidimensional scaling of
proximity matrix

meanMargin Mean classification margin

oobError Out-of-bag error

oobMargin Out-of-bag margins

oobMeanMargin Out-of-bag mean margins

oobPredict Ensemble predictions for
out-of-bag observations

predict Predict response

Properties ClassNames Names of classes

ComputeOOBPrediction Flag to compute out-of-bag
predictions

ComputeOOBVarImp Flag to compute out-of-bag
variable importance

Cost Misclassification costs

DefaultYfit Default value returned by
predict and oobPredict

DeltaCritDecisionSplit Split criterion contributions for
each predictor
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FBoot Fraction of in-bag observations

MergeLeaves Flag to merge leaves that do not
improve risk

Method Method used by trees
(classification or regression)

MinLeaf Minimum number of observations
per tree leaf

NTrees Number of decision trees in
ensemble

NVarToSample Number of variables for random
feature selection

OOBIndices Indicator matrix for out-of-bag
observations

OOBInstanceWeight Count of out-of-bag trees for each
observation

OOBPermutedVarCountRaiseMarginVariable importance for raising
margin

OOBPermutedVarDeltaError Variable importance for
classification error

OOBPermutedVarDeltaMeanMarginVariable importance for
classification margin

OutlierMeasure Measure for determining outliers

Prior Prior class probabilities

Proximity Proximity matrix for observations

Prune Flag to prune trees

SampleWithReplacement Flag to sample with replacement

TreeArgs Cell array of arguments for
classregtree

Trees Decision trees in ensemble
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VarNames Variable names

X X data used to create ensemble

Y Y data used to create ensemble

Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.

See Also “Regression and Classification by Bagging Decision Trees” on page 12-14

Classification Trees

Regression Tress

Grouped Data

18-1315



TreeBagger

Purpose Create ensemble of bagged decision trees

Syntax B = TreeBagger(ntrees,X,Y)
B = TreeBagger(ntrees,X,Y,’param1’,val1,'param2',val2,...)

Description B = TreeBagger(ntrees,X,Y) creates an ensemble B of ntrees
decision trees for predicting response Y as a function of predictors
X. By default TreeBagger builds an ensemble of classification trees.
The function can build an ensemble of regression trees by setting the
optional input argument 'method' to 'regression'.

X is a numeric matrix of training data. Each row represents an
observation and each column represents a predictor or feature. Y is an
array of true class labels for classification or numeric function values for
regression. True class labels can be a numeric vector, character matrix,
vector cell array of strings or categorical vector. TreeBagger converts
labels to a cell array of strings for classification.

B = TreeBagger(ntrees,X,Y,’param1’,val1,'param2',val2,...)
specifies optional parameter name/value pairs:

'FBoot' Fraction of input data to sample with replacement
from the input data for growing each new tree.

'oobpred' 'on' to store info on what observations are
out of bag for each tree. This info can be used
by oobPredict to compute the predicted class
probabilities for each tree in the ensemble. Default
is 'off'.

'OOBVarImp' 'on' to store out-of-bag estimates of feature
importance in the ensemble. Default is 'off'.
Specifying 'on' also sets the 'ooberr' value to
'on'.

'Method' Either 'classification' or 'regression'.
Regression requires a numeric Y.
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'NVarToSample' Number of variables to select at random for each
decision split. Default is the square root of the
number of variables for classification and one third
of the number of variables for regression. Valid
values are 'all' or a positive integer.

'NPrint' Number of training cycles (grown trees) after
which TreeBagger displays a diagnostic message
showing training progress. Default is no diagnostic
messages.

'MinLeaf' Minimum number of observations per tree leaf.
Default is 1 for classification and 5 for regression.

'Options' A struct that specifies options that govern the
computation when growing the ensemble of
decision trees. One option requests that the
computation of decision trees on multiple bootstrap
replicates uses multiple processors, if the Parallel
Computing Toolbox is available. Two options
specify the random number streams to use in
selecting bootstrap replicates. You can create
this argument with a call to statset. You can
retrieve values of the individual fields with a call
to statget. Applicable statset parameters are:

• 'UseParallel' — If 'always' and if a
matlabpool of the Parallel Computing Toolbox
is open, compute decision trees drawn on
separate boostrap replicates in parallel. If the
Parallel Computing Toolbox is not installed, or
a matlabpool is not open, computation occurs
in serial mode. Default is 'never', or serial
computation.

• 'UseSubstreams' — If 'always' select each
bootstrap replicate using a separate Substream
of the random number generator (aka Stream).
This option is available only with RandStream
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types that support Substreams. Default is
'never', do not use a different Substream to
compute each bootstrap replicate.

• 'Streams'— An object of the RandStream class,
or a cell array of RandStream objects. Default is
an empty cell array. If you do not supply a value
for this parameter, TreeBagger uses the default
RandStream on each MATLAB executable
in selecting bootstrap replicates. Otherwise,
TreeBagger selects bootstrap replicates using
the supplied RandStream object(s). If you select
'UseSubstreams', the Streams parameter, if
present, must be a scalar RandStream object. If
you do not select 'UseSubstreams', then the
Streams parameter, if present, must match the
number of processors used for the computation.
For serial computation, the Streams parameter
must be a scalar. If computation is distributed
('UseParallel' is 'always' and a matlabpool
is open), then the Streams parameter must be a
cell array of the same length as the matlabpool
size. In this case, each element of the cell
array supplies the random number generator
for bootstrap sampling on one of the parallel
workers.

In addition to the optional arguments above, this method accepts all
optional classregtree arguments with the exception of 'minparent'.
Refer to the documentation for classregtree for more detail.

Examples load fisheriris
b = TreeBagger(50,meas,species,'oobpred','on')
plot(oobError(b))
xlabel('number of grown trees')
ylabel('out-of-bag classification error')

returns
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b =

Ensemble with 50 bagged decision trees:
Training X: [150x4]
Training Y: [150x1]

Method: classification
Nvars: 4

NVarToSample: 2
MinLeaf: 1

FBoot: 1
SampleWithReplacement: 1
ComputeOOBPrediction: 1

ComputeOOBVarImp: 0
Proximity: []

Prune: 0
MergeLeaves: 0

TreeArgs:
ClassNames:'setosa' 'versicolor' 'virginica'

See Also “Regression and Classification by Bagging Decision Trees” on page
12-14, “Grouped Data” on page 2-33
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classregtree, CompactTreeBagger
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Purpose Plot tree

Note treedisp will be removed in a future release. Use
classregtree.view instead.

Syntax treedisp(t)
treedisp(t,param1,val1,param2,val2,...)

Description
Note This function is superseded by the view method of the
classregtree class and is maintained only for backwards compatibility.
It accepts objects t created with the classregtree constructor.

treedisp(t) takes as input a decision tree t as computed by the
treefit function, and displays it in a figure window. Each branch in
the tree is labeled with its decision rule, and each terminal node is
labeled with the predicted value for that node.

For each branch node, the left child node corresponds to the points that
satisfy the condition, and the right child node corresponds to the points
that do not satisfy the condition.

The Click to display pop-up menu at the top of the figure enables
you to display more information about each node, as described in the
following table.

Menu Choice Displays

Identity The node number, whether the node is a branch
or a leaf, and the rule that governs the node

Variable ranges The range of each of the predictor variables for
that node

Node statistics Descriptive statistics for the observations falling
into this node
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After you select the type of information you want, click any node to
display the information for that node.

The Pruning level button displays the number of levels that have
been cut from the tree and the number of levels in the unpruned tree.
For example, 1 of 6 indicates that the unpruned tree has six levels,
and that one level has been cut from the tree. Use the spin button to
change the pruning level.

treedisp(t,param1,val1,param2,val2,...) specifies optional
parameter name-value pairs, listed in the following table.

Parameter Value

'names' A cell array of names for the predictor variables,
in the order in which they appear in the X matrix
from which the tree was created (see treefit)

'prunelevel' Initial pruning level to display

Examples Create and graph classification tree for Fisher’s iris data. The names in
this example are abbreviations for the column contents (sepal length,
sepal width, petal length, and petal width).

load fisheriris;
t = treefit(meas,species);
treedisp(t,'names',{'SL' 'SW' 'PL' 'PW'});

18-1322



treedisp

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also treefit, treeprune, treetest
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Purpose Fit tree

Note treefit will be removed in a future release. Use classregtree
instead.

Syntax t = treefit(X,y)
t = treefit(X,y,param1,val1,param2,val2,...)

Description
Note This function is superseded by the classregtree constructor
of the classregtree class and is maintained only for backwards
compatibility. It returns objects t in the classregtree class.

t = treefit(X,y) creates a decision tree t for predicting response y as
a function of predictors X. X is an n-by-m matrix of predictor values. y is
either a vector of n response values (for regression), or a character array
or cell array of strings containing n class names (for classification).
Either way, t is a binary tree where each non-terminal node is split
based on the values of a column of X.

t = treefit(X,y,param1,val1,param2,val2,...) specifies optional
parameter name-value pairs. Valid parameter strings are:

The following table lists parameters available for all trees.

Parameter Value

'catidx' Vector of indices of the columns of X. treefit
treats these columns as unordered categorical
values.

'method' Either 'classification' (default if y is text) or
'regression' (default if y is numeric).
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Parameter Value

'splitmin' A number n such that impure nodes must have n
or more observations to be split (default 10).

'prune' 'on' (default) to compute the full tree and a
sequence of pruned subtrees, or 'off' for the full
tree without pruning.

The following table lists parameters available for classification trees
only.

Parameter Value

'cost' p-by-p matrix C, where p is the number of distinct
response values or class names in the input y.
C(i,j) is the cost of classifying a point into class
j if its true class is i. (The default has C(i,j)=1
if i~=j, and C(i,j)=0 if i=j.) C can also be a
structure S with two fields: S.group containing
the group names (see “Grouped Data” on page
2-33), and S.cost containing a matrix of cost
values.

'splitcriterion' Criterion for choosing a split: either 'gdi'
(default) for Gini’s diversity index, 'twoing' for
the twoing rule, or 'deviance' for maximum
deviance reduction.

'priorprob' Prior probabilities for each class, specified as a
vector (one value for each distinct group name)
or as a structure S with two fields: S.group
containing the group names, and S.prob
containing a vector of corresponding probabilities.

Examples Create a classification tree for Fisher’s iris data:

load fisheriris;
t = treefit(meas,species);
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treedisp(t,'names',{'SL' 'SW' 'PL' 'PW'});

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also “Grouped Data” on page 2-33

treedisp, treetest

18-1326



treeprune

Purpose Prune tree

Note treeprune will be removed in a future release. Use
classregtree.prune instead.

Syntax t2 = treeprune(t1,'level',level)
t2 = treeprune(t1,'nodes',nodes)
t2 = treeprune(t1)

Description
Note This function is superseded by the prune method of the
classregtree class and is maintained only for backwards compatibility.
It accepts objects t1 created with the classregtree constructor and
returns objects t2 in the classregtree class.

t2 = treeprune(t1,'level',level) takes a decision tree t1 as
created by the treefit function, and a pruning level, and returns the
decision tree t2 pruned to that level. Setting level to 0 means no
pruning. Trees are pruned based on an optimal pruning scheme that
first prunes branches giving less improvement in error cost.

t2 = treeprune(t1,'nodes',nodes) prunes the nodes listed in the
nodes vector from the tree. Any t1 branch nodes listed in nodes
become leaf nodes in t2, unless their parent nodes are also pruned. The
treedisp function can display the node numbers for any node you select.

t2 = treeprune(t1) returns the decision tree t2 that is the same as
t1, but with the optimal pruning information added. This is useful
only if you created t1 by pruning another tree, or by using the treefit
function with pruning set 'off'. If you plan to prune a tree multiple
times, it is more efficient to create the optimal pruning sequence first.

Pruning is the process of reducing a tree by turning some branch nodes
into leaf nodes, and removing the leaf nodes under the original branch.
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Examples Display the full tree for Fisher’s iris data, as well as the next largest
tree from the optimal pruning sequence:

load fisheriris;
t1 = treefit(meas,species,'splitmin',5);
treedisp(t1,'names',{'SL' 'SW' 'PL' 'PW'});

t2 = treeprune(t1,'level',1);
treedisp(t2,'names',{'SL' 'SW' 'PL' 'PW'});
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References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also treefit, treetest, treedisp
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CompactTreeBagger.Trees property

Purpose Decision trees in ensemble

Description The Trees property is a cell array of size NTrees-by-1 containing the
trees in the ensemble.

See Also NTrees
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Purpose Decision trees in ensemble

Description The Trees property is a cell array of size NTrees-by-1 containing the
trees in the ensemble.

See Also NTrees
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Purpose Error rate

Syntax cost = treetest(t,'resubstitution')
cost = treetest(t,'test',X,y)
cost = treetest(t,'crossvalidate',X,y)
[cost,secost,ntnodes,bestlevel] = treetest(...)
[...] = treetest(...,param1,val1,param2,val2,...)

Note treetest will be removed in a future release. Use
classregtree.test instead.

Description
Note This function is superseded by the test method of the
classregtree class class and is maintained only for backwards
compatibility. It accepts objects t created with the classregtree
constructor.

cost = treetest(t,'resubstitution') computes the cost of the tree
t using a resubstitution method. t is a decision tree as created by the
treefit function. The cost of the tree is the sum over all terminal nodes
of the estimated probability of that node times the node’s cost. If t is a
classification tree, the cost of a node is the sum of the misclassification
costs of the observations in that node. If t is a regression tree, the cost
of a node is the average squared error over the observations in that
node. cost is a vector of cost values for each subtree in the optimal
pruning sequence for t. The resubstitution cost is based on the same
sample that was used to create the original tree, so it underestimates
the likely cost of applying the tree to new data.

cost = treetest(t,'test',X,y) uses the predictor matrix X and
response y as a test sample, applies the decision tree t to that sample,
and returns a vector cost of cost values computed for the test sample.
X and y should not be the same as the learning sample, which is the
sample that was used to fit the tree t.
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cost = treetest(t,'crossvalidate',X,y) uses 10-fold
cross-validation to compute the cost vector. X and y should be the
learning sample, which is the sample that was used to fit the tree t. The
function partitions the sample into 10 subsamples, chosen randomly
but with roughly equal size. For classification trees, the subsamples
also have roughly the same class proportions. For each subsample,
treetest fits a tree to the remaining data and uses it to predict the
subsample. It pools the information from all subsamples to compute the
cost for the whole sample.

[cost,secost,ntnodes,bestlevel] = treetest(...) also returns
the vector secost containing the standard error of each cost value,
the vector ntnodes containing number of terminal nodes for each
subtree, and the scalar bestlevel containing the estimated best level
of pruning. bestlevel = 0 means no pruning, i.e., the full unpruned
tree. The best level is the one that produces the smallest tree that is
within one standard error of the minimum-cost subtree.

[...] = treetest(...,param1,val1,param2,val2,...) specifies
optional parameter name-value pairs chosen from the following table.

Parameter Value

'nsamples' The number of cross-validations samples (default
is 10).

'treesize' Either 'se' (default) to choose the smallest tree
whose cost is within one standard error of the
minimum cost, or 'min' to choose the minimal cost
tree.

Examples Find the best tree for Fisher’s iris data using cross-validation. The
solid line shows the estimated cost for each tree size, the dashed line
marks one standard error above the minimum, and the square marks
the smallest tree under the dashed line.

% Start with a large tree.
load fisheriris;
t = treefit(meas,species','splitmin',5);
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% Find the minimum-cost tree.
[c,s,n,best] = treetest(t,'cross',meas,species);
tmin = treeprune(t,'level',best);

% Plot smallest tree within 1 std of minimum cost tree.
[mincost,minloc] = min(c);
plot(n,c,'b-o',...

n(best+1),c(best+1),'bs',...
n,(mincost+s(minloc))*ones(size(n)),'k--');

xlabel('Tree size (number of terminal nodes)')
ylabel('Cost')

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.
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See Also treefit, treedisp
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Purpose Predicted responses

Note treeval will be removed in a future release. Use
classregtree.eval instead.

Syntax yfit = treeval(t,X)
yfit = treeval(t,X,subtrees)
[yfit,node] = treeval(...)
[yfit,node,cname] = treeval(...)

Description
Note This function is superseded by the eval method of the
classregtree class and is maintained only for backwards compatibility.
It accepts objects t created with the classregtree constructor.

yfit = treeval(t,X) takes a classification or regression tree t as
produced by the treefit function and a matrix X of predictor values,
and produces a vector yfit of predicted response values. For a
regression tree, yfit(i) is the fitted response value for a point having
the predictor values X(i,:). For a classification tree, yfit(i) is the
class number into which the tree would assign the point with data
X(i,:). To convert the number into a class name, use the third output
argument, cname (described below).

yfit = treeval(t,X,subtrees) takes an additional vector subtrees
of pruning levels, with 0 representing the full, unpruned tree. T must
include a pruning sequence as created by the treefit or prunetree
function. If subtree has k elements and X has n rows, the output yfit
is an n-by-k matrix, with the jth column containing the fitted values
produced by the subtrees(j) subtree. subtrees must be sorted in
ascending order.

[yfit,node] = treeval(...) also returns an array node of the same
size as yfit containing the node number assigned to each row of X. The
treedisp function can display the node numbers for any node you select.
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[yfit,node,cname] = treeval(...) is valid only for classification
trees. It returns a cell array cname containing the predicted class names.

Examples Find the predicted classifications for Fisher’s iris data:

load fisheriris;
t = treefit(meas,species); % Create decision tree
sfit = treeval(t,meas); % Find assigned class numbers
sfit = t.classname(sfit); % Get class names
mean(strcmp(sfit,species)) % Proportion in correct class
ans =

0.9800

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also treefit, treeprune, treetest
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Purpose Mean excluding outliers

Syntax m = trimmean(X,percent)
trimmean(X,percent,dim)
m = trimmean(X,percent,flag)
m = trimmean(x,percent,flag,dim)

Description m = trimmean(X,percent) calculates the trimmed mean of the values
in X. For a vector input, m is the mean of X, excluding the highest and
lowest k data values, where k=n*(percent/100)/2 and where n is the
number of values in X. For a matrix input, m is a row vector containing
the trimmed mean of each column of X. For n-D arrays, trimmean
operates along the first non-singleton dimension. percent is a scalar
between 0 and 100.

trimmean(X,percent,dim) takes the trimmed mean along dimension
dim of X.

m = trimmean(X,percent,flag) controls how to trim when k is not an
integer. flag can be chosen from the following:

'round' Round k to the nearest integer (round to a smaller
integer if k is a half integer). This is the default.

'floor' Round k down to the next smaller integer.

'weight' If k=i+f where i is the integer part and f is the
fraction, compute a weighted mean with weight
(1-f) for the (i+1)th and (n-i)th values, and
full weight for the values between them.

m = trimmean(x,percent,flag,dim) takes the trimmed mean along
dimension dim of x.

Remarks The trimmed mean is a robust estimate of the location of a sample.
If there are outliers in the data, the trimmed mean is a more
representative estimate of the center of the body of the data than the
mean. However, if the data is all from the same probability distribution,
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then the trimmed mean is less efficient than the sample mean as an
estimator of the location of the data.

Examples Example 1

This example shows a Monte Carlo simulation of the efficiency of the
10% trimmed mean relative to the sample mean for normal data.

x = normrnd(0,1,100,100);
m = mean(x);
trim = trimmean(x,10);
sm = std(m);
strim = std(trim);
efficiency = (sm/strim).^2
efficiency =

0.9702

Example 2

Generate random data from the t distribution, which tends to have
outliers:

reset(RandStream.getDefaultStream)
x = trnd(1,40,1);
probplot(x)
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Though the distribution is symmetric around zero, there are several
outliers which will affect the mean. The trimmed mean is much closer
to zero, which is much more representative of the data:

mean(x)

ans =
2.7991

trimmean(x,25)

ans =
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0.8797

See Also mean, median, geomean, harmmean
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Purpose Student’s t random numbers

Syntax R = trnd(V)
R = trnd(v,m)
R = trnd(V,m,n)

Description R = trnd(V) generates random numbers from Student’s t distribution
with V degrees of freedom. V can be a vector, a matrix, or a
multidimensional array. The size of R is the size of V.

R = trnd(v,m) generates random numbers from Student’s t
distribution with v degrees of freedom, where v is a row vector. If v is a
1-by-2 vector, R is a matrix with v(1) rows and v(2) columns. If v is
1-by-n, R is an n-dimensional array.

R = trnd(V,m,n) generates random numbers from Student’s t
distribution with V degrees of freedom, where scalars m and n are the
row and column dimensions of R.

Examples noisy = trnd(ones(1,6))
noisy =

19.7250 0.3488 0.2843 0.4034 0.4816 -2.4190

numbers = trnd(1:6,[1 6])
numbers =

-1.9500 -0.9611 -0.9038 0.0754 0.9820 1.0115

numbers = trnd(3,2,6)
numbers =
-0.3177 -0.0812 -0.6627 0.1905 -1.5585 -0.0433
0.2536 0.5502 0.8646 0.8060 -0.5216 0.0891

See Also random, tpdf, tcdf, tinv, tstat

“Student’s t Distribution” on page B-94

18-1342



tstat

Purpose Student’s t mean and variance

Syntax [M,V] = tstat(NU)

Description [M,V] = tstat(NU) returns the mean of and variance for Student’s t
distribution using the degrees of freedom in NU. M and V are the same
size as NU.

The mean of the Student’s t distribution with parameter ν is zero for
values of ν greater than 1. If ν is one, the mean does not exist. The
variance for values of ν greater than 2 is .

Examples Find the mean of and variance for 1 to 30 degrees of freedom.

[m,v] = tstat(reshape(1:30,6,5))
m =

NaN 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

v =
NaN 1.4000 1.1818 1.1176 1.0870
NaN 1.3333 1.1667 1.1111 1.0833

3.0000 1.2857 1.1538 1.1053 1.0800
2.0000 1.2500 1.1429 1.1000 1.0769
1.6667 1.2222 1.1333 1.0952 1.0741
1.5000 1.2000 1.1250 1.0909 1.0714

Note that the variance does not exist for one and two degrees of freedom.

See Also tpdf, tcdf, tinv, trnd
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Purpose One-sample and paired-sample t-test

Syntax h = ttest(x)
h = ttest(x,m)
h = ttest(x,y)
h = ttest(...,alpha)
h = ttest(...,alpha,tail)
h = ttest(...,alpha,tail,dim)
[h,p] = ttest(...)
[h,p,ci] = ttest(...)
[h,p,ci,stats] = ttest(...)

Description h = ttest(x) performs a t-test of the null hypothesis that data in the
vector x are a random sample from a normal distribution with mean 0
and unknown variance, against the alternative that the mean is not 0.
The result of the test is returned in h. h = 1 indicates a rejection of the
null hypothesis at the 5% significance level. h = 0 indicates a failure to
reject the null hypothesis at the 5% significance level.

x can also be a matrix or an N-dimensional array. For matrices, ttest
performs separate t-tests along each column of x and returns a vector
of results. For N-dimensional arrays, ttest works along the first
non-singleton dimension of x.

The test treats NaN values as missing data, and ignores them.

h = ttest(x,m) performs a t-test of the null hypothesis that data in
the vector x are a random sample from a normal distribution with mean
m and unknown variance, against the alternative that the mean is not m.

h = ttest(x,y) performs a paired t-test of the null hypothesis
that data in the difference x-y are a random sample from a normal
distribution with mean 0 and unknown variance, against the alternative
that the mean is not 0. x and y must be vectors of the same length,
or arrays of the same size.

h = ttest(...,alpha) performs the test at the (100*alpha)%
significance level. The default, when unspecified, is alpha = 0.05.
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h = ttest(...,alpha,tail) performs the test against the alternative
specified by the string tail. There are three options for tail:

• 'both'— Mean is not 0 (or m) (two-tailed test). This is the default,
when tail is unspecified.

• 'right'— Mean is greater than 0 (or m) (right-tail test)

• 'left'— Mean is less than 0 (or m) (left-tail test)

tail must be a single string, even when x is a matrix or an
N-dimensional array.

h = ttest(...,alpha,tail,dim) works along dimension dim of x, or
of x-y for a paired test. Use [] to pass in default values for m, alpha,
or tail.

[h,p] = ttest(...) returns the p-value of the test. The p-value is the
probability, under the null hypothesis, of observing a value as extreme
or more extreme of the test statistic

t
x
s n

= − 
/

where is the sample mean, μ = 0 (or m) is the hypothesized population
mean, s is the sample standard deviation, and n is the sample size.
Under the null hypothesis, the test statistic will have Student’s t
distribution with n – 1 degrees of freedom.

[h,p,ci] = ttest(...) returns a 100*(1 – alpha)% confidence
interval on the population mean, or on the difference of population
means for a paired test.

[h,p,ci,stats] = ttest(...) returns the structure stats with the
following fields:

• tstat — Value of the test statistic

• df — Degrees of freedom of the test

• sd — Sample standard deviation
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Examples Simulate a random sample of size 100 from a normal distribution with
mean 0.1:

x = normrnd(0.1,1,1,100);

Test the null hypothesis that the sample comes from a normal
distribution with mean 0:

[h,p,ci] = ttest(x,0)
h =

0
p =

0.8323
ci =

-0.1650 0.2045

The test fails to reject the null hypothesis at the default α = 0.05
significance level. Under the null hypothesis, the probability of
observing a value as extreme or more extreme of the test statistic, as
indicated by the p-value, is much greater than α. The 95% confidence
interval on the mean contains 0.

Simulate a larger random sample of size 1000 from the same
distribution:

y = normrnd(0.1,1,1,1000);

Test again if the sample comes from a normal distribution with mean 0:

[h,p,ci] = ttest(y,0)
h =

1
p =

0.0160
ci =

0.0142 0.1379
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This time the test rejects the null hypothesis at the default α = 0.05
significance level. The p-value has fallen below α = 0.05 and the 95%
confidence interval on the mean does not contain 0.

Because the p-value of the sample y is greater than 0.01, the test will
fail to reject the null hypothesis when the significance level is lowered
to α = 0.01:

[h,p,ci] = ttest(y,0,0.01)
h =

0
p =

0.0160
ci =

-0.0053 0.1574

Notice that at the lowered significance level the 99% confidence interval
on the mean widens to contain 0.

This example will produce slightly different results each time it is run,
because of the random sampling.

See Also ttest2, ztest
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Purpose Two-sample t-test

Syntax h = ttest2(x,y)
h = ttest2(x,y,alpha)
h = ttest2(x,y,alpha,tail)
h = ttest2(x,y,alpha,tail,vartype)
h = ttest(x,y,alpha,tail,vartype,dim)
[h,p] = ttest2(...)
[h,p,ci] = ttest2(...)
[h,p,ci,stats] = ttest2(...)

Description h = ttest2(x,y) performs a t-test of the null hypothesis that data
in the vectors x and y are independent random samples from normal
distributions with equal means and equal but unknown variances,
against the alternative that the means are not equal. The result of the
test is returned in h. h = 1 indicates a rejection of the null hypothesis
at the 5% significance level. h = 0 indicates a failure to reject the null
hypothesis at the 5% significance level. x and y need not be vectors
of the same length.

x and y can also be matrices or N-dimensional arrays. Matrices x and y
must have the same number of columns, in which case ttest2 performs
separate t-tests along each column and returns a vector of results.
N-dimensional arrays x and y must have the same size along all but
the first non-singleton dimension, in which case ttest2 works along
the first non-singleton dimension.

The test treats NaN values as missing data, and ignores them.

h = ttest2(x,y,alpha) performs the test at the (100*alpha)%
significance level. The default, when unspecified, is alpha = 0.05.

h = ttest2(x,y,alpha,tail) performs the test against the alternative
specified by the string tail. There are three options for tail:

• 'both'— Means are not equal (two-tailed test). This is the default,
when tail is unspecified.

• 'right'—Mean of x is greater than mean of y (right-tail test)
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• 'left'— Mean of x is less than mean of y (left-tail test)

tail must be a single string, even when x is a matrix or an
N-dimensional array.

h = ttest2(x,y,alpha,tail,vartype) performs the test under the
assumption of equal or unequal population variances, as specified by
the string vartype. There are two options for vartype:

• 'equal' — Assumes equal variances. This is the default, when
vartype is unspecified.

• 'unequal' — Does not assume equal variances. This is the
Behrens-Fisher problem.

vartype must be a single string, even when x is a matrix or an
N-dimensional array.

If vartype is 'equal', the test computes a pooled sample standard
deviation using

s
n s m s

n m
x y=

− + −
+ −

( ) ( )1 1

2

2 2

where sx and sy are the sample standard deviations of x and y,
respectively, and n and m are the sample sizes of x and y, respectively.

h = ttest(x,y,alpha,tail,vartype,dim) works along dimension dim
of x and y. Use [] to pass in default values for alpha, tail, or vartype.

[h,p] = ttest2(...) returns the p-value of the test. The p-value
is the probability, under the null hypothesis, of observing a value as
extreme or more extreme of the test statistic

t
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where and are the sample means, sx and sy are the sample standard
deviations (replaced by the pooled standard deviation s in the default
case where vartype is 'equal'), and n and m are the sample sizes.

In the default case where vartype is 'equal', the test statistic, under
the null hypothesis, has Student’s t distribution with n + m – 2 degrees
of freedom.

In the case where vartype is 'unequal', the test statistic, under the
null hypothesis, has an approximate Student’s t distribution with a
number of degrees of freedom given by Satterthwaite’s approximation.

[h,p,ci] = ttest2(...) returns a 100*(1 – alpha)% confidence
interval on the difference of population means.

[h,p,ci,stats] = ttest2(...) returns structure stats with the
following fields:

• tstat — Value of the test statistic

• df — Degrees of freedom of the test

• sd — Pooled sample standard deviation (in the default case where
vartype is 'equal') or a vector with the sample standard deviations
(in the case where vartype is 'unequal').

Examples Simulate random samples of size 1000 from normal distributions
with means 0 and 0.1, respectively, and standard deviations 1 and 2,
respectively:

x = normrnd(0,1,1,1000);
y = normrnd(0.1,2,1,1000);

Test the null hypothesis that the samples come from populations with
equal means, against the alternative that the means are unequal.
Perform the test assuming unequal variances:

[h,p,ci] = ttest2(x,y,[],[],'unequal')
h =

1
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p =
0.0102

ci =
-0.3227 -0.0435

The test rejects the null hypothesis at the default α = 0.05 significance
level. Under the null hypothesis, the probability of observing a value
as extreme or more extreme of the test statistic, as indicated by the
p-value, is less than α. The 95% confidence interval on the mean of
the difference does not contain 0.

This example will produce slightly different results each time it is run,
because of the random sampling.

See Also ttest, ztest
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Purpose Tree type

Syntax ttype = type(t)

Description ttype = type(t) returns the type of the tree t. ttype is 'regression'
for regression trees and 'classification' for classification trees.

Examples Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})

t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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ttype = type(t)
ttype =
classification

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also classregtree

18-1353



cvpartition.Type property

Purpose Type of partition

Description The type of validation partition. It is 'kfold', 'holdout', 'leaveout',
or 'resubstitution'.

See Also trainsize
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qrandset.Type property

Purpose Name of sequence on which point set Pis based

Description P.Type returns a string that contains the name of the sequence on
which the point set P is based, for example 'Sobol'. You cannot change
the Type property for a point set.
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Purpose Convert categorical array to unsigned 8-bit integers

Syntax B = uint8(A)

Description B = uint8(A) converts the categorical array A to unsigned 8-bit
integers. Each element of B contains the internal categorical level code
for the corresponding element of A. Undefined elements of A are assigned
the value 0 in B. If A contains more than intmax('uint8') levels, the
internal codes will saturate to intmax('uint8')when cast to int8.

See Also double, int8
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Purpose Convert categorical array to unsigned 16-bit integers

Syntax B = uint16(A)

Description B = uint16(A) converts the categorical array A to unsigned 16-bit
integers. Each element of B contains the internal categorical level code
for the corresponding element of A.

Undefined elements of A are assigned the value 0 in B.

See Also double, int16
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Purpose Convert categorical array to unsigned 32-bit integers

Syntax B = uint32(A)

Description B = uint32(A) converts the categorical array A to unsigned 32-bit
integers. Each element of B contains the internal categorical level code
for the corresponding element of A.

Undefined elements of A are assigned the value 0 in B.

See Also double, int32
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Purpose Convert categorical array to unsigned 64-bit integers

Syntax B = uint64(A)

Description B = uint64(A) converts the categorical array A to unsigned 64-bit
integers. Each element of B contains the internal categorical level code
for the corresponding element of A.

Undefined elements of A are assigned the value 0 in B.

See Also double, int64
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categorical.undeflabel property

Purpose Text label for undefined levels

Description Text label for undefined levels. Constant property with value
'<undefined>'.
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Purpose Unique observations in dataset array

Syntax B = unique(A)
B = unique(A,vars)
[B,i,j] = unique(A)
[...] = unique(A,vars,'first')

Description B = unique(A) returns a copy of the dataset A that contains only the
sorted unique observations. A must contain only variables whose class
has a unique method, including:

• numeric

• character

• logical

• categorical

• cell arrays of strings

For a variable with multiple columns, its class’s unique method must
support the 'rows' flag.

B = unique(A,vars) returns a dataset that contains only one
observation for each unique combination of values for the variables in A
specified in vars. vars is a positive integer, a vector of positive integers,
a variable name, a cell array containing one or more variable names,
or a logical vector. B includes all variables from A. The values in B for
the variables not specified in vars are taken from the last occurrence
among observations in A with each unique combination of values for the
variables specified in vars.

[B,i,j] = unique(A) also returns index vectors i and j such that B =
A(i,:) and A = B(j,:).

[...] = unique(A,vars,'first') returns the vector i to
index the first occurrence of each unique observation in A.
unique(A,vars,'last'), the default, returns the vector i to index
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the last occurrence. Specify vars as [] to use the default value of all
variables.

See Also dataset, set, subsasgn
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dataset.units property

Purpose Units of variables in data set

Description A cell array of strings giving the units of the variables in the data set.
The number of strings must equal the number of variables. Strings may
be empty. The default is an empty cell array.
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Purpose Discrete uniform cumulative distribution function

Syntax P = unidcdf(X,N)

Description P = unidcdf(X,N) computes the discrete uniform cdf at each of the
values in X using the corresponding maximum observable value in N. X
and N can be vectors, matrices, or multidimensional arrays that have
the same size. A scalar input is expanded to a constant array with the
same dimensions as the other inputs. The maximum observable values
in N must be positive integers.

The discrete uniform cdf is

The result, p, is the probability that a single observation from the
discrete uniform distribution with maximum N will be a positive integer
less than or equal to x. The values x do not need to be integers.

Examples What is the probability of drawing a number 20 or less from a hat with
the numbers from 1 to 50 inside?

probability = unidcdf(20,50)
probability =

0.4000

See Also cdf, unidpdf, unidinv, unidstat, unidrnd, mle

“Uniform Distribution (Discrete)” on page B-100
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Purpose Discrete uniform inverse cumulative distribution function

Syntax X = unidinv(P,N)

Description X = unidinv(P,N) returns the smallest positive integer X such that the
discrete uniform cdf evaluated at X is equal to or exceeds P. You can
think of P as the probability of drawing a number as large as X out of a
hat with the numbers 1 through N inside.

P and N can be vectors, matrices, or multidimensional arrays that have
the same size, which is also the size of X. A scalar input for N or P is
expanded to a constant array with the same dimensions as the other
input. The values in P must lie on the interval [0 1] and the values in N
must be positive integers.

Examples x = unidinv(0.7,20)
x =

14

y = unidinv(0.7 + eps,20)
y =

15

A small change in the first parameter produces a large jump in output.
The cdf and its inverse are both step functions. The example shows
what happens at a step.

See Also icdf, unidcdf, unidpdf, unidstat, unidrnd

“Uniform Distribution (Discrete)” on page B-100
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Purpose Discrete uniform probability density function

Syntax Y = unidpdf(X,N)

Description Y = unidpdf(X,N) computes the discrete uniform pdf at each of the
values in X using the corresponding maximum observable value in N. X
and N can be vectors, matrices, or multidimensional arrays that have
the same size. A scalar input is expanded to a constant array with the
same dimensions as the other inputs. The parameters in N must be
positive integers.

The discrete uniform pdf is

You can think of y as the probability of observing any one number
between 1 and n.

Examples For fixed n, the uniform discrete pdf is a constant.

y = unidpdf(1:6,10)
y =

0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

Now fix x, and vary n.

likelihood = unidpdf(5,4:9)
likelihood =

0 0.2000 0.1667 0.1429 0.1250 0.1111

See Also pdf, unidcdf, unidinv, unidstat, unidrnd

“Uniform Distribution (Discrete)” on page B-100
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Purpose Discrete uniform random numbers

Syntax R = unidrnd(N)
R = unidrnd(N,v)
R = unidrnd(N,m,n)

Description R = unidrnd(N) generates random numbers for the discrete uniform
distribution with maximum N. The parameters in N must be positive
integers. N can be a vector, a matrix, or a multidimensional array. The
size of R is the size of N. The discrete uniform distribution arises from
experiments equivalent to drawing a number from one to N out of a hat.

R = unidrnd(N,v) generates random numbers for the discrete uniform
distribution with maximum N, where v is a row vector. If v is a 1-by-2
vector, R is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R
is an n-dimensional array.

R = unidrnd(N,m,n) generates random numbers for the discrete
uniform distribution with maximum N, where scalars m and n are the
row and column dimensions of R.

Examples In the Massachusetts lottery, a player chooses a four-digit number.
Generate random numbers for Monday through Saturday.

numbers = unidrnd(10000,1,6)-1
numbers =

4564 185 8214 4447 6154 7919

See Also random, unidpdf, unidcdf, unidinv, unidstat

“Uniform Distribution (Discrete)” on page B-100
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Purpose Discrete uniform mean of and variance

Syntax [M,V] = unidstat(N)

Description [M,V] = unidstat(N) returns the mean of and variance for the
discrete uniform distribution with corresponding maximum observable
value in N.

The mean of the discrete uniform distribution with parameter N is

. The variance is .

Examples [m,v] = unidstat(1:6)
m =

1.0000 1.5000 2.0000 2.5000 3.0000 3.5000
v =

0 0.2500 0.6667 1.2500 2.0000 2.9167

See Also unidpdf, unidcdf, unidinv, unidrnd

“Uniform Distribution (Discrete)” on page B-100
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Purpose Continuous uniform cumulative distribution function

Syntax P = unifcdf(X,A,B)

Description P = unifcdf(X,A,B) computes the uniform cdf at each of the values
in X using the corresponding lower endpoint (minimum), A and upper
endpoint (maximum), B. X, A, and B can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant matrix with the same dimensions as the other
inputs.

The uniform cdf is

The standard uniform distribution has A = 0 and B = 1.

Examples What is the probability that an observation from a standard uniform
distribution will be less than 0.75?

probability = unifcdf(0.75)
probability =

0.7500

What is the probability that an observation from a uniform distribution
with a = -1 and b = 1 will be less than 0.75?

probability = unifcdf(0.75,-1,1)
probability =

0.8750

See Also cdf, unifpdf, unifinv, unifstat, unifit, unifrnd

“Uniform Distribution (Continuous)” on page B-98
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Purpose Continuous uniform inverse cumulative distribution function

Syntax X = unifinv(P,A,B)

Description X = unifinv(P,A,B) computes the inverse of the uniform cdf with
parameters A and B (the minimum and maximum values, respectively)
at the corresponding probabilities in P. P, A, and B can be vectors,
matrices, or multidimensional arrays that all have the same size. A
scalar input is expanded to a constant array with the same dimensions
as the other inputs.

The inverse of the uniform cdf is

The standard uniform distribution has A = 0 and B = 1.

Examples What is the median of the standard uniform distribution?

median_value = unifinv(0.5)
median_value =

0.5000

What is the 99th percentile of the uniform distribution between -1
and 1?

percentile = unifinv(0.99,-1,1)
percentile =

0.9800

See Also icdf, unifcdf, unifpdf, unifstat, unifit, unifrnd

“Uniform Distribution (Continuous)” on page B-98
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Purpose Continuous uniform parameter estimates

Syntax [ahat,bhat] = unifit(data)
[ahat,bhat,ACI,BCI] = unifit(data)
[ahat,bhat,ACI,BCI] = unifit(data,alpha)

Description [ahat,bhat] = unifit(data) returns the maximum likelihood
estimates (MLEs) of the parameters of the uniform distribution given
the data in data.

[ahat,bhat,ACI,BCI] = unifit(data) also returns 95% confidence
intervals, ACI and BCI, which are matrices with two rows. The first
row contains the lower bound of the interval for each column of the
matrix data. The second row contains the upper bound of the interval.

[ahat,bhat,ACI,BCI] = unifit(data,alpha) enables you to control
of the confidence level alpha. For example, if alpha = 0.01 then ACI
and BCI are 99% confidence intervals.

Examples r = unifrnd(10,12,100,2);
[ahat,bhat,aci,bci] = unifit(r)
ahat =

10.0154 10.0060
bhat =

11.9989 11.9743
aci =

9.9551 9.9461
10.0154 10.0060

bci =
11.9989 11.9743
12.0592 12.0341

See Also mle, unifpdf, unifcdf, unifinv, unifstat, unifrnd

“Uniform Distribution (Continuous)” on page B-98
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Purpose Continuous uniform probability density function

Syntax Y = unifpdf(X,A,B)

Description Y = unifpdf(X,A,B) computes the continuous uniform pdf at each of
the values in X using the corresponding lower endpoint (minimum), A
and upper endpoint (maximum), B. X, A, and B can be vectors, matrices,
or multidimensional arrays that all have the same size. A scalar input
is expanded to a constant array with the same dimensions as the other
inputs. The parameters in B must be greater than those in A.

The continuous uniform distribution pdf is

The standard uniform distribution has A = 0 and B = 1.

Examples For fixed a and b, the uniform pdf is constant.

x = 0.1:0.1:0.6;
y = unifpdf(x)
y =

1 1 1 1 1 1

What if x is not between a and b?

y = unifpdf(-1,0,1)
y =

0

See Also pdf, unifcdf, unifinv, unifstat, unifit, unifrnd

“Uniform Distribution (Continuous)” on page B-98
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Purpose Continuous uniform random numbers

Syntax R = unifrnd(A,B)
R = unifrnd(A,B,m,n,...)
R = unifrnd(A,B,[m,n,...])

Description R = unifrnd(A,B) returns an array R of random numbers generated
from the continuous uniform distributions with lower and upper
endpoints specified by A and B, respectively. If A and B are arrays,
R(i,j) is generated from the distribution specified by the corresponding
elements of A and B. If either A or B is a scalar, it is expanded to the
size of the other input.

R = unifrnd(A,B,m,n,...) or R = unifrnd(A,B,[m,n,...]) returns
an m-by-n-by-... array. If A and B are scalars, all elements of R are
generated from the same distribution. If either A or B is an array, they
must be m-by-n-by-... .

Examples Generate one random number each from the continuous uniform
distributions on the intervals (0,1), (0,2), ..., (0,5):

a = 0; b = 1:5;
r1 = unifrnd(a,b)
r1 =

0.8147 1.8116 0.3810 3.6535 3.1618

Generate five random numbers each from the same distributions:

B = repmat(b,5,1);
R = unifrnd(a,B)
R =

0.0975 0.3152 0.4257 2.6230 3.7887
0.2785 1.9412 1.2653 0.1428 3.7157
0.5469 1.9143 2.7472 3.3965 1.9611
0.9575 0.9708 2.3766 3.7360 3.2774
0.9649 1.6006 2.8785 2.7149 0.8559
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Generate five random numbers from the continuous uniform
distribution on (0,2):

r2 = unifrnd(a,b(2),1,5)
r2 =

1.4121 0.0637 0.5538 0.0923 0.1943

See Also rand, random, unifpdf, unifcdf, unifinv, unifstat, unifit

“Uniform Distribution (Continuous)” on page B-98
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Purpose Continuous uniform mean and variance

Syntax [M,V] = unifstat(A,B)

Description [M,V] = unifstat(A,B) returns the mean of and variance for the
continuous uniform distribution using the corresponding lower endpoint
(minimum), A and upper endpoint (maximum), B. Vector or matrix
inputs for A and B must have the same size, which is also the size of M
and V. A scalar input for A or B is expanded to a constant matrix with
the same dimensions as the other input.

The mean of the continuous uniform distribution with parameters a and

b is , and the variance is .

Examples a = 1:6;
b = 2.*a;
[m,v] = unifstat(a,b)
m =

1.5000 3.0000 4.5000 6.0000 7.5000 9.0000
v =

0.0833 0.3333 0.7500 1.3333 2.0833 3.0000

See Also unifpdf, unifcdf, unifinv, unifit, unifrnd

“Uniform Distribution (Continuous)” on page B-98
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Purpose Set union for categorical arrays

Syntax C = union(A,B)
[C,IA,IB] = union(A,B)

Description C = union(A,B) when A and B are categorical arrays returns a
categorical vector C containing the combined values from A and B but
with no repetitions. The result C is sorted. The set of categorical levels
for C is the sorted union of the sets of levels of the inputs, as determined
by their labels.

[C,IA,IB] = union(A,B) also returns index vectors IA and IB such
that C is a sorted combination of the elements A(IA) and B(IB).

See Also intersect, ismember, setdiff, setxor, unique
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Purpose Unique values in categorical array

Syntax B = unique(A)
[B,I,J] = unique(A)
[B,I,J] = unique(A,'first')

Description B = unique(A) returns a categorical array containing the unique
elements of A, sorted by the order of A’s levels.

[B,I,J] = unique(A) also returns index vectors I and J such that
B = A(I) and A = B(J).

[B,I,J] = unique(A,'first') returns the vector I to index the first
occurrence of each unique value in A. unique(A,'last'), the default,
returns the vector I to index the last occurrence.

See Also intersect, ismember, setdiff, setxor, union
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Purpose Unstack data from single variable into multiple variables

Syntax wide = unstack(tall,datavar,indvar)
[wide,itall] = unstack(tall,datavar,indvar)
wide = unstack(tall,datavar,indvar,’Parameter’,value)

Description wide = unstack(tall,datavar,indvar) converts a dataset array
tall to an equivalent dataset array wide that is in wide format, by
unstacking a single variable in tall into multiple variables in wide. In
general wide contains more variables, but fewer observations, than
tall.

datavar specifies the data variable in tall to unstack. indvar specifies
an indicator variable in tall that determines which variable in wide
each value in datavar is unstacked into. unstack treats the remaining
variables in tall as grouping variables. Each unique combination
of their values defines a group of observations in tall that will be
unstacked into a single observation in wide.

unstack creates m data variables in wide, where m is the number of
group levels in indvar. The values in indvar indicate which of those m
variables receive which values from datavar. The j-th data variable in
wide contains the values from datavar that correspond to observations
whose indvar value was the j-th of the m possible levels. Elements of
those m variables for which no corresponding data value in tall exists
contain a default value.

datavar is a positive integer, a variable name, or a logical vector
containing a single true value. indvar is a positive integer, a variable
name, or a logical vector containing a single true value.

[wide,itall] = unstack(tall,datavar,indvar) returns an index
vector itall indicating the correspondence between observations in
wide and those in tall. For each observation in wide, itall contains
the index of the first in the corresponding group of observations in tall.

For more information on grouping variables, see “Grouping Variables”
on page 2-33.
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Inputs wide = unstack(tall,datavar,indvar,’Parameter’,value)uses the
following parameter name/value pairs to control how unstack converts
variables in tall to variables in wide:

'GroupVars' Grouping variables in tall that define groups of
observations. groupvars is a positive integer, a
vector of positive integers, a variable name, a cell
array containing one or more variable names, or a
logical vector. The default is all variables in tall
not listed in datavar or indvar.

'NewDataVarNames'A cell array of strings containing names for the
data variables unstack should create in wide.
Default is the group names of the grouping variable
specified in indvar.

'AggregationFun'A function handle that accepts a subset of values
from datavar and returns a single value. stack
applies this function to observations from the same
group that have the same value of indvar. The
function must aggregate the data values into a
single value, and in such cases it is not possible to
recover tall from wide using stack. The default is
@sum for numeric data variables. For non-numeric
variables, there is no default, and you must specify
'AggregationFun' if multiple observations in the
same group have the same values of indvar.

'ConstVars' Variables in tall to copy to wide without
unstacking. The values for these variables in
wide are taken from the first observation in each
group in tall, so these variables should typically
be constant within each group. ConstVars is a
positive integer, a vector of positive integers, a
variable name, a cell array containing one or more
variable names, or a logical vector. The default is
no variables.
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You can also specify more than one data variable in tall, each of
which becomes a set of m variables in wide. In this case, specify
datavar as a vector of positive integers, a cell array containing variable
names, or a logical vector. You may specify only one variable with
indvar. The names of each set of data variables in wide are the
name of the corresponding data variable in tall concatenated with
the names specified in 'NewDataVarNames'. The function specified in
'AggregationFun' must return a value with a single row.

Examples Convert a "wide format" data set to "tall format", and then back to
a different "wide format":

load flu
% FLU has a 'Date' variable, and 10 variables for estimated
% influenza rates (in 9 different regions, estimated from
% Google searches, plus a nationwide extimate from the
% CDC). Combine those 10 variables into a "tall" array
% that has a single data variable, 'FluRate', and an
% indicator variable, 'Region', that says which region
% each estimate is from.
flu2 = stack(flu, 2:11, 'NewDataVarName','FluRate',...
'IndVarName','Region')
dateNames = cellstr(datestr(flu.Date,'mmm_DD_YYYY'));

% Use the 'Date' variable from that tall array to split
% 'FluRate' into 52 separate variables, each containing
% the estimated influenza rates for each unique date.
% The new "wide" array has one observation for each region.
% In effect, this is the original array FLU "on its side".
flu3 = unstack(flu2, 'FluRate', 'Date',...
'NewDataVarNames',dateNames)

See Also dataset.stack | dataset.join | dataset.grpstats

How To • “Grouping Variables” on page 2-33
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paretotails.upperparams

Purpose Upper Pareto tails parameters

Syntax params = upperparams(obj)

Description params = upperparams(obj) returns the 2-element vector params of
shape and scale parameters, respectively, of the upper tail of the Pareto
tails object obj. upperparams does not return a location parameter.

Examples Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and
0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);

lowerparams(obj)
ans =

-0.1901 1.1898
upperparams(obj)
ans =

0.3646 0.5103

See Also paretotails, lowerparams
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dataset.UserData property

Purpose Variable containing additional information associated with data set

Description Any variable containing additional information to be associated with
the data set. The default is an empty array.
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ProbDistUnivParam.var

Purpose Return variance of ProbDistUnivParam object

Syntax V = var(PD)

Description V = var(PD) returns V, the variance of the ProbDistUnivParam object
PD.

Inputs PD An object of the class ProbDistUnivParam.

Outputs V The variance of the ProbDistUnivParam
object PD.

See Also var
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Purpose Compute embedded estimates of input feature importance

Syntax imp = varimportance(t)

Description imp = varimportance(t) computes estimates of input feature
importance for tree t by summing changes in the risk due to splits on
every feature. The returned vector imp has one element for each input
variable in the data used to train this tree. At each node, the risk is
estimated as node impurity if impurity was used to split nodes and
node error otherwise. This risk is weighted by the node probability.
Variable importance associated with this split is computed as the
difference between the risk for the parent node and the total risk for
the two children.

See Also risk
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CompactTreeBagger.VarNames property

Purpose Variable names

Description The VarNames property is a cell array containing the names of the
predictor variables (features). These names are taken from the optional
'names' parameter that supplied to TreeBagger. The default names
are 'x1', 'x2', etc.
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dataset.VarNames property

Purpose Cell array giving names of variables in data set

Description A cell array of nonempty, distinct strings giving the names of the
variables in the data set. The number of strings must equal the number
of variables. The default is the cell array of string names for the
variables used to create the data set.
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TreeBagger.VarNames property

Purpose Variable names

Description The VarNames property is a cell array containing the names of the
predictor variables (features). TreeBagger takes these names from the
optional 'names' parameter. The default names are 'x1', 'x2', etc.
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Purpose Chi-square variance test

Syntax H = vartest(X,V)
H = vartest(X,V,alpha)
H = vartest(X,V,alpha,tail)
[H,P] = vartest(...)
[H,P,CI] = vartest(...)
[H,P,CI,STATS] = vartest(...)
[...] = vartest(X,V,alpha,tail,dim)

Description H = vartest(X,V) performs a chi-square test of the hypothesis that
the data in the vector X comes from a normal distribution with variance
V, against the alternative that X comes from a normal distribution with
a different variance. The result is H = 0 if the null hypothesis (variance
is V) cannot be rejected at the 5% significance level, or H = 1 if the null
hypothesis can be rejected at the 5% level.

X may also be a matrix or an n-dimensional array. For matrices,
vartest performs separate tests along each column of X, and returns a
row vector of results. For n-dimensional arrays, vartest works along
the first nonsingleton dimension of X. V must be a scalar.

H = vartest(X,V,alpha) performs the test at the significance level
(100*alpha)%. alpha has a default value of 0.05 and must be a scalar.

H = vartest(X,V,alpha,tail) performs the test against the
alternative hypothesis specified by tail, where tail is a single string
from the following choices:

• 'both'— Variance is not V (two-tailed test). This is the default.

• 'right'— Variance is greater than V (right-tailed test).

• 'left'— Variance is less than V (left-tailed test).

[H,P] = vartest(...) returns the p-value, i.e., the probability of
observing the given result, or one more extreme, by chance if the null
hypothesis is true. Small values of P cast doubt on the validity of the
null hypothesis.
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[H,P,CI] = vartest(...) returns a 100*(1-alpha)% confidence
interval for the true variance.

[H,P,CI,STATS] = vartest(...) returns the structure STATS with
the following fields:

• 'chisqstat' — Value of the test statistic

• 'df' — Degrees of freedom of the test

[...] = vartest(X,V,alpha,tail,dim) works along dimension dim
of X. Pass in [] for alpha or tail to use their default values.

Examples Determine whether the standard deviation is significantly different
from 7?

load carsmall

[h,p,ci] = vartest(MPG,7^2)

See Also ttest, ztest,vartest2
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Purpose Two-sample F-test for equal variances

Syntax H = vartest2(X,Y)
H = vartest2(X,Y,alpha)
H = vartest2(X,Y,alpha,tail)
[H,P] = vartest2(...)
[H,P,CI] = vartest2(...)
[H,P,CI,STATS] = vartest2(...)
[...] = vartest2(X,Y,alpha,tail,dim)

Description H = vartest2(X,Y) performs an F test of the hypothesis that two
independent samples, in the vectors X and Y, come from normal
distributions with the same variance, against the alternative that they
come from normal distributions with different variances. The result is H
= 0 if the null hypothesis (variances are equal) cannot be rejected at the
5% significance level, or H = 1 if the null hypothesis can be rejected at
the 5% level. X and Y can have different lengths. X and Y can also be
matrices or n-dimensional arrays.

For matrices, vartest2 performs separate tests along each column,
and returns a vector of results. X and Y must have the same number
of columns. For n-dimensional arrays, vartest2 works along the first
nonsingleton dimension. X and Y must have the same size along all
the remaining dimensions.

H = vartest2(X,Y,alpha) performs the test at the significance level
(100*alpha)%. alpha must be a scalar.

H = vartest2(X,Y,alpha,tail) performs the test against the
alternative hypothesis specified by tail, where tail is one of the
following single strings:

• 'both'— Variance is not Y (two-tailed test). This is the default.

• 'right'— Variance is greater than Y (right-tailed test).

• 'left'— Variance is less than Y (left-tailed test).
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[H,P] = vartest2(...) returns the p-value, i.e., the probability of
observing the given result, or one more extreme, by chance if the null
hypothesis is true. Small values of P cast doubt on the validity of the
null hypothesis.

[H,P,CI] = vartest2(...) returns a 100*(1-alpha)% confidence
interval for the true variance ratio var(X)/var(Y).

[H,P,CI,STATS] = vartest2(...) returns a structure with the
following fields:

• 'fstat' — Value of the test statistic

• 'df1'— Numerator degrees of freedom of the test

• 'df2'— Denominator degrees of freedom of the test

[...] = vartest2(X,Y,alpha,tail,dim) works along dimension
dim of X. To pass in the default values for alpha or tail use [].

Examples Is the variance significantly different for two model years, and what is a
confidence interval for the ratio of these variances?

load carsmall

[H,P,CI] =
vartest2(MPG(Model_Year==82),MPG(Model_Year==76))

See Also ansaribradley, vartest, vartestn, ttest2
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Purpose Bartlett multiple-sample test for equal variances

Syntax vartestn(X)
vartestn(X,group)
p = vartestn(...)
[p,STATS] = vartestn(...)
[...] = vartestn(...,displayopt)
[...] = vartestn(...,testtype)

Description vartestn(X) performs Bartlett’s test for equal variances for the
columns of the matrix X. This is a test of the null hypothesis that the
columns of X come from normal distributions with the same variance,
against the alternative that they come from normal distributions with
different variances. The result is a display of a box plot of the groups,
and a summary table of statistics.

vartestn(X,group) requires a vector X, and a group argument that is
a categorical variable, vector, string array, or cell array of strings with
one row for each element of X. The X values corresponding to the same
value of group are placed in the same group. (See “Grouped Data” on
page 2-33.) The function tests for equal variances across groups.

vartestn treats NaNs as missing values and ignores them.

p = vartestn(...) returns the p-value, i.e., the probability of
observing the given result, or one more extreme, by chance if the null
hypothesis of equal variances is true. Small values of p cast doubt on
the validity of the null hypothesis.

[p,STATS] = vartestn(...) returns a structure with the following
fields:

• 'chistat' — Value of the test statistic

• 'df' — Degrees of freedom of the test

[...] = vartestn(...,displayopt) determines if a box plot and
table are displayed. displayopt may be 'on' (the default) or 'off' .
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[...] = vartestn(...,testtype) sets the test type. When testtype
is 'robust', vartestn performs Levene’s test in place of Bartlett’s
test, which is a useful alternative when the sample distributions are
not normal, and especially when they are prone to outliers. For this
test the STATS output structure has a field named 'fstat' containing
the test statistic, and 'df1' and 'df2' containing its numerator and
denominator degrees of freedom. When testtype is 'classical'
vartestn performs Bartlett’s test.

Examples Does the variance of mileage measurements differ significantly from
one model year to another?

load carsmall
p = vartestn(MPG,Model_Year)
p =

0.8327
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See Also “Grouped Data” on page 2-33

vartest, vartest2, anova1
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categorical.vertcat

Purpose Vertical concatenation for categorical arrays

Syntax C = vertcat(dim,A,B,...)
C = vertcat(A,B)

Description C = vertcat(dim,A,B,...) vertically concatenates the categorical
arrays A,B,... . For matrices, all inputs must have the same number
of rows. For n-D arrays, all inputs must have the same sizes except in
the second dimension. The set of categorical levels for C is the sorted
union of the sets of levels of the inputs, as determined by their labels.

C = vertcat(A,B) is called for the syntax [A B].

See Also cat, horzcat
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dataset.vertcat

Purpose Vertical concatenation for dataset arrays

Syntax ds = vertcat(ds1, ds2, ...)

Description ds = vertcat(ds1, ds2, ...) vertically concatenates the dataset
arrays ds1, ds2, ... . Observation names, when present, must be
unique across datasets. vertcat fills in default observation names for
the output when some of the inputs have names and some do not.

Variable names for all dataset arrays must be identical except for order.
vertcat concatenates by matching variable names.

See Also cat, horzcat
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classregtree.view

Purpose Plot tree

Syntax view(t)
view(t,param1,val1,param2,val2,...)

Description view(t) displays the decision tree t as computed by classregtree in
a figure window. Each branch in the tree is labeled with its decision
rule, and each terminal node is labeled with the predicted value for that
node. Click any node to get more information about it. The information
displayed is specified by the Click to display pop-up menu at the top
of the figure.

view(t,param1,val1,param2,val2,...) specifies optional parameter
name/value pairs:

• 'names'— A cell array of names for the predictor variables, in the
order in which they appear in the matrix X from which the tree was
created. (See classregtree.)

• 'prunelevel' — Initial pruning level to display.

For each branch node, the left child node corresponds to the points that
satisfy the condition, and the right child node corresponds to the points
that do not satisfy the condition.

Examples Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})

t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
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6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Boca Raton, FL: CRC Press, 1984.
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See Also classregtree, eval, prune, test
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wblcdf

Purpose Weibull cumulative distribution function

Syntax P = wblcdf(X,A,B)
[P,PLO,PUP] = wblcdf(X,A,B,PCOV,alpha)

Description P = wblcdf(X,A,B) computes the cdf of the Weibull distribution with
scale parameter A and shape parameter B, at each of the values in X. X,
A, and B can be vectors, matrices, or multidimensional arrays that all
have the same size. A scalar input is expanded to a constant array of
the same size as the other inputs. The default values for A and B are
both 1. The parameters A and B must be positive.

[P,PLO,PUP] = wblcdf(X,A,B,PCOV,alpha) returns confidence
bounds for P when the input parameters A and B are estimates. PCOV is
the 2-by-2 covariance matrix of the estimated parameters. alpha has a
default value of 0.05, and specifies 100(1 - alpha)% confidence bounds.
PLO and PUP are arrays of the same size as P containing the lower and
upper confidence bounds.

The function wblcdf computes confidence bounds for P using a normal
approximation to the distribution of the estimate

and then transforms those bounds to the scale of the output P. The
computed bounds give approximately the desired confidence level when
you estimate mu, sigma, and PCOV from large samples, but in smaller
samples other methods of computing the confidence bounds might be
more accurate.

The Weibull cdf is

Examples What is the probability that a value from a Weibull distribution with
parameters a = 0.15 and b = 0.8 is less than 0.5?

18-1400



wblcdf

probability = wblcdf(0.5, 0.15, 0.8)
probability =

0.9272

How sensitive is this result to small changes in the parameters?

[A, B] = meshgrid(0.1:0.05:0.2,0.2:0.05:0.3);
probability = wblcdf(0.5, A, B)
probability =

0.7484 0.7198 0.6991
0.7758 0.7411 0.7156
0.8022 0.7619 0.7319

See Also cdf, wblpdf, wblinv, wblstat, wblfit, wbllike, wblrnd

“Weibull Distribution” on page B-102
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Purpose Weibull parameter estimates

Syntax parmhat = wblfit(data)
[parmhat,parmci] = wblfit(data)
parmhat,parmci] = wblfit(data,alpha)
[...] = wblfit(data,alpha,censoring)
[...] = wblfit(data,alpha,censoring,freq)
[...] = wblfit(...,options)

Description parmhat = wblfit(data) returns the maximum likelihood estimates,
parmhat, of the parameters of the Weibull distribution given the values
in the vector data, which must be positive. parmhat is a two-element
row vector: parmhat(1) estimates the Weibull parameter a, and
parmhat(2) estimates the Weibull parameter b, in the pdf

[parmhat,parmci] = wblfit(data) returns 95% confidence intervals
for the estimates of a and b in the 2-by-2 matrix parmci. The first
row contains the lower bounds of the confidence intervals for the
parameters, and the second row contains the upper bounds of the
confidence intervals.

[parmhat,parmci] = wblfit(data,alpha) returns 100(1 - alpha)%
confidence intervals for the parameter estimates.

[...] = wblfit(data,alpha,censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that
are right-censored and 0 for observations that are observed exactly.

[...] = wblfit(data,alpha,censoring,freq) accepts a frequency
vector, freq, of the same size as data. The vector freq typically
contains integer frequencies for the corresponding elements in data, but
can contain any non-negative values. Pass in [] for alpha, censoring,
or freq to use their default values.
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[...] = wblfit(...,options) accepts a structure, options, that
specifies control parameters for the iterative algorithm the function
uses to compute maximum likelihood estimates. The Weibull fit
function accepts an options structure that can be created using the
function statset. Enter statset ('wblfit') to see the names and
default values of the parameters that lognfit accepts in the options
structure. See the reference page for statset for more information
about these options.

Examples data = wblrnd(0.5,0.8,100,1);
[parmhat, parmci] = wblfit(data)
parmhat =

0.5861 0.8567
parmci =

0.4606 0.7360
0.7459 0.9973

See Also mle, wbllike, wblpdf, wblcdf, wblinv, wblstat, wblrnd

“Weibull Distribution” on page B-102
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Purpose Weibull inverse cumulative distribution function

Syntax X = wblinv(P,A,B)
[X,XLO,XUP] = wblinv(P,A,B,PCOV,alpha)

Description X = wblinv(P,A,B) returns the inverse cumulative distribution
function (cdf) for a Weibull distribution with scale parameter A and
shape parameter B, evaluated at the values in P. P, A, and B can be
vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array of the same size as
the other inputs. The default values for A and B are both 1.

[X,XLO,XUP] = wblinv(P,A,B,PCOV,alpha) returns confidence
bounds for X when the input parameters A and B are estimates.
PCOV is a 2-by-2 matrix containing the covariance matrix of the
estimated parameters. alpha has a default value of 0.05, and specifies
100(1 - alpha)% confidence bounds. XLO and XUP are arrays of the same
size as X containing the lower and upper confidence bounds.

The function wblinv computes confidence bounds for X using a normal
approximation to the distribution of the estimate

log
log

a
q

b
+

where q is the Pth quantile from a Weibull distribution with scale
and shape parameters both equal to 1. The computed bounds give
approximately the desired confidence level when you estimate mu,
sigma, and PCOV from large samples, but in smaller samples other
methods of computing the confidence bounds might be more accurate.

The inverse of the Weibull cdf is

x F p a b a p I p
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Examples The lifetimes (in hours) of a batch of light bulbs has a Weibull
distribution with parameters a = 200 and b = 6.
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Find the median lifetime of the bulbs:

life = wblinv(0.5, 200, 6)
life =
188.1486

Generate 100 random values from this distribution, and estimate the
90th percentile (with confidence bounds) from the random sample

x = wblrnd(200,6,100,1);
p = wblfit(x)
[nlogl,pcov] = wbllike(p,x)
[q90,q90lo,q90up] = wblinv(0.9,p(1),p(2),pcov)
p =

204.8918 6.3920

nlogl =

496.8915

pcov =

11.3392 0.5233
0.5233 0.2573

q90 =

233.4489

q90lo =
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226.0092

q90up =

241.1335

See Also icdf, wblcdf, wblpdf, wblstat, wblfit, wbllike, wblrnd

“Weibull Distribution” on page B-102
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Purpose Weibull negative log-likelihood

Syntax nlogL = wbllike(params,data)
[logL,AVAR] = wbllike(params,data)
[...] = wbllike(params,data,censoring)
[...] = wbllike(params,data,censoring,freq)

Description nlogL = wbllike(params,data) returns the Weibull log-likelihood.
params(1) is the scale parameter, A, and params(2) is the shape
parameter, B.

[logL,AVAR] = wbllike(params,data) also returns AVAR, which is the
asymptotic variance-covariance matrix of the parameter estimates if
the values in params are the maximum likelihood estimates. AVAR is the
inverse of Fisher’s information matrix. The diagonal elements of AVAR
are the asymptotic variances of their respective parameters.

[...] = wbllike(params,data,censoring) accepts a Boolean
vector, censoring, of the same size as data, which is 1 for observations
that are right-censored and 0 for observations that are observed exactly.

[...] = wbllike(params,data,censoring,freq) accepts a
frequency vector, freq, of the same size as data. freq typically contains
integer frequencies for the corresponding elements in data, but can
contain any nonnegative values. Pass in [] for censoring to use its
default value.

The Weibull negative log-likelihood for uncensored data is

where f is the Weibull pdf.

wbllike is a utility function for maximum likelihood estimation.

Examples This example continues the example from wblfit.

r = wblrnd(0.5,0.8,100,1);
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[logL, AVAR] = wbllike(wblfit(r),r)
logL =

47.3349
AVAR =

0.0048 0.0014
0.0014 0.0040

References [1] Patel, J. K., C. H. Kapadia, and D. B. Owen. Handbook of Statistical
Distributions. New York: Marcel Dekker, 1976.

See Also wblfit, wblpdf, wblcdf, wblinv, wblstat, wblrnd

“Weibull Distribution” on page B-102
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Purpose Weibull probability density function

Syntax Y = wblpdf(X,A,B)

Description Y = wblpdf(X,A,B) computes the Weibull pdf at each of the values in
X using the corresponding scale parameter, A and shape parameter, B.
X, A, and B can be vectors, matrices, or multidimensional arrays that
all have the same size. A scalar input is expanded to a constant array
of the same size as the other inputs. The parameters in A and B must
be positive.

The Weibull pdf is

Some references refer to the Weibull distribution with a single
parameter. This corresponds to wblpdf with A = 1.

Examples The exponential distribution is a special case of the Weibull distribution.

lambda = 1:6;
y = wblpdf(0.1:0.1:0.6,lambda,1)
y =

0.9048 0.4524 0.3016 0.2262 0.1810 0.1508

y1 = exppdf(0.1:0.1:0.6,lambda)
y1 =

0.9048 0.4524 0.3016 0.2262 0.1810 0.1508

References [1] Devroye, L. Non-Uniform Random Variate Generation. New York:
Springer-Verlag, 1986.

See Also pdf, wblcdf, wblfit, wblinv, wbllike, wblplot, wblrnd, wblstat

“Weibull Distribution” on page B-102
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Purpose Weibull probability plot

Syntax wblplot(X)
h = wblplot(X)

Description wblplot(X) displays a Weibull probability plot of the data in X. If X is a
matrix, wblplot displays a plot for each column.

h = wblplot(X) returns handles to the plotted lines.

The purpose of a Weibull probability plot is to graphically assess
whether the data in X could come from a Weibull distribution. If the
data are Weibull the plot will be linear. Other distribution types might
introduce curvature in the plot. wblplot uses midpoint probability
plotting positions. Use probplot when the data included censored
observations.

Examples r = wblrnd(1.2,1.5,50,1);
wblplot(r)
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See Also probplot, normplot, wblcdf, wblfit, wblinv, wbllike, wblpdf,
wblrnd, wblstat

“Weibull Distribution” on page B-102
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Purpose Weibull random numbers

Syntax R = wblrnd(A,B)
R = wblrnd(A,B,v)
R = wblrnd(A,B,m,n)

Description R = wblrnd(A,B) generates random numbers for the Weibull
distribution with scale parameter, A and shape parameter, B. The input
arguments A and B can be either scalars or matrices. A and B, can be
vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array of the same size
as the other input.

R = wblrnd(A,B,v) generates random numbers for the Weibull
distribution with parameters A and B, where v is a row vector. If v is a
1-by-2 vector, R is a matrix with v(1) rows and v(2) columns. If v is
1-by-n, R is an n-dimensional array.

R = wblrnd(A,B,m,n) generates random numbers for the Weibull
distribution with parameters A and B, where scalars m and n are the
row and column dimensions of R.

Devroye [1] refers to the Weibull distribution with a single parameter;
this is wblrnd with A = 1.

Examples n1 = wblrnd(0.5:0.5:2,0.5:0.5:2)
n1 =

0.0178 0.0860 2.5216 0.9124

n2 = wblrnd(1/2,1/2,[1 6])
n2 =

0.0046 1.7214 2.2108 0.0367 0.0531 0.0917

References [1] Devroye, L. Non-Uniform Random Variate Generation. New York:
Springer-Verlag, 1986.

See Also random, wblpdf, wblcdf, wblinv, wblstat, wblfit, wbllike
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“Weibull Distribution” on page B-102
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Purpose Weibull mean and variance

Syntax [M,V] = wblstat(A,B)

Description [M,V] = wblstat(A,B) returns the mean of and variance for the
Weibull distribution with scale parameter, A and shape parameter, B.
Vector or matrix inputs for A and B must have the same size, which
is also the size of M and V. A scalar input for A or B is expanded to a
constant matrix with the same dimensions as the other input.

The mean of the Weibull distribution with parameters a and b is

and the variance is

Examples [m,v] = wblstat(1:4,1:4)
m =

1.0000 1.7725 2.6789 3.6256
v =

1.0000 0.8584 0.9480 1.0346

wblstat(0.5,0.7)
ans =

0.6329

See Also wblpdf, wblcdf, wblinv, wblfit, wbllike, wblrnd

“Weibull Distribution” on page B-102
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Purpose Wishart random numbers

Syntax W = wishrnd(Sigma,df)
W = wishrnd(Sigma,df,D)
[W,D] = wishrnd(Sigma,df)

Description W = wishrnd(Sigma,df) generates a random matrix W having the
Wishart distribution with covariance matrix Sigma and with df degrees
of freedom. The inverse of W has the Inverse Wishart distribution with
parameters Tau = inv(Sigma) and df degrees of freedom.

W = wishrnd(Sigma,df,D) expects D to be the Cholesky factor of Sigma.
If you call wishrnd multiple times using the same value of Sigma, it’s
more efficient to supply D instead of computing it each time.

[W,D] = wishrnd(Sigma,df) returns D so you can provide it as input
in future calls to wishrnd.

This function defines the parameter Sigma so that the mean of the
output matrix is Sigma*df

See Also iwishrnd

“Wishart Distribution” on page B-105
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TreeBagger.X property

Purpose X data used to create ensemble

Description The X property is a numeric matrix of size Nobs-by-Nvars, where Nobs is
the number of observations (rows) and Nvars is the number of variables
(columns) in the training data. This matrix contains the predictor (or
feature) values.

18-1416



xptread

Purpose Create dataset array from data stored in a SAS XPORT format file

Syntax data = xptread
data = xptread(filename)
[data,missing] = xptread(filename)
xptread(...,'ReadObsNames',true)

Description data = xptread displays a dialog box for selecting a file, then reads
data from the file into a dataset array. The file must be in the SAS
XPORT format.

data = xptread(filename) retrieves data from a SAS XPORT format
file filename. The XPORT format allows for 28 missing data types,
represented in the file by an upper case letter, '.' or '_'. xptread
converts All missing data to NaN values in data. However, if you need
the specific missing types then you can recover this information by
specifying a second output.

[data,missing] = xptread(filename) returns a nominal array,
missing, of the same size as data containing the missing data type
information from the xport format file. The entries are undefined for
values that are not present and are one of '.', '_', 'A',...,'Z' for
missing values.

xptread(...,'ReadObsNames',true) treats the first variable in the
file as observation names. The default value is false.

xptread only supports single data sets per file.

Examples Read in a SAS XPORT format dataset:

data = xptread('sample.xpt')

See Also dataset | dataset.export
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Purpose Convert predictor matrix to design matrix

Syntax D = x2fx(X,model)
D = x2fx(X,model,categ)
D = x2fx(X,model,categ,catlevels)

Description D = x2fx(X,model) converts a matrix of predictors X to a design matrix
D for regression analysis. Distinct predictor variables should appear
in different columns of X.

The optional input model controls the regression model. By default,
x2fx returns the design matrix for a linear additive model with a
constant term. model is one of the following strings:

• 'linear'— Constant and linear terms. This is the default.

• 'interaction'— Constant, linear, and interaction terms

• 'quadratic'— Constant, linear, interaction, and squared terms

• 'purequadratic'— Constant, linear, and squared terms

If X has n columns, the order of the columns of D for a full quadratic
model is:

1 The constant term

2 The linear terms (the columns of X, in order 1, 2, ..., n)

3 The interaction terms (pairwise products of the columns of X, in order
(1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n–1, n))

4 The squared terms (in order 1, 2, ..., n)

Other models use a subset of these terms, in the same order.

Alternatively, model can be a matrix specifying polynomial terms of
arbitrary order. In this case, model should have one column for each
column in X and one row for each term in the model. The entries in
any row of model are powers for the corresponding columns of X. For
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example, if X has columns X1, X2, and X3, then a row [0 1 2] in model
specifies the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in
model specifies a constant term, which can be omitted.

D = x2fx(X,model,categ) treats columns with numbers listed in
the vector categ as categorical variables. Terms involving categorical
variables produce dummy variable columns in D. Dummy variables
are computed under the assumption that possible categorical levels
are completely enumerated by the unique values that appear in the
corresponding column of X.

D = x2fx(X,model,categ,catlevels) accepts a vector catlevels
the same length as categ, specifying the number of levels in each
categorical variable. In this case, values in the corresponding column of
X must be integers in the range from 1 to the specified number of levels.
Not all of the levels need to appear in X.

Examples Example 1

The following converts 2 predictors X1 and X2 (the columns of X) into a
design matrix for a full quadratic model with terms constant, X1, X2,
X1.*X2, X1.^2, and X2.^2.

X = [1 10
2 20
3 10
4 20
5 15
6 15];

D = x2fx(X,'quadratic')
D =

1 1 10 10 1 100
1 2 20 40 4 400
1 3 10 30 9 100
1 4 20 80 16 400
1 5 15 75 25 225
1 6 15 90 36 225
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Example 2

The following converts 2 predictors X1 and X2 (the columns of X) into
a design matrix for a quadratic model with terms constant, X1, X2,
X1.*X2, and X1.^2.

X = [1 10
2 20
3 10
4 20
5 15
6 15];

model = [0 0
1 0
0 1
1 1
2 0];

D = x2fx(X,model)
D =

1 1 10 10 1
1 2 20 40 4
1 3 10 30 9
1 4 20 80 16
1 5 15 75 25
1 6 15 90 36

See Also regstats, rstool, candexch, candgen, cordexch, and rowexch.
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TreeBagger.Y property

Purpose Y data used to create ensemble

Description The Y property is an array of true class labels for classification, or
response values for regression. Y can be a numeric column vector, a
character matrix, or a cell array of strings.
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Purpose Standardized z-scores

Syntax Z = zscore(X)
[Z,mu,sigma] = zscore(X)
[...] = zscore(X,1)
[...] = zscore(X,flag,dim)

Description Z = zscore(X) returns a centered, scaled version of X, the same
size as X. For vector input x, output is the vector of z-scores z =
(x mean(x))./std(x). For matrix input X, z-scores are computed
using the mean and standard deviation along each column of X. For
higher-dimensional arrays, z-scores are computed using the mean and
standard deviation along the first non-singleton dimension.

The columns of Z have mean zero and standard deviation one (unless a
column of X is constant, in which case that column of Z is constant at 0).
z-scores are used to put data on the same scale before further analysis.

[Z,mu,sigma] = zscore(X) also returns mean(X) in mu and std(X) in
sigma.

[...] = zscore(X,1) normalizes X using std(X,1), that is, by
computing the standard deviation(s) using n rather than n–1, where n
is the length of the dimension along which zscore works. zscore(X,0)
is the same as zscore(X).

[...] = zscore(X,flag,dim) standardizes X by working along the
dimension dim of X. Set flag to 0 to use the default normalization by
n–1; set flag to 1 to use n.

Examples Compare the predictors in the Moore data on original and standardized
scales:

load moore
predictors = moore(:,1:5);
subplot(2,1,1),plot(predictors)
subplot(2,1,2),plot(zscore(predictors))
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See Also mean, std
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Purpose z-test

Syntax h = ztest(x,m,sigma)
h = ztest(...,alpha)
h = ztest(...,alpha,tail)
h = ztest(...,alpha,tail,dim)
[h,p] = ztest(...)
[h,p,ci] = ztest(...)
[h,p,ci,zval] = ztest(...)

Description h = ztest(x,m,sigma) performs a z-test of the null hypothesis that
data in the vector x are a random sample from a normal distribution
with mean m and standard deviation sigma, against the alternative
that the mean is not m. The result of the test is returned in h. h =
1 indicates a rejection of the null hypothesis at the 5% significance
level. h = 0 indicates a failure to reject the null hypothesis at the 5%
significance level.

x can also be a matrix or an N-dimensional array. For matrices, ztest
performs separate z-tests along each column of x and returns a vector
of results. For N-dimensional arrays, ztest works along the first
non-singleton dimension of x.

The test treats NaN values as missing data, and ignores them.

h = ztest(...,alpha) performs the test at the (100*alpha)%
significance level. The default, when unspecified, is alpha = 0.05.

h = ztest(...,alpha,tail) performs the test against the alternative
specified by the string tail. There are three options for tail:

• 'both'— Mean is not m (two-tailed test). This is the default, when
tail is unspecified.

• 'right'— Mean is greater than m (right-tail test)

• 'left' — Mean is less than m (left-tail test)

tail must be a single string, even when x is a matrix or an
N-dimensional array.
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h = ztest(...,alpha,tail,dim) works along dimension dim of x. Use
[] to pass in default values for alpha or tail.

[h,p] = ztest(...) returns the p-value of the test. The p-value is the
probability, under the null hypothesis, of observing a value as extreme
or more extreme of the test statistic

z
x

n
= − 
 /

where is the sample mean, μ = m is the hypothesized population
mean, σ is the population standard deviation, and n is the sample
size. Under the null hypothesis, the test statistic will have a standard
normal distribution, N(0,1).

[h,p,ci] = ztest(...) returns a 100*(1 – alpha)% confidence
interval on the population mean.

[h,p,ci,zval] = ztest(...) returns the value of the test statistic.

Examples Simulate a random sample of size 100 from a normal distribution with
mean 0.1 and standard deviation 1:

x = normrnd(0.1,1,1,100);

Test the null hypothesis that the sample comes from a standard normal
distribution:

[h,p,ci] = ztest(x,0,1)
h =

0
p =

0.1391
ci =

-0.0481 0.3439

The test fails to reject the null hypothesis at the default α = 0.05
significance level. Under the null hypothesis, the probability of
observing a value as extreme or more extreme of the test statistic, as

18-1425



ztest

indicated by the p-value, is greater than α. The 95% confidence interval
on the mean contains 0.

Simulate a larger random sample of size 1000 from the same
distribution:

y = normrnd(0.1,1,1,1000);

Test again if the sample comes from a normal distribution with mean 0:

[h,p,ci] = ztest(y,0,1)
h =

1
p =

5.5160e-005
ci =

0.0655 0.1895

This time the test rejects the null hypothesis at the default α = 0.05
significance level. The p-value has fallen below α = 0.05 and the 95%
confidence interval on the mean does not contain 0.

Because the p-value of the sample y is less than 0.01, the test will still
reject the null hypothesis when the significance level is lowered to α
= 0.01:

[h,p,ci] = ztest(y,0,1,0.01)
h =

1
p =

5.5160e-005
ci =

0.0461 0.2090

This example will produce slightly different results each time it is run,
because of the random sampling.

See Also ttest, ttest2
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A Data Sets

Statistics Toolbox software includes the sample data sets in the following
table.

To load a data set into the MATLAB workspace, type:

load filename

where filename is one of the files listed in the table.

Data sets contain individual data variables, description variables with
references, and dataset arrays encapsulating the data set and its description,
as appropriate.

File Description of Data Set

acetylene.mat Chemical reaction data with correlated predictors

arrhythmia.mat Cardiac arrhythmia data from the UCI machine
learning repository

carbig.mat Measurements of large model cars, 1970–1982

carsmall.mat Measurements of small model cars, 1970–1982

cereal.mat Breakfast cereal ingredients

cities.mat Quality of life ratings for U.S. metropolitan areas

discrim.mat A version of cities.mat used for discriminant
analysis

examgrades.mat Exam grades on a scale of 0–100

fisheriris.mat Fisher’s 1936 iris data

flu.mat Google Flu Trends estimated ILI (influenza-like
illness) percentage for various regions of the US,
and CDC weighted ILI percentage based on sentinel
provider reports

gas.mat Gasoline prices around the state of Massachusetts
in 1993

hald.mat Heat of cement vs. mix of ingredients

hogg.mat Bacteria counts in different shipments of milk
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File Description of Data Set

hospital.mat Simulated hospital data

imports-85.mat 1985 Auto Imports Database from the UCI
repository

ionosphere.mat Ionosphere dataset from the UCI machine learning
repository

kmeansdata.mat Four-dimensional clustered data

lawdata.mat Grade point average and LSAT scores from 15 law
schools

mileage.mat Mileage data for three car models from two factories

moore.mat Biochemical oxygen demand on five predictors

morse.mat Recognition of Morse code distinctions by non-coders

ovariancancer.mat Grouped observations on 4000 predictors

parts.mat Dimensional run-out on 36 circular parts

polydata.mat Sample data for polynomial fitting

popcorn.mat Popcorn yield by popper type and brand

reaction.mat Reaction kinetics for Hougen-Watson model

sat.dat Scholastic Aptitude Test averages by gender and
test (table)

sat2.dat Scholastic Aptitude Test averages by gender and
test (csv)

spectra.mat NIR spectra and octane numbers of 60 gasoline
samples

stockreturns.mat Simulated stock returns
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Distribution Reference

• “Bernoulli Distribution” on page B-3

• “Beta Distribution” on page B-4

• “Binomial Distribution” on page B-7

• “Birnbaum-Saunders Distribution” on page B-10

• “Chi-Square Distribution” on page B-12

• “Copulas” on page B-14

• “Custom Distributions” on page B-15

• “Exponential Distribution” on page B-16

• “Extreme Value Distribution” on page B-19

• “F Distribution” on page B-25

• “Gamma Distribution” on page B-27

• “Gaussian Distribution” on page B-30

• “Gaussian Mixture Distributions” on page B-31

• “Generalized Extreme Value Distribution” on page B-32

• “Generalized Pareto Distribution” on page B-37

• “Geometric Distribution” on page B-41

• “Hypergeometric Distribution” on page B-43

• “Inverse Gaussian Distribution” on page B-45

• “Inverse Wishart Distribution” on page B-46

• “Johnson System” on page B-48

• “Logistic Distribution” on page B-49



B Distribution Reference

• “Loglogistic Distribution” on page B-50

• “Lognormal Distribution” on page B-51

• “Multinomial Distribution” on page B-54

• “Multivariate Gaussian Distribution” on page B-57

• “Multivariate Normal Distribution” on page B-58

• “Multivariate t Distribution” on page B-64

• “Nakagami Distribution” on page B-70

• “Negative Binomial Distribution” on page B-71

• “Noncentral Chi-Square Distribution” on page B-75

• “Noncentral F Distribution” on page B-77

• “Noncentral t Distribution” on page B-79

• “Nonparametric Distributions” on page B-81

• “Normal Distribution” on page B-82

• “Pareto Distribution” on page B-85

• “Pearson System” on page B-86

• “Piecewise Distributions” on page B-87

• “Poisson Distribution” on page B-88

• “Rayleigh Distribution” on page B-90

• “Rician Distribution” on page B-92

• “Student’s t Distribution” on page B-94

• “t Location-Scale Distribution” on page B-96

• “Uniform Distribution (Continuous)” on page B-98

• “Uniform Distribution (Discrete)” on page B-100

• “Weibull Distribution” on page B-102

• “Wishart Distribution” on page B-105
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Bernoulli Distribution

Definition of the Bernoulli Distribution
The Bernoulli distribution is a special case of the binomial distribution, with
n = 1.

See Also
“Discrete Distributions” on page 5-7
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Beta Distribution

In this section...

“Definition” on page B-4

“Background” on page B-4

“Parameters” on page B-5

“Example” on page B-6

“See Also” on page B-6

Definition
The beta pdf is

where B( · ) is the Beta function. The indicator function I(0,1)(x) ensures that
only values of x in the range (0 1) have nonzero probability.

Background
The beta distribution describes a family of curves that are unique in that they
are nonzero only on the interval (0 1). A more general version of the function
assigns parameters to the endpoints of the interval.

The beta cdf is the same as the incomplete beta function.

The beta distribution has a functional relationship with the t distribution. If
Y is an observation from Student’s t distribution with ν degrees of freedom,
then the following transformation generates X, which is beta distributed.

If , then
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This relationship is used to compute values of the t cdf and inverse function
as well as generating t distributed random numbers.

Parameters
Suppose you are collecting data that has hard lower and upper bounds of zero
and one respectively. Parameter estimation is the process of determining the
parameters of the beta distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The
likelihood has the same form as the beta pdf. But for the pdf, the parameters
are known constants and the variable is x. The likelihood function reverses the
roles of the variables. Here, the sample values (the x’s) are already observed.
So they are the fixed constants. The variables are the unknown parameters.
Maximum likelihood estimation (MLE) involves calculating the values of the
parameters that give the highest likelihood given the particular set of data.

The function betafit returns the MLEs and confidence intervals for the
parameters of the beta distribution. Here is an example using random
numbers from the beta distribution with a = 5 and b = 0.2.

r = betarnd(5,0.2,100,1);
[phat, pci] = betafit(r)

phat =
4.5330 0.2301

pci =
2.8051 0.1771
6.2610 0.2832

The MLE for parameter a is 4.5330, compared to the true value of 5. The
95% confidence interval for a goes from 2.8051 to 6.2610, which includes
the true value.

Similarly the MLE for parameter b is 0.2301, compared to the true value
of 0.2. The 95% confidence interval for b goes from 0.1771 to 0.2832, which
also includes the true value. In this made-up example you know the “true
value.” In experimentation you do not.
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Example
The shape of the beta distribution is quite variable depending on the values of
the parameters, as illustrated by the plot below.

The constant pdf (the flat line) shows that the standard uniform distribution
is a special case of the beta distribution.

See Also
“Continuous Distributions (Data)” on page 5-4
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Binomial Distribution

In this section...

“Definition” on page B-7

“Background” on page B-7

“Parameters” on page B-8

“Example” on page B-9

“See Also” on page B-9

Definition
The binomial pdf is

f k n p
n
k

p pk n k( | , ) ( )=
⎛

⎝
⎜

⎞

⎠
⎟ − −1

where k is the number of successes in n trials of a Bernoulli process with
probability of success p.

The binomial distribution is discrete, defined for integers k = 0, 1, 2, ... n,
where it is nonzero.

Background
The binomial distribution models the total number of successes in repeated
trials from an infinite population under the following conditions:

• Only two outcomes are possible on each of n trials.

• The probability of success for each trial is constant.

• All trials are independent of each other.

The binomial distribution is a generalization of the Bernoulli distribution; it
generalizes to the multinomial distribution.
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Parameters
Suppose you are collecting data from a widget manufacturing process, and
you record the number of widgets within specification in each batch of 100.
You might be interested in the probability that an individual widget is
within specification. Parameter estimation is the process of determining the
parameter, p, of the binomial distribution that fits this data best in some
sense.

One popular criterion of goodness is to maximize the likelihood function.
The likelihood has the same form as the binomial pdf above. But for the pdf,
the parameters (n and p) are known constants and the variable is x. The
likelihood function reverses the roles of the variables. Here, the sample values
(the x’s) are already observed. So they are the fixed constants. The variables
are the unknown parameters. MLE involves calculating the value of p that
give the highest likelihood given the particular set of data.

The function binofit returns the MLEs and confidence intervals for the
parameters of the binomial distribution. Here is an example using random
numbers from the binomial distribution with n = 100 and p = 0.9.

r = binornd(100,0.9)

r =
88

[phat, pci] = binofit(r,100)

phat =
0.8800

pci =
0.7998
0.9364

The MLE for parameter p is 0.8800, compared to the true value of 0.9. The
95% confidence interval for p goes from 0.7998 to 0.9364, which includes
the true value. In this made-up example you know the “true value” of p. In
experimentation you do not.
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Example
The following commands generate a plot of the binomial pdf for n = 10 and
p = 1/2.

x = 0:10;
y = binopdf(x,10,0.5);
plot(x,y,'+')

See Also
“Discrete Distributions” on page 5-7
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Birnbaum-Saunders Distribution

In this section...

“Definition” on page B-10

“Background” on page B-10

“Parameters” on page B-11

“See Also” on page B-11

Definition
The Birnbaum-Saunders distribution has the density function
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with scale parameter β > 0 and shape parameter γ > 0, for x > 0.

If x has a Birnbaum-Saunders distribution with parameters β and γ, then

x
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has a standard normal distribution.

Background
The Birnbaum-Saunders distribution was originally proposed as a lifetime
model for materials subject to cyclic patterns of stress and strain, where the
ultimate failure of the material comes from the growth of a prominent flaw.
In materials science, Miner’s Rule suggests that the damage occurring after n
cycles, at a stress level with an expected lifetime of N cycles, is proportional
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to n / N. Whenever Miner’s Rule applies, the Birnbaum-Saunders model is a
reasonable choice for a lifetime distribution model.

Parameters
See mle, dfittool.

See Also
“Continuous Distributions (Data)” on page 5-4
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Chi-Square Distribution

In this section...

“Definition” on page B-12

“Background” on page B-12

“Example” on page B-13

“See Also” on page B-13

Definition
The χ2 pdf is

where Γ( · ) is the Gamma function, and ν is the degrees of freedom.

Background
The χ2 distribution is a special case of the gamma distribution where b = 2 in
the equation for gamma distribution below.

The χ2 distribution gets special attention because of its importance in normal
sampling theory. If a set of n observations is normally distributed with
variance σ2, and s2 is the sample standard deviation, then

This relationship is used to calculate confidence intervals for the estimate of
the normal parameter σ2 in the function normfit.
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Example
The χ2 distribution is skewed to the right especially for few degrees of freedom
(ν). The plot shows the χ2 distribution with four degrees of freedom.

x = 0:0.2:15;
y = chi2pdf(x,4);
plot(x,y)

See Also
“Continuous Distributions (Statistics)” on page 5-6
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Copulas
See “Copulas” on page 5-108.
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Custom Distributions
User-defined custom distributions, created using M-files and function
handles, are supported by the Statistics Toolbox functions pdf, cdf, icdf, and
mle, and the Statistics Toolbox GUI dfittool.
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Exponential Distribution

In this section...

“Definition” on page B-16

“Background” on page B-16

“Parameters” on page B-16

“Example” on page B-17

“See Also” on page B-18

Definition
The exponential pdf is

Background
Like the chi-square distribution, the exponential distribution is a special case
of the gamma distribution (obtained by setting a = 1)

where Γ( · ) is the Gamma function.

The exponential distribution is special because of its utility in modeling
events that occur randomly over time. The main application area is in studies
of lifetimes.

Parameters
Suppose you are stress testing light bulbs and collecting data on their
lifetimes. You assume that these lifetimes follow an exponential distribution.
You want to know how long you can expect the average light bulb to last.
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Parameter estimation is the process of determining the parameters of the
exponential distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The
likelihood has the same form as the exponential pdf above. But for the pdf,
the parameters are known constants and the variable is x. The likelihood
function reverses the roles of the variables. Here, the sample values (the x’s)
are already observed. So they are the fixed constants. The variables are the
unknown parameters. MLE involves calculating the values of the parameters
that give the highest likelihood given the particular set of data.

The function expfit returns the MLEs and confidence intervals for the
parameters of the exponential distribution. Here is an example using random
numbers from the exponential distribution with µ = 700.

lifetimes = exprnd(700,100,1);
[muhat, muci] = expfit(lifetimes)

muhat =

672.8207

muci =

547.4338
810.9437

The MLE for parameter µ is 672, compared to the true value of 700. The 95%
confidence interval for µ goes from 547 to 811, which includes the true value.

In the life tests you do not know the true value of µ so it is nice to have a
confidence interval on the parameter to give a range of likely values.

Example
For exponentially distributed lifetimes, the probability that an item will
survive an extra unit of time is independent of the current age of the item.
The example shows a specific case of this special property.

l = 10:10:60;
lpd = l+0.1;
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deltap = (expcdf(lpd,50)-expcdf(l,50))./(1-expcdf(l,50))

deltap =
0.0020 0.0020 0.0020 0.0020 0.0020 0.0020

The following commands generate a plot of the exponential pdf with its
parameter (and mean), µ, set to 2.

x = 0:0.1:10;
y = exppdf(x,2);
plot(x,y)

See Also
“Continuous Distributions (Data)” on page 5-4
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Extreme Value Distribution

In this section...

“Definition” on page B-19

“Background” on page B-19

“Parameters” on page B-21

“Example” on page B-22

“See Also” on page B-24

Definition
The probability density function for the extreme value distribution with
location parameter µ and scale parameter σ is

If T has a Weibull distribution with parameters a and b, then log T has an
extreme value distribution with parameters µ = log a and σ = 1/b.

Background
Extreme value distributions are often used to model the smallest or largest
value among a large set of independent, identically distributed random values
representing measurements or observations. The extreme value distribution
is appropriate for modeling the smallest value from a distribution whose tails
decay exponentially fast, for example, the normal distribution. It can also
model the largest value from a distribution, such as the normal or exponential
distributions, by using the negative of the original values.

For example, the following fits an extreme value distribution to minimum
values taken over 1000 sets of 500 observations from a normal distribution:

xMinima = min(randn(1000,500), [], 2);
paramEstsMinima = evfit(xMinima);
y = linspace(-5,-1.5,1001);
hist(xMinima,-4.75:.25:-1.75);
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p = evpdf(y,paramEstsMinima(1),paramEstsMinima(2));
line(y,.25*length(xMinima)*p,'color','r')

The following fits an extreme value distribution to the maximum values in
each set of observations:

xMaxima = max(randn(1000,500), [], 2);
paramEstsMaxima = evfit(-xMaxima);
y = linspace(1.5,5,1001);
hist(xMaxima,1.75:.25:4.75);
p = evpdf(-y,paramEstsMaxima(1),paramEstsMaxima(2));
line(y,.25*length(xMaxima)*p,'color','r')
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Although the extreme value distribution is most often used as a model for
extreme values, you can also use it as a model for other types of continuous
data. For example, extreme value distributions are closely related to the
Weibull distribution. If T has a Weibull distribution, then log(T) has a type 1
extreme value distribution.

Parameters
The function evfit returns the maximum likelihood estimates (MLEs) and
confidence intervals for the parameters of the extreme value distribution. The
following example shows how to fit some sample data using evfit, including
estimates of the mean and variance from the fitted distribution.

Suppose you want to model the size of the smallest washer in each batch
of 1000 from a manufacturing process. If you believe that the sizes are
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independent within and between each batch, you can fit an extreme value
distribution to measurements of the minimum diameter from a series of eight
experimental batches. The following code returns the MLEs of the distribution
parameters as parmhat and the confidence intervals as the columns of parmci.

x = [19.774 20.141 19.44 20.511 21.377 19.003 19.66 18.83];
[parmhat, parmci] = evfit(x)

parmhat =
20.2506 0.8223

parmci =
19.644 0.49861
20.857 1.3562

You can find mean and variance of the extreme value distribution with these
parameters using the function evstat.

[meanfit, varfit] = evstat(parmhat(1),parmhat(2))

meanfit =
19.776

varfit =
1.1123

Example
The following code generates a plot of the pdf for the extreme value
distribution.

t = [-5:.01:2];
y = evpdf(t);
plot(t,y)
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The extreme value distribution is skewed to the left, and its general shape
remains the same for all parameter values. The location parameter, mu, shifts
the distribution along the real line, and the scale parameter, sigma, expands
or contracts the distribution. This example plots the probability function for
different combinations of mu and sigma.

x = -15:.01:5;
plot(x,evpdf(x,2,1),'-', ...

x,evpdf(x,0,2),':', ...
x,evpdf(x,-2,4),'-.');

legend({'mu = 2, sigma = 1', ...
'mu = 0, sigma = 2', ...
'mu = -2, sigma = 4'}, ...

'Location','NW')
xlabel('x')
ylabel('f(x|mu,sigma)')
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See Also
“Continuous Distributions (Data)” on page 5-4
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F Distribution

In this section...

“Definition” on page B-25

“Background” on page B-25

“Example” on page B-26

“See Also” on page B-26

Definition
The pdf for the F distribution is

where Γ( · ) is the Gamma function.

Background
The F distribution has a natural relationship with the chi-square distribution.
If χ1 and χ2 are both chi-square with ν1 and ν2 degrees of freedom respectively,
then the statistic F below is F-distributed.

The two parameters, ν1 and ν2, are the numerator and denominator degrees
of freedom. That is, ν1 and ν2 are the number of independent pieces of
information used to calculate χ1 and χ2, respectively.
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Example
The most common application of the F distribution is in standard tests of
hypotheses in analysis of variance and regression.

The plot shows that the F distribution exists on the positive real numbers
and is skewed to the right.

x = 0:0.01:10;
y = fpdf(x,5,3);
plot(x,y)

See Also
“Continuous Distributions (Statistics)” on page 5-6
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Gamma Distribution

In this section...

“Definition” on page B-27

“Background” on page B-27

“Parameters” on page B-28

“Example” on page B-29

“See Also” on page B-29

Definition
The gamma pdf is

y f x a b
b a

x e
a

a
x

b= = −
−

( | , )
( )

1 1

Γ

where Γ( · ) is the Gamma function.

Background
The gamma distribution models sums of exponentially distributed random
variables.

The gamma distribution family is based on two parameters. The chi-square
and exponential distributions, which are children of the gamma distribution,
are one-parameter distributions that fix one of the two gamma parameters.

The gamma distribution has the following relationship with the incomplete
Gamma function.

f x a b
x
b

a( | , ) ( , )= gammainc

For b = 1 the functions are identical.
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When a is large, the gamma distribution closely approximates a normal
distribution with the advantage that the gamma distribution has density
only for positive real numbers.

Parameters
Suppose you are stress testing computer memory chips and collecting data on
their lifetimes. You assume that these lifetimes follow a gamma distribution.
You want to know how long you can expect the average computer memory chip
to last. Parameter estimation is the process of determining the parameters of
the gamma distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function.
The likelihood has the same form as the gamma pdf above. But for the pdf,
the parameters are known constants and the variable is x. The likelihood
function reverses the roles of the variables. Here, the sample values (the x’s)
are already observed. So they are the fixed constants. The variables are the
unknown parameters. MLE involves calculating the values of the parameters
that give the highest likelihood given the particular set of data.

The function gamfit returns the MLEs and confidence intervals for the
parameters of the gamma distribution. Here is an example using random
numbers from the gamma distribution with a = 10 and b = 5.

lifetimes = gamrnd(10,5,100,1);
[phat, pci] = gamfit(lifetimes)

phat =

10.9821 4.7258

pci =

7.4001 3.1543
14.5640 6.2974

Note phat(1) = and phat(2) = . The MLE for parameter a is 10.98,
compared to the true value of 10. The 95% confidence interval for a goes from
7.4 to 14.6, which includes the true value.
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Similarly the MLE for parameter b is 4.7, compared to the true value of 5.
The 95% confidence interval for b goes from 3.2 to 6.3, which also includes
the true value.

In the life tests you do not know the true value of a and b so it is nice to have
a confidence interval on the parameters to give a range of likely values.

Example
In the example the gamma pdf is plotted with the solid line. The normal
pdf has a dashed line type.

x = gaminv((0.005:0.01:0.995),100,10);
y = gampdf(x,100,10);
y1 = normpdf(x,1000,100);
plot(x,y,'-',x,y1,'-.')

See Also
“Continuous Distributions (Data)” on page 5-4
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Gaussian Distribution
See “Normal Distribution” on page B-82.
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Gaussian Mixture Distributions
See the discussion of the gmdistribution class in the “Gaussian Mixture
Models” on page 5-100 section of “Probability Distributions Used for
Multivariate Modeling” on page 5-100 and the “Gaussian Mixture Models” on
page 11-28 section of Chapter 11, “Cluster Analysis”.
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Generalized Extreme Value Distribution

In this section...

“Definition” on page B-32

“Background” on page B-32

“Parameters” on page B-33

“Example” on page B-34

“See Also” on page B-36

Definition
The probability density function for the generalized extreme value distribution
with location parameter µ, scale parameter σ, and shape parameter k ≠ 0 is
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k > 0 corresponds to the Type II case, while k < 0 corresponds to the Type
III case. In the limit for k = 0, corresponding to the Type I case, the density is
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Background
Like the extreme value distribution, the generalized extreme value
distribution is often used to model the smallest or largest value among a
large set of independent, identically distributed random values representing
measurements or observations. For example, you might have batches of 1000
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washers from a manufacturing process. If you record the size of the largest
washer in each batch, the data are known as block maxima (or minima if you
record the smallest). You can use the generalized extreme value distribution
as a model for those block maxima.

The generalized extreme value combines three simpler distributions into a
single form, allowing a continuous range of possible shapes that includes
all three of the simpler distributions. You can use any one of those
distributions to model a particular dataset of block maxima. The generalized
Pareto distribution allows you to “let the data decide” which distribution is
appropriate.

The three cases covered by the generalized extreme value distribution are
often referred to as the Types I, II, and III. Each type corresponds to the
limiting distribution of block maxima from a different class of underlying
distributions. Distributions whose tails decrease exponentially, such as the
normal, lead to the Type I. Distributions whose tails decrease as a polynomial,
such as Student’s t, lead to the Type II. Distributions whose tails are finite,
such as the beta, lead to the Type III.

Types I, II, and III are sometimes also referred to as the Gumbel, Frechet,
and Weibull types, though this terminology can be slightly confusing. The
Type I (Gumbel) and Type III (Weibull) cases actually correspond to the
mirror images of the usual Gumbel and Weibull distributions, for example,
as computed by the functions evcdf and evfit , or wblcdf and wblfit,
respectively. Finally, the Type II (Frechet) case is equivalent to taking the
reciprocal of values from a standard Weibull distribution.

Parameters
If you generate 250 blocks of 1000 random values drawn from Student’s t
distribution with 5 degrees of freedom, and take their maxima, you can fit a
generalized extreme value distribution to those maxima.

blocksize = 1000;
nblocks = 250;
t = trnd(5,blocksize,nblocks);
x = max(t); % 250 column maxima
paramEsts = gevfit(x)
paramEsts =
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0.2438 1.1760 5.8045

Notice that the shape parameter estimate (the first element) is positive,
which is what you would expect based on block maxima from a Student’s t
distribution.

hist(x,2:20);
set(get(gca,'child'),'FaceColor',[.8 .8 1])
xgrid = linspace(2,20,1000);
line(xgrid,nblocks*...

gevpdf(xgrid,paramEsts(1),paramEsts(2),paramEsts(3)));

Example
The following code generates examples of probability density functions for the
three basic forms of the generalized extreme value distribution.
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x = linspace(-3,6,1000);
y1 = gevpdf(x,-.5,1,0);
y2 = gevpdf(x,0,1,0);
y3 = gevpdf(x,.5,1,0)
plot(x,y1,'-', x,y2,'-', x,y3,'-')
legend({'K<0, Type III' 'K=0, Type I' 'K>0, Type II'});

Notice that for k > 0, the distribution has zero probability density for x such
that

x   < +-
σ

μ
k

For k < 0, the distribution has zero probability density for

B-35



B Distribution Reference

x   > +-
σ

μ
k

In the limit for k = 0, there is no upper or lower bound.

See Also
“Continuous Distributions (Data)” on page 5-4
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Generalized Pareto Distribution

In this section...

“Definition” on page B-37

“Background” on page B-37

“Parameters” on page B-38

“Example” on page B-39

“See Also” on page B-40

Definition
The probability density function for the generalized Pareto distribution with
shape parameter k ≠ 0, scale parameter σ, and threshold parameter θ, is
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for θ < x, when k > 0, or for θ < x < –σ/k when k < 0.

In the limit for k = 0, the density is
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for θ < x.

If k = 0 and θ = 0, the generalized Pareto distribution is equivalent to
the exponential distribution. If k > 0 and θ = σ/k, the generalized Pareto
distribution is equivalent to the Pareto distribution.

Background
Like the exponential distribution, the generalized Pareto distribution is often
used to model the tails of another distribution. For example, you might
have washers from a manufacturing process. If random influences in the
process lead to differences in the sizes of the washers, a standard probability
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distribution, such as the normal, could be used to model those sizes. However,
while the normal distribution might be a good model near its mode, it might
not be a good fit to real data in the tails and a more complex model might
be needed to describe the full range of the data. On the other hand, only
recording the sizes of washers larger (or smaller) than a certain threshold
means you can fit a separate model to those tail data, which are known as
exceedences. You can use the generalized Pareto distribution in this way, to
provide a good fit to extremes of complicated data.

The generalized Pareto distribution allows a continuous range of possible
shapes that includes both the exponential and Pareto distributions as special
cases. You can use either of those distributions to model a particular dataset
of exceedences. The generalized Pareto distribution allows you to “let the data
decide” which distribution is appropriate.

The generalized Pareto distribution has three basic forms, each corresponding
to a limiting distribution of exceedence data from a different class of
underlying distributions.

• Distributions whose tails decrease exponentially, such as the normal, lead
to a generalized Pareto shape parameter of zero.

• Distributions whose tails decrease as a polynomial, such as Student’s t,
lead to a positive shape parameter.

• Distributions whose tails are finite, such as the beta, lead to a negative
shape parameter.

The generalized Pareto distribution is used in the tails of distribution fit
objects of the paretotails class.

Parameters
If you generate a large number of random values from a Student’s t
distribution with 5 degrees of freedom, and then discard everything less than
2, you can fit a generalized Pareto distribution to those exceedences.

t = trnd(5,5000,1);
y = t(t > 2) - 2;
paramEsts = gpfit(y)
paramEsts =
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0.1267 0.8134

Notice that the shape parameter estimate (the first element) is positive, which
is what you would expect based on exceedences from a Student’s t distribution.

hist(y+2,2.25:.5:11.75);
set(get(gca,'child'),'FaceColor',[.8 .8 1])
xgrid = linspace(2,12,1000);
line(xgrid,.5*length(y)*...

gppdf(xgrid,paramEsts(1),paramEsts(2),2));

Example
The following code generates examples of the probability density functions for
the three basic forms of the generalized Pareto distribution.

x = linspace(0,10,1000);
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y1 = gppdf(x,-.25,1,0);
y2 = gppdf(x,0,1,0);
y3 = gppdf(x,1,1,0)
plot(x,y1,'-', x,y2,'-', x,y3,'-')
legend({'K<0' 'K=0' 'K>0'});

Notice that for k < 0, the distribution has zero probability density for   > -x
σ
k
,

while for k ≥ 0, there is no upper bound.

See Also
“Continuous Distributions (Data)” on page 5-4
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Geometric Distribution

In this section...

“Definition” on page B-41

“Background” on page B-41

“Example” on page B-41

“See Also” on page B-42

Definition
The geometric pdf is

where q = 1 – p. The geometric distribution is a special case of the negative
binomial distribution, with r = 1.

Background
The geometric distribution is discrete, existing only on the nonnegative
integers. It is useful for modeling the runs of consecutive successes (or
failures) in repeated independent trials of a system.

The geometric distribution models the number of successes before one failure
in an independent succession of tests where each test results in success or
failure.

Example
Suppose the probability of a five-year-old battery failing in cold weather is
0.03. What is the probability of starting 25 consecutive days during a long
cold snap?

1 - geocdf(25,0.03)

ans =
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0.4530

The plot shows the cdf for this scenario.

x = 0:25;
y = geocdf(x,0.03);
stairs(x,y)

See Also
“Discrete Distributions” on page 5-7
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Hypergeometric Distribution

In this section...

“Definition” on page B-43

“Background” on page B-43

“Example” on page B-44

“See Also” on page B-44

Definition
The hypergeometric pdf is

Background
The hypergeometric distribution models the total number of successes in a
fixed-size sample drawn without replacement from a finite population.

The distribution is discrete, existing only for nonnegative integers less than
the number of samples or the number of possible successes, whichever is
greater. The hypergeometric distribution differs from the binomial only in
that the population is finite and the sampling from the population is without
replacement.

The hypergeometric distribution has three parameters that have direct
physical interpretations.

• M is the size of the population.

• K is the number of items with the desired characteristic in the population.

• n is the number of samples drawn.
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Sampling “without replacement” means that once a particular sample
is chosen, it is removed from the relevant population for all subsequent
selections.

Example
The plot shows the cdf of an experiment taking 20 samples from a group of
1000 where there are 50 items of the desired type.

x = 0:10;
y = hygecdf(x,1000,50,20);
stairs(x,y)

See Also
“Discrete Distributions” on page 5-7
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Inverse Gaussian Distribution

In this section...

“Definition” on page B-45

“Background” on page B-45

“Parameters” on page B-45

“See Also” on page B-45

Definition
The inverse Gaussian distribution has the density function

Background
Also known as the Wald distribution, the inverse Gaussian is used to model
nonnegative positively skewed data. The distribution originated in the theory
of Brownian motion, but has been used to model diverse phenomena. Inverse
Gaussian distributions have many similarities to standard Gaussian (normal)
distributions, which lead to applications in inferential statistics.

Parameters
See mle, dfittool.

See Also
“Continuous Distributions (Data)” on page 5-4
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Inverse Wishart Distribution

Definition
The probability density function of the d-dimensional Inverse Wishart
distribution is given by
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where X and T are d-by-d symmetric positive definite matrices, and ν is a
scalar greater than or equal to d. While it is possible to define the Inverse
Wishart for singular Τ, the density cannot be written as above.

If a random matrix has a Wishart distribution with parameters T-1 and ν,
then the inverse of that random matrix has an inverse Wishart distribution
with parameters Τ and ν. The mean of the distribution is given by

1
1ν − −d
Τ

where d is the number of rows and columns in T.

Only random matrix generation is supported for the inverse Wishart,
including both singular and nonsingular T.

Background
The inverse Wishart distribution is based on the Wishart distribution. In
Bayesian statistics it is used as the conjugate prior for the covariance matrix
of a multivariate normal distribution.

Example
Notice that the sampling variability is quite large when the degrees of
freedom is small.

Tau = [1 .5; .5 2];
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df = 10; S1 = iwishrnd(Tau,df)*(df-2-1)

S1 =
1.7959 0.64107

0.64107 1.5496

df = 1000; S2 = iwishrnd(Tau,df)*(df-2-1)

S2 =
0.9842 0.50158

0.50158 2.1682

See Also
“Multivariate Distributions” on page 5-8
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Johnson System
See “Pearson and Johnson Systems” on page 6-26.
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Logistic Distribution

In this section...

“Definition” on page B-49

“Background” on page B-49

“Parameters” on page B-49

“See Also” on page B-49

Definition
The logistic distribution has the density function

with location parameter µ and scale parameter σ > 0, for all real x.

Background
The logistic distribution originated with Verhulst’s work on demography in
the early 1800s. The distribution has been used for various growth models,
and is used in logistic regression. It has longer tails and a higher kurtosis
than the normal distribution.

Parameters
See mle, dfittool.

See Also
“Continuous Distributions (Data)” on page 5-4
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Loglogistic Distribution

In this section...

“Definition” on page B-50

“Parameters” on page B-50

“See Also” on page B-50

Definition
The variable x has a loglogistic distribution with location parameter µ and
scale parameter σ > 0 if ln x has a logistic distribution with parameters µ
and σ. The relationship is similar to that between the lognormal and normal
distribution.

Parameters
See mle, dfittool.

See Also
“Continuous Distributions (Data)” on page 5-4
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Lognormal Distribution

In this section...

“Definition” on page B-51

“Background” on page B-51

“Example” on page B-52

“See Also” on page B-53

Definition
The lognormal pdf is

Background
The normal and lognormal distributions are closely related. If X is distributed
lognormally with parameters µ and σ, then log(X) is distributed normally
with mean µ and standard deviation σ.

The mean m and variance v of a lognormal random variable are functions of µ
and σ that can be calculated with the lognstat function. They are:
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The lognormal distribution is applicable when the quantity of interest must
be positive, since log(X) exists only when X is positive.

Example
Suppose the income of a family of four in the United States follows a lognormal
distribution with µ = log(20,000) and σ2 = 1.0. Plot the income density.

x = (10:1000:125010)';
y = lognpdf(x,log(20000),1.0);
plot(x,y)
set(gca,'xtick',[0 30000 60000 90000 120000])
set(gca,'xticklabel',str2mat('0','$30,000','$60,000',...

'$90,000','$120,000'))
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See Also
“Continuous Distributions (Data)” on page 5-4
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Multinomial Distribution

In this section...

“Definition” on page B-54

“Background” on page B-54

“Example” on page B-54

Definition
The multinomial pdf is
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where x = (x1, ... , xk) gives the number of each of k outcomes in n trials of a
process with fixed probabilities p = (p1, ... , pk) of individual outcomes in any
one trial. The vector x has non-negative integer components that sum to n.
The vector p has non-negative integer components that sum to 1.

Background
The multinomial distribution is a generalization of the binomial distribution.
The binomial distribution gives the probability of the number of “successes”
and “failures” in n independent trials of a two-outcome process. The
probability of “success” and “failure” in any one trial is given by the fixed
probabilities p and q = 1–p. The multinomial distribution gives the probability
of each combination of outcomes in n independent trials of a k-outcome
process. The probability of each outcome in any one trial is given by the fixed
probabilities p1, ... , pk.

The expected value of outcome i is npi. The variance of outcome i is npi(1 – pi).
The covariance of outcomes i and j is –npipj for distinct i and j.

Example
The following uses mnpdf to produce a visualization of a trinomial distribution:
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% Compute the distribution
p = [1/2 1/3 1/6]; % Outcome probabilities
n = 10; % Sample size
x1 = 0:n;
x2 = 0:n;
[X1,X2] = meshgrid(x1,x2);
X3 = n-(X1+X2);
Y = mnpdf([X1(:),X2(:),X3(:)],repmat(p,(n+1)^2,1));

% Plot the distribution
Y = reshape(Y,n+1,n+1);
bar3(Y)
set(gca,'XTickLabel',0:n)
set(gca,'YTickLabel',0:n)
xlabel('x_1')
ylabel('x_2')
zlabel('Probability Mass')
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Note that the visualization does not show x3, which is determined by the
constraint x1 + x2 + x3 = n.
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Multivariate Gaussian Distribution
See “Multivariate Normal Distribution” on page B-58.
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Multivariate Normal Distribution

In this section...

“Definition” on page B-58

“Background” on page B-58

“Example” on page B-59

“See Also” on page B-63

Definition
The probability density function of the d-dimensional multivariate normal
distribution is given by
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where x and μ are 1-by-d vectors and Σ is a d-by-d symmetric positive definite
matrix. While it is possible to define the multivariate normal for singular Σ,
the density cannot be written as above. Only random vector generation is
supported for the singular case. Note that while most textbooks define the
multivariate normal with x and μ oriented as column vectors, for the purposes
of data analysis software, it is more convenient to orient them as row vectors,
and Statistics Toolbox software uses that orientation.

Background
The multivariate normal distribution is a generalization of the univariate
normal to two or more variables. It is a distribution for random vectors
of correlated variables, each element of which has a univariate normal
distribution. In the simplest case, there is no correlation among variables, and
elements of the vectors are independent univariate normal random variables.

The multivariate normal distribution is parameterized with a mean vector, μ,
and a covariance matrix, Σ. These are analogous to the mean μ and variance
σ2 parameters of a univariate normal distribution. The diagonal elements of Σ
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contain the variances for each variable, while the off-diagonal elements of Σ
contain the covariances between variables.

The multivariate normal distribution is often used as a model for multivariate
data, primarily because it is one of the few multivariate distributions that is
tractable to work with.

Example
This example shows the probability density function (pdf) and cumulative
distribution function (cdf) for a bivariate normal distribution with unequal
standard deviations. You can use the multivariate normal distribution in a
higher number of dimensions as well, although visualization is not easy.

mu = [0 0];
Sigma = [.25 .3; .3 1];
x1 = -3:.2:3; x2 = -3:.2:3;
[X1,X2] = meshgrid(x1,x2);
F = mvnpdf([X1(:) X2(:)],mu,Sigma);
F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]);
axis([-3 3 -3 3 0 .4])
xlabel('x1'); ylabel('x2'); zlabel('Probability Density');
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F = mvncdf([X1(:) X2(:)],mu,Sigma);
F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]);
axis([-3 3 -3 3 0 1])
xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability');
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Since the bivariate normal distribution is defined on the plane, you can also
compute cumulative probabilities over rectangular regions. For example,
this contour plot illustrates the computation that follows, of the probability
contained within the unit square.

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]);
xlabel('x'); ylabel('y');
line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k');
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mvncdf([0 0],[1 1],mu,Sigma)
ans =

0.20974

Computing a multivariate cumulative probability requires significantly
more work than computing a univariate probability. By default, the mvncdf
function computes values to less than full machine precision, and returns an
estimate of the error as an optional second output:

[F,err] = mvncdf([0 0],[1 1],mu,Sigma)
F =

0.20974
err =

1e-008
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See Also
“Multivariate Distributions” on page 5-8

B-63



B Distribution Reference

Multivariate t Distribution

In this section...

“Definition” on page B-64

“Background” on page B-64

“Example” on page B-65

“See Also” on page B-69

Definition
The probability density function of the d-dimensional multivariate Student’s t
distribution is given by
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where x is a 1-by-d vector, P is a d-by-d symmetric, positive definite matrix,
and ν is a positive scalar. While it is possible to define the multivariate
Student’s t for singular P, the density cannot be written as above. For the
singular case, only random number generation is supported. Note that while
most textbooks define the multivariate Student’s t with x oriented as a column
vector, for the purposes of data analysis software, it is more convenient to
orient x as a row vector, and Statistics Toolbox software uses that orientation.

Background
The multivariate Student’s t distribution is a generalization of the univariate
Student’s t to two or more variables. It is a distribution for random vectors
of correlated variables, each element of which has a univariate Student’s t
distribution. In the same way as the univariate Student’s t distribution can
be constructed by dividing a standard univariate normal random variable by
the square root of a univariate chi-square random variable, the multivariate
Student’s t distribution can be constructed by dividing a multivariate
normal random vector having zero mean and unit variances by a univariate
chi-square random variable.
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The multivariate Student’s t distribution is parameterized with a correlation
matrix, P, and a positive scalar degrees of freedom parameter, ν. ν is
analogous to the degrees of freedom parameter of a univariate Student’s t
distribution. The off-diagonal elements of P contain the correlations between
variables. Note that when P is the identity matrix, variables are uncorrelated;
however, they are not independent.

The multivariate Student’s t distribution is often used as a substitute for
the multivariate normal distribution in situations where it is known that
the marginal distributions of the individual variables have fatter tails than
the normal.

Example
This example shows the probability density function (pdf) and cumulative
distribution function (cdf) for a bivariate Student’s t distribution. You can use
the multivariate Student’s t distribution in a higher number of dimensions as
well, although visualization is not easy.

Rho = [1 .6; .6 1];
nu = 5;
x1 = -3:.2:3; x2 = -3:.2:3;
[X1,X2] = meshgrid(x1,x2);
F = mvtpdf([X1(:) X2(:)],Rho,nu);
F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]);
axis([-3 3 -3 3 0 .2])
xlabel('x1'); ylabel('x2'); zlabel('Probability Density');
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F = mvtcdf([X1(:) X2(:)],Rho,nu);
F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]);
axis([-3 3 -3 3 0 1])
xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability');
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Since the bivariate Student’s t distribution is defined on the plane, you can
also compute cumulative probabilities over rectangular regions. For example,
this contour plot illustrates the computation that follows, of the probability
contained within the unit square.

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]);
xlabel('x'); ylabel('y');
line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k');
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mvtcdf([0 0],[1 1],Rho,nu)
ans =

0.14013

Computing a multivariate cumulative probability requires significantly
more work than computing a univariate probability. By default, the mvtcdf
function computes values to less than full machine precision, and returns an
estimate of the error as an optional second output:

[F,err] = mvtcdf([0 0],[1 1],Rho,nu)
F =

0.14013
err =

1e-008
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See Also
“Multivariate Distributions” on page 5-8
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Nakagami Distribution

In this section...

“Definition” on page B-70

“Background” on page B-70

“Parameters” on page B-70

“See Also” on page B-70

Definition
The Nakagami distribution has the density function

with shape parameter µ and scale parameter ω > 0, for x > 0. If x has a
Nakagami distribution with parameters µ and ω, then x2 has a gamma
distribution with shape parameter µ and scale parameter ω/µ.

Background
In communications theory, Nakagami distributions, Rician distributions,
and Rayleigh distributions are used to model scattered signals that reach
a receiver by multiple paths. Depending on the density of the scatter, the
signal will display different fading characteristics. Rayleigh and Nakagami
distributions are used to model dense scatters, while Rician distributions
model fading with a stronger line-of-sight. Nakagami distributions can be
reduced to Rayleigh distributions, but give more control over the extent
of the fading.

Parameters
See mle, dfittool.

See Also
“Continuous Distributions (Data)” on page 5-4
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Negative Binomial Distribution

In this section...

“Definition” on page B-71

“Background” on page B-71

“Parameters” on page B-72

“Example” on page B-73

“See Also” on page B-74

Definition
When the parameter is an integer, the negative binomial pdf is

where q = 1 – p. When r is not an integer, the binomial coefficient in the
definition of the pdf is replaced by the equivalent expression

Background
In its simplest form (when r is an integer), the negative binomial distribution
models the number of failures x before a specified number of successes is
reached in a series of independent, identical trials. Its parameters are the
probability of success in a single trial, p, and the number of successes, r. A
special case of the negative binomial distribution, when r = 1, is the geometric
distribution, which models the number of failures before the first success.

More generally, r can take on non-integer values. This form of the negative
binomial distribution has no interpretation in terms of repeated trials, but,
like the Poisson distribution, it is useful in modeling count data. The negative
binomial distribution is more general than the Poisson distribution because it
has a variance that is greater than its mean, making it suitable for count data
that do not meet the assumptions of the Poisson distribution. In the limit,

B-71



B Distribution Reference

as r increases to infinity, the negative binomial distribution approaches the
Poisson distribution.

Parameters
Suppose you are collecting data on the number of auto accidents on a busy
highway, and would like to be able to model the number of accidents per day.
Because these are count data, and because there are a very large number of
cars and a small probability of an accident for any specific car, you might
think to use the Poisson distribution. However, the probability of having an
accident is likely to vary from day to day as the weather and amount of traffic
change, and so the assumptions needed for the Poisson distribution are not
met. In particular, the variance of this type of count data sometimes exceeds
the mean by a large amount. The data below exhibit this effect: most days
have few or no accidents, and a few days have a large number.

accident = [2 3 4 2 3 1 12 8 14 31 23 1 10 7 0];
mean(accident)
ans =

8.0667

var(accident)
ans =

79.352

The negative binomial distribution is more general than the Poisson, and is
often suitable for count data when the Poisson is not. The function nbinfit
returns the maximum likelihood estimates (MLEs) and confidence intervals
for the parameters of the negative binomial distribution. Here are the results
from fitting the accident data:

[phat,pci] = nbinfit(accident)
phat =

1.0060 0.1109
pci =

0.2152 0.0171
1.7968 0.2046

It is difficult to give a physical interpretation in this case to the individual
parameters. However, the estimated parameters can be used in a model
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for the number of daily accidents. For example, a plot of the estimated
cumulative probability function shows that while there is an estimated 10%
chance of no accidents on a given day, there is also about a 10% chance that
there will be 20 or more accidents.

plot(0:50,nbincdf(0:50,phat(1),phat(2)),'.-');
xlabel('Accidents per Day')
ylabel('Cumulative Probability')

Example
The negative binomial distribution can take on a variety of shapes ranging
from very skewed to nearly symmetric. This example plots the probability
function for different values of r, the desired number of successes: .1, 1, 3, 6.

x = 0:10;
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plot(x,nbinpdf(x,.1,.5),'s-', ...
x,nbinpdf(x,1,.5),'o-', ...
x,nbinpdf(x,3,.5),'d-', ...
x,nbinpdf(x,6,.5),'^-');

legend({'r = .1' 'r = 1' 'r = 3' 'r = 6'})
xlabel('x')
ylabel('f(x|r,p)')

See Also
“Discrete Distributions” on page 5-7

B-74



Noncentral Chi-Square Distribution

Noncentral Chi-Square Distribution

In this section...

“Definition” on page B-75

“Background” on page B-75

“Example” on page B-76

Definition
There are many equivalent formulas for the noncentral chi-square distribution
function. One formulation uses a modified Bessel function of the first
kind. Another uses the generalized Laguerre polynomials. The cumulative
distribution function is computed using a weighted sum of χ2 probabilities
with the weights equal to the probabilities of a Poisson distribution.
The Poisson parameter is one-half of the noncentrality parameter of the
noncentral chi-square

where δ is the noncentrality parameter.

Background
The χ2 distribution is actually a simple special case of the noncentral
chi-square distribution. One way to generate random numbers with a χ2

distribution (with ν degrees of freedom) is to sum the squares of ν standard
normal random numbers (mean equal to zero.)

What if the normally distributed quantities have a mean other than zero? The
sum of squares of these numbers yields the noncentral chi-square distribution.
The noncentral chi-square distribution requires two parameters: the degrees
of freedom and the noncentrality parameter. The noncentrality parameter is
the sum of the squared means of the normally distributed quantities.
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The noncentral chi-square has scientific application in thermodynamics and
signal processing. The literature in these areas may refer to it as the Rician
or generalized Rayleigh distribution.

Example
The following commands generate a plot of the noncentral chi-square pdf.

x = (0:0.1:10)';
p1 = ncx2pdf(x,4,2);
p = chi2pdf(x,4);
plot(x,p,'-',x,p1,'-')
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Noncentral F Distribution

In this section...

“Definition” on page B-77

“Background” on page B-77

“Example” on page B-78

“See Also” on page B-78

Definition
Similar to the noncentral χ2 distribution, the toolbox calculates noncentral
F distribution probabilities as a weighted sum of incomplete beta functions
using Poisson probabilities as the weights.

I(x|a,b) is the incomplete beta function with parameters a and b, and δ is
the noncentrality parameter.

Background
As with the χ2 distribution, the F distribution is a special case of the
noncentral F distribution. The F distribution is the result of taking the ratio
of χ2 random variables each divided by its degrees of freedom.

If the numerator of the ratio is a noncentral chi-square random variable
divided by its degrees of freedom, the resulting distribution is the noncentral
F distribution.

The main application of the noncentral F distribution is to calculate the power
of a hypothesis test relative to a particular alternative.
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Example
The following commands generate a plot of the noncentral F pdf.

x = (0.01:0.1:10.01)';
p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);
plot(x,p,'-',x,p1,'-')

See Also
“Continuous Distributions (Statistics)” on page 5-6
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Noncentral t Distribution

In this section...

“Definition” on page B-79

“Background” on page B-79

“Example” on page B-80

“See Also” on page B-80

Definition
The most general representation of the noncentral t distribution is quite
complicated. Johnson and Kotz [58] give a formula for the probability that a
noncentral t variate falls in the range [–t, t].

I(x|a,b) is the incomplete beta function with parameters a and b, δ is the
noncentrality parameter, and ν is the number of degrees of freedom.

Background
The noncentral t distribution is a generalization of Student’s t distribution.

Student’s t distribution with n – 1 degrees of freedom models the t-statistic

t
x
s n

= − 
/

where is the sample mean and s is the sample standard deviation of a
random sample of size n from a normal population with mean μ. If the
population mean is actually μ0, then the t-statistic has a noncentral t
distribution with noncentrality parameter
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The noncentrality parameter is the normalized difference between μ0 and μ.

The noncentral t distribution gives the probability that a t test will correctly
reject a false null hypothesis of mean μ when the population mean is actually
μ0; that is, it gives the power of the t test. The power increases as the
difference μ0 – μ increases, and also as the sample size n increases.

Example
The following commands generate a plot of the noncentral t pdf.

x = (-5:0.1:5)';
p1 = nctcdf(x,10,1);
p = tcdf(x,10);
plot(x,p,'-',x,p1,'-')

See Also
“Continuous Distributions (Statistics)” on page 5-6
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Nonparametric Distributions
See the discussion of ksdensity in “Estimating PDFs without Parameters”
on page 5-55.
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Normal Distribution

In this section...

“Definition” on page B-82

“Background” on page B-82

“Parameters” on page B-83

“Example” on page B-84

“See Also” on page B-84

Definition
The normal pdf is

Background
The normal distribution is a two-parameter family of curves. The first
parameter, µ, is the mean. The second, σ, is the standard deviation. The
standard normal distribution (written Φ(x)) sets µ to 0 and σ to 1.

Φ(x) is functionally related to the error function, erf.

The first use of the normal distribution was as a continuous approximation
to the binomial.

The usual justification for using the normal distribution for modeling is the
Central Limit Theorem, which states (roughly) that the sum of independent
samples from any distribution with finite mean and variance converges to the
normal distribution as the sample size goes to infinity.
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Parameters
To use statistical parameters such as mean and standard deviation reliably,
you need to have a good estimator for them. The maximum likelihood
estimates (MLEs) provide one such estimator. However, an MLE might be
biased, which means that its expected value of the parameter might not
equal the parameter being estimated. For example, an MLE is biased for
estimating the variance of a normal distribution. An unbiased estimator
that is commonly used to estimate the parameters of the normal distribution
is the minimum variance unbiased estimator (MVUE). The MVUE has the
minimum variance of all unbiased estimators of a parameter.

The MVUEs of parameters µ and σ2 for the normal distribution are the sample
mean and variance. The sample mean is also the MLE for µ. The following
are two common formulas for the variance.

where

Equation 1 is the maximum likelihood estimator for σ2, and equation 2 is
the MVUE.

As an example, suppose you want to estimate the mean, µ, and the variance,
σ2, of the heights of all fourth grade children in the United States. The
function normfit returns the MVUE for µ, the square root of the MVUE for
σ2, and confidence intervals for µ and σ2. Here is a playful example modeling
the heights in inches of a randomly chosen fourth grade class.

height = normrnd(50,2,30,1); % Simulate heights.
[mu,s,muci,sci] = normfit(height)

B-83
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mu =
50.2025

s =
1.7946

muci =
49.5210
50.8841

sci =
1.4292
2.4125

Note that s^2 is the MVUE of the variance.

s^2

ans =
3.2206

Example
The plot shows the bell curve of the standard normal pdf, with µ = 0 and σ = 1.

See Also
“Continuous Distributions (Data)” on page 5-4
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Pareto Distribution
See “Generalized Pareto Distribution” on page B-37.
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Pearson System
See “Pearson and Johnson Systems” on page 6-26.
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Piecewise Distributions
See the discussion of the @piecewisedistribution class in “Fitting Piecewise
Distributions” on page 5-72.
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Poisson Distribution

In this section...

“Definition” on page B-88

“Background” on page B-88

“Parameters” on page B-89

“Example” on page B-89

“See Also” on page B-89

Definition
The Poisson pdf is

Background
The Poisson distribution is appropriate for applications that involve counting
the number of times a random event occurs in a given amount of time,
distance, area, etc. Sample applications that involve Poisson distributions
include the number of Geiger counter clicks per second, the number of people
walking into a store in an hour, and the number of flaws per 1000 feet of
video tape.

The Poisson distribution is a one-parameter discrete distribution that takes
nonnegative integer values. The parameter, λ, is both the mean and the
variance of the distribution. Thus, as the size of the numbers in a particular
sample of Poisson random numbers gets larger, so does the variability of
the numbers.

The Poisson distribution is the limiting case of a binomial distribution where
N approaches infinity and p goes to zero while Np = λ.

The Poisson and exponential distributions are related. If the number of
counts follows the Poisson distribution, then the interval between individual
counts follows the exponential distribution.
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Parameters
The MLE and the MVUE of the Poisson parameter, λ, is the sample mean.
The sum of independent Poisson random variables is also Poisson distributed
with the parameter equal to the sum of the individual parameters. This
is used to calculate confidence intervals λ. As λ gets large the Poisson
distribution can be approximated by a normal distribution with µ = λ and σ2

= λ. This approximation is used to calculate confidence intervals for values
of λ greater than 100.

Example
The plot shows the probability for each nonnegative integer when λ = 5.

x = 0:15;
y = poisspdf(x,5);
plot(x,y,'+')

See Also
“Discrete Distributions” on page 5-7
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Rayleigh Distribution

In this section...

“Definition” on page B-90

“Background” on page B-90

“Parameters” on page B-91

“Example” on page B-91

“See Also” on page B-91

Definition
The Rayleigh pdf is

y f x b
x

b
e

x
b= =

−⎛

⎝
⎜

⎞

⎠
⎟

( | )
2

2

2

2

Background
The Rayleigh distribution is a special case of the Weibull distribution. If
A and B are the parameters of the Weibull distribution, then the Rayleigh
distribution with parameter b is equivalent to the Weibull distribution with

parameters A b= 2 and B = 2.

If the component velocities of a particle in the x and y directions are two
independent normal random variables with zero means and equal variances,
then the distance the particle travels per unit time is distributed Rayleigh.

In communications theory, Nakagami distributions, Rician distributions,
and Rayleigh distributions are used to model scattered signals that reach
a receiver by multiple paths. Depending on the density of the scatter, the
signal will display different fading characteristics. Rayleigh and Nakagami
distributions are used to model dense scatters, while Rician distributions
model fading with a stronger line-of-sight. Nakagami distributions can be
reduced to Rayleigh distributions, but give more control over the extent
of the fading.

B-90



Rayleigh Distribution

Parameters
The raylfit function returns the MLE of the Rayleigh parameter. This
estimate is

b
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Example
The following commands generate a plot of the Rayleigh pdf.

x = [0:0.01:2];
p = raylpdf(x,0.5);
plot(x,p)

See Also
“Continuous Distributions (Data)” on page 5-4
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Rician Distribution

In this section...

“Definition” on page B-92

“Background” on page B-92

“Parameters” on page B-92

“See Also” on page B-93

Definition
The Rician distribution has the density function

with noncentrality parameter s ≥ 0 and scale parameter σ > 0, for x > 0. I0
is the zero-order modified Bessel function of the first kind. If x has a Rician
distribution with parameters s and σ, then (x/σ)2 has a noncentral chi-square
distribution with two degrees of freedom and noncentrality parameter (s/σ)2.

Background
In communications theory, Nakagami distributions, Rician distributions,
and Rayleigh distributions are used to model scattered signals that reach
a receiver by multiple paths. Depending on the density of the scatter, the
signal will display different fading characteristics. Rayleigh and Nakagami
distributions are used to model dense scatters, while Rician distributions
model fading with a stronger line-of-sight. Nakagami distributions can be
reduced to Rayleigh distributions, but give more control over the extent
of the fading.

Parameters
See mle, dfittool.
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See Also
“Continuous Distributions (Data)” on page 5-4
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Student’s t Distribution

In this section...

“Definition” on page B-94

“Background” on page B-94

“Example” on page B-95

“See Also” on page B-95

Definition
Student’s t pdf is

where Γ( · ) is the Gamma function.

Background
The t distribution is a family of curves depending on a single parameter ν (the
degrees of freedom). As ν goes to infinity, the t distribution approaches the
standard normal distribution.

W. S. Gossett discovered the distribution through his work at the Guinness
brewery. At the time, Guinness did not allow its staff to publish, so Gossett
used the pseudonym “Student.”

If x is a random sample of size n from a normal distribution with mean μ,
then the statistic

t
x
s n

= − 
/

B-94



Student’s t Distribution

where is the sample mean and s is the sample standard deviation, has
Student’s t distribution with n – 1 degrees of freedom.

Example
The plot compares the t distribution with ν = 5 (solid line) to the shorter
tailed, standard normal distribution (dashed line).

x = -5:0.1:5;
y = tpdf(x,5);
z = normpdf(x,0,1);
plot(x,y,'-',x,z,'-.')

See Also
“Continuous Distributions (Statistics)” on page 5-6
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t Location-Scale Distribution

In this section...

“Definition” on page B-96

“Background” on page B-96

“Parameters” on page B-96

“See Also” on page B-97

Definition
The t location-scale distribution has the density function

with location parameter µ, scale parameter σ > 0, and shape parameter ν > 0.
If x has a t location-scale distribution, with parameters µ, σ, and ν, then

x − 


has a Student’s t distribution with ν degrees of freedom.

Background
The t location-scale distribution is useful for modeling data distributions
with heavier tails (more prone to outliers) than the normal distribution. It
approaches the normal distribution as ν approaches infinity, and smaller
values of ν yield heavier tails.

Parameters
See mle, dfittool.
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See Also
“Continuous Distributions (Statistics)” on page 5-6

B-97



B Distribution Reference

Uniform Distribution (Continuous)

In this section...

“Definition” on page B-98

“Background” on page B-98

“Parameters” on page B-98

“Example” on page B-98

“See Also” on page B-99

Definition
The uniform cdf is

Background
The uniform distribution (also called rectangular) has a constant pdf between
its two parameters a (the minimum) and b (the maximum). The standard
uniform distribution (a = 0 and b = 1) is a special case of the beta distribution,
obtained by setting both of its parameters to 1.

The uniform distribution is appropriate for representing the distribution of
round-off errors in values tabulated to a particular number of decimal places.

Parameters
The sample minimum and maximum are the MLEs of a and b respectively.

Example
The example illustrates the inversion method for generating normal random
numbers using rand and norminv. Note that the MATLAB function, randn,
does not use inversion since it is not efficient for this case.

u = rand(1000,1);
x = norminv(u,0,1);
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hist(x)

See Also
“Continuous Distributions (Data)” on page 5-4
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Uniform Distribution (Discrete)

In this section...

“Definition” on page B-100

“Background” on page B-100

“Example” on page B-100

“See Also” on page B-101

Definition
The discrete uniform pdf is

Background
The discrete uniform distribution is a simple distribution that puts equal
weight on the integers from one to N.

Example
As for all discrete distributions, the cdf is a step function. The plot shows
the discrete uniform cdf for N = 10.

x = 0:10;
y = unidcdf(x,10);
stairs(x,y)
set(gca,'Xlim',[0 11])
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Pick a random sample of 10 from a list of 553 items:

numbers = unidrnd(553,1,10)
numbers =

293 372 5 213 37 231 380 326 515 468

See Also
“Discrete Distributions” on page 5-7
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Weibull Distribution

In this section...

“Definition” on page B-102

“Background” on page B-102

“Parameters” on page B-103

“Example” on page B-103

“See Also” on page B-104

Definition
The Weibull pdf is

Background
Waloddi Weibull offered the distribution that bears his name as an
appropriate analytical tool for modeling the breaking strength of materials.
Current usage also includes reliability and lifetime modeling. The Weibull
distribution is more flexible than the exponential for these purposes.

To see why, consider the hazard rate function (instantaneous failure rate). If
f(t) and F(t) are the pdf and cdf of a distribution, then the hazard rate is

Substituting the pdf and cdf of the exponential distribution for f(t) and F(t)
above yields a constant. The example below shows that the hazard rate for
the Weibull distribution can vary.
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Parameters
Suppose you want to model the tensile strength of a thin filament using
the Weibull distribution. The function wblfit gives maximum likelihood
estimates and confidence intervals for the Weibull parameters.

strength = wblrnd(0.5,2,100,1); % Simulated strengths.
[p,ci] = wblfit(strength)

p =
0.4715 1.9811

ci =

0.4248 1.7067
0.5233 2.2996

The default 95% confidence interval for each parameter contains the true
value.

Example
The exponential distribution has a constant hazard function, which is not
generally the case for the Weibull distribution.

The plot shows the hazard functions for exponential (dashed line) and Weibull
(solid line) distributions having the same mean life. The Weibull hazard rate
here increases with age (a reasonable assumption).

t = 0:0.1:4.5;
h1 = exppdf(t,0.6267) ./ (1-expcdf(t,0.6267));
h2 = wblpdf(t,2,2) ./ (1-wblcdf(t,2,2));
plot(t,h1,'-',t,h2,'-')
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See Also
“Continuous Distributions (Data)” on page 5-4
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Wishart Distribution

In this section...

“Definition” on page B-105

“Background” on page B-105

“Example” on page B-106

“See Also” on page B-106

Definition
The probability density function of the d-dimensional Wishart distribution is
given by

y = f( , , ) = 
2

( -d-1 - trace

( d)/2
Χ Σ

Χ
Σ Χ

ν
π

ν

ν

)/2
1
2

1

( ) ( )⎛
⎝⎜

⎞
⎠⎟

−

e
((d(d-1))/4 ... ( -(d-1))/2∑ ( )ν ν ν/ /2 2Γ Γ

where X and Σ are d-by-d symmetric positive definite matrices, and ν is
a scalar greater than d – 1. While it is possible to define the Wishart for
singular Σ, the density cannot be written as above.

Only random matrix generation is supported for the Wishart distribution,
including both singular and nonsingular Σ.

Background
The Wishart distribution is a generalization of the univariate chi-square
distribution to two or more variables. It is a distribution for symmetric
positive semidefinite matrices, typically covariance matrices, the diagonal
elements of which are each chi-square random variables. In the same way
as the chi-square distribution can be constructed by summing the squares of
independent, identically distributed, zero-mean univariate normal random
variables, the Wishart distribution can be constructed by summing the inner
products of independent, identically distributed, zero-mean multivariate
normal random vectors.
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The Wishart distribution is parameterized with a symmetric, positive
semidefinite matrix, Σ, and a positive scalar degrees of freedom parameter, ν.
ν is analogous to the degrees of freedom parameter of a univariate chi-square
distribution, and Σν is the mean of the distribution.

The Wishart distribution is often used as a model for the distribution of the
sample covariance matrix for multivariate normal random data, after scaling
by the sample size.

Example
If x is a bivariate normal random vector with mean zero and covariance matrix

Σ = ⎛

⎝
⎜

⎞

⎠
⎟

1 5
5 2

.
.

then you can use the Wishart distribution to generate a sample covariance
matrix without explicitly generating x itself. Notice how the sampling
variability is quite large when the degrees of freedom is small.

Sigma = [1 .5; .5 2];
df = 10; S1 = wishrnd(Sigma,df)/df

S1 =
1.7959 0.64107

0.64107 1.5496

df = 1000; S2 = wishrnd(Sigma,df)/df

S2 =
0.9842 0.50158

0.50158 2.1682

See Also
“Multivariate Distributions” on page 5-8
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IndexA
absolute deviation 3-5
added variable plots

adding new term to model 9-23
from stepwise 9-29

addedvarplot 18-2
additive effects 8-9
adjacent value 18-87
adjacent values 4-7
AIC. See Akaike Information Criterion
Akaike Information Criterion (AIC) 5-106 18-8
alternative hypotheses 7-3
analysis of variance

F distribution B-26
functions 16-32
multivariate 8-39
N-way 8-12
one-way 8-3
two-way 8-9
visualization functions 16-12 16-32

andrewsplot 18-9
ANOVA tables

regression 9-13
anova1 18-13
anova2 18-20
anovan 18-24
Ansari-Bradley test 7-12
ansaribradley 18-34
aoctool 8-27 18-37
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accessing 2-18
combining 2-19
computing with 2-20
constructing 2-16
implementation 2-14
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dataset
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combining 2-29

computing with 2-31
constructing 2-25
creating 2-24

multidimensional 2-6
numerical 2-4
statistical 2-11

average linkage 18-653
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bacteria counts 8-4
Bartlett multiple-sample test 7-14
barttest 18-43
batch updates 18-610
Bayes classification

objects 16-43 17-5
Bayes Information Criterion (BIC) 5-106 18-57
bbdesign 18-44
Bernoulli distribution B-3
Bernoulli random variables 18-64
beta distribution B-4
betacdf 18-47
betafit 18-48
betainv 18-50
betalike 18-52
betapdf 18-53
betarnd 18-54
betastat 18-56
BIC. See Bayes Information Criterion
binocdf 18-58
binofit 18-59
binoinv 18-61
binomial distribution B-7

negative B-71
binopdf 18-62
binornd 18-64
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bootstrapping 3-9
bootstrp 18-74
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implementation 2-14
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CCD. See central composite designs
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generating 18-125
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Central Limit Theorem B-82
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overview 10-3
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creating 18-651
creating, from data 18-187
inconsistency coefficient 18-559
plotting 18-299

clusterdata 18-187
cmdscale 18-190
CML. See Canonical Maximum Likelihood
coefficients

linear model 9-3
combnk 18-194
common factors 10-46
comparisons, multiple 8-6
complete linkage 18-653
confidence intervals

communicating results of hypothesis
tests 7-4

nonlinear regression 9-61
confounding effects 14-5
confounding patterns 14-7
confusionmat 18-201
container variables 2-2
continuous distributions

data 5-4
statistics 5-6

control charts 15-3
controlchart 18-204
controlrules 18-210
Cook’s distance 18-1123
cophenet 18-215
cophenetic correlation coefficients 11-10 18-215
cophenetic distance 11-10
copulacdf 18-217
copulafit 18-219
copulaparam 18-225
copulapdf 18-227

copularnd 18-231
copulas 5-109 B-14
copulastat 18-229
cordexch 18-233
corr 18-237
corrcov 18-240
correlation

functions 16-10
Cox proportional hazards fit 18-243
coxphfit 18-243
criterion function 10-23
crosstab 18-247
crossval 18-250
cumulative distribution

functions 16-19
cumulative distribution function (cdf)

empirical 5-63
for parametric estimation 5-62
graphing an estimate 4-13

curse of dimensionality 10-2
cut variables 18-266

D
D-optimal designs

creating from candidate set 18-96
functions 16-48
generating candidate set 18-100
overview 14-15

data
categorical 2-13
heterogeneous 2-7
landmark 10-14
statistical 2-23

data containers 2-2
data organization

functions 16-3
objects 17-2

data sets
normalizing 11-4
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statistical examples A-2
dataset arrays

accessing 2-27
combining 2-29
computing with 2-31
constructing 2-25
creating 2-24
functions 16-6 to 16-7
objects 17-2

daugment 18-286
dcovary 18-290
decision trees

computing error rate 18-1332
computing response values 18-1336
creating 18-1324
creating subtrees 18-1327
displaying 18-1321
fitting 18-1324
pruning 18-1327

dendrogram 18-299
density estimation

ksdensity function 18-617
descriptive statistics

functions 16-8
design matrices 9-5
design matrix 9-66
design of experiments

basic factors 14-6
confounding effects 14-5
D-optimal designs 14-15
fractional factorial designs 14-5
full factorial designs 14-3
functions 16-47
generators 14-6
levels 14-3
Plackett-Burman designs 14-5
resolution 14-6 18-422
response surface designs 14-9
two-level designs 14-4
visualization functions 16-14 16-47

dfittool 18-303
dimension reduction

common factor analysis 18-376
multivariate statistical methods 10-2
PCA from covariance matrix 18-964
PCA from raw data matrix 18-1032
PCA residuals 18-966

discrete distributions 5-7
discrete uniform distribution B-100
discriminant analysis 12-3

functions 16-42
discriminant functions 12-3
dispersion

functions 16-8
dissimilarity matrices

creating 11-4
distance matrices

creating 11-4
distribution

objects 16-15 17-3
visualization functions 16-11 16-16

distribution fitting
functions 5-70 16-24
tool 5-11

distribution statistics
functions 5-68 16-23

distributions
custom B-15
functions that support 5-52

disttool 18-326
dummyvar 18-331
Durbin-Watson test 7-12
dwtest 18-334

E
ecdf 18-336
ecdfhist 18-339
effects

fixed 9-64

Index-4



Index

random 9-64
statistical 9-64

efinv 18-348
EM. See expectation maximization algorithm
emission matrices

estimating 13-9
empirical cumulative distribution function 5-63

18-336
ensemble methods

functions 16-36 16-44
objects 17-4 to 17-5

equal variances
Bartlett multiple-sample test for 7-14
F-test for 7-13

erf B-82
error function B-82
Euclidean distance 18-979
evcdf 18-344
evfit 18-346
evlike 18-359
evpdf 18-360
evrnd 18-361
evstat 18-362
expcdf 18-363
expectation maximization (EM) algorithm

cluster analysis 11-2
Gaussian mixture models 5-100 11-28

expfit 18-365
expinv 18-367
explike 18-369
exponential distribution B-16
exppdf 18-373
exprnd 18-374
expstat 18-375
extrapolated 18-1082
extreme value distribution B-19
extreme value fit 18-346

F
F distribution B-25
F-test, one-sample 7-13
factor analysis

functions 16-39
maximum likelihood 18-376

factoran 18-376
factorial designs

fractional 14-5
full 14-3
generating fractional 18-420
generating full 18-435

fcdf 18-391
feature selection

functions 16-39
overview 10-23
sequential 10-23

feature transformation
functions 16-39
overview 10-28

ff2n 18-393
file I/O

functions 16-2
filter methods

feature selection 18-1191
finv 18-397
fitdist 18-409
folds

partition 18-271
fpdf 18-419
fracfact 18-420
fracfactgen 18-422
fractional factorial designs

functions 16-48
generating 18-420
overview 14-5

friedman 18-425
Friedman’s test 8-37
frnd 18-429
fstat 18-431
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fsurfht 18-432
full factorial designs

functions 16-47
generating 18-435
overview 14-3

fullfact 18-435
functions

vectorized 2-9
furthest neighbor linkage 18-653

G
gagerr 18-436
gamcdf 18-441
gamfit 18-443
gaminv 18-445
gamlike 18-447
gamma distribution B-27
gampdf 18-449
gamrnd 18-450
gamstat 18-451
Gauss-Markov theorem 9-5
Gaussian distribution B-30
Gaussian mixture distributions B-31
Gaussian mixture models

functions 16-41
objects 17-4

generalized extreme value distribution B-32
generalized Pareto distribution B-37
geocdf 18-453
geoinv 18-454
geomean 18-455
geometric distribution B-41
geopdf 18-456
geornd 18-457
geostat 18-458
gevcdf 18-463
gevfit 18-464
gevinv 18-466
gevlike 18-467

gevpdf 18-468
gevrnd 18-469
gevstat 18-470
gline 18-471
glmfit 18-473
glmval 18-478
glyphplot 18-481
gname 18-491
gpcdf 18-493
gpfit 18-494
gpinv 18-496
gplike 18-497
gplotmatrix 18-499
gppdf 18-498
gprnd 18-502
gpstat 18-503
graphical user interfaces

functions 16-52
group mean clusters, plot 8-44
grouped plot matrices 8-40
grouping variables

functions for 2-34
use for computing statistics 2-33
using 2-35

grp2idx 18-507
grpstats 18-509
gscatter 18-517

H
harmmean 18-524
hat matrix 9-7
heterogeneous data

storing, in MATLAB 2-7
hidden Markov models

functions 16-46
overview 13-5

hierarchical clustering
cluster analysis 11-3
computing inconsistency coefficient 18-559
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constructing clusters 18-180
cophenetic correlation coefficients 18-215
creating cluster trees 18-651
creating clusters 11-16
creating clusters from data 18-187
determining proximity 18-977
evaluating cluster formation 18-215
functions 16-40
grouping objects 11-6
inconsistency coefficient 18-559
plotting cluster trees 18-299
procedure 11-3

hist3 18-525
histfit 18-531
histogram fit 18-531
hmmdecode 18-534
hmmestimate 13-9 18-536
hmmgenerate 18-538
hmmtrain 13-10 18-540
hmmviterbi 18-543
holdout

partition 18-271
Hotelling’s T-squared 10-42
hougen 18-547
hygecdf 18-548
hygeinv 18-549
hygepdf 18-550
hygernd 18-551
hygestat 18-552
hypergeometric distribution B-43
hypotheses B-26
hypothesis tests

assumptions 7-5
functions 16-31
functions that support 7-12
power 7-4 18-1176

I
icdf 18-553

IFM. See Inference Functions for Margins method
incomplete beta function B-4
incomplete gamma function B-27
inconsistency coefficient 18-559
inconsistent 18-559
Inference Functions for Margins (IFM)

method 18-220
initial state distribution

changing 13-12
interaction effects

designed experiments 14-2
two-way ANOVA 8-9

interactionplot 18-567
interquartile range (iqr) 3-6
inverse cumulative distribution

functions 5-66 16-21
inverse Gaussian distribution B-45
inverse Wishart distribution B-46 B-105
invpred 18-570
iqr 18-573
iwishrnd 18-591

J
jackknife 18-592
Jarque-Bera test 7-12 18-594
jbtest 18-594
Johnson system of distributions 6-26 B-48
johnsrnd 18-597

K
K-means clustering

cluster separation 11-22
functions 16-41
local minima 11-26
number of clusters 11-23
overview 11-21
silhouette plot 18-1209
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Kaplan-Meier cumulative distribution
function 18-336

kernel bandwidth 5-57
kernel smoothing functions

specifying 5-59
kmeans 18-607
Kolmogorov-Smirnov test

one-sample 7-12
two-sample 7-12

Kruskal-Wallis test 8-36
kruskalwallis 18-613
ksdensity 18-617
kstest 18-623
kstest2 18-628
kurtosis 18-632

L
landmark data 10-14
latin hypercube designs

functions 16-48
latin hypercube sample 18-644

normal distribution 18-645
least squares

iteratively reweighted 9-14
leverage 18-642
leverage plots

partial regression 9-23
leverage, linear regression models 9-7
lhsdesign 18-644
lhsnorm 18-645
likelihood function 18-53
Lilliefors test 7-12

example 7-7
lillietest 18-646
linear hypothesis test 7-12
linear models

generalized 9-52
linear regression

functions 16-34

multiple 9-8
polynomial 9-37
response surfaces 9-45
ridge 9-29
robust 9-14
stepwise 9-19

linear transformations
Procrustes 18-1062

linhyptest 18-649
link functions 9-53
linkage 18-651

average 18-653
centroid 18-653
complete 18-653
furthest neighbor 18-653
nearest neighbor 18-653
single 18-653
ward 18-654

loadings 10-36 10-46
logistic distribution B-49
logistic models 9-54
logistic regression

stepwise 9-56
loglogistic distribution B-50
logncdf 18-655
lognfit 18-657
logninv 18-659
lognlike 18-661
lognormal distribution B-51
lognormal fit 18-657
lognpdf 18-662
lognrnd 18-664
lognstat 18-666
loss

prediction 18-1189
lsline 18-670

M
mad 18-672
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mahal 18-674
Mahalanobis distance

computing 18-674 18-676
in cluster analysis 18-979
method that measures 11-33

main effects 14-2
maineffectsplot 18-680
Mann-Whitney U-test 18-1103
MANOVA 8-39
manova1 18-682
manovacluster 18-686
Markov chains

emission matrix 13-4
emissions 13-4
initial state 13-4
Monte Carlo simulations 6-15
overview 13-3
transition matrices 13-4

Markov models
hidden

functions for 13-7
generating test sequences for 13-8
overview 13-5

state diagram 13-3
maximum likelihood

coefficient estimates 9-5
estimation 5-70
factor analysis 18-376

MCMC 6-15
MDS. See multidimensional scaling
mdscale 18-692
mean

of probability distribution 5-68
mean absolute deviation 18-672
mean squares (MS) 18-14
measures of

central tendency 3-3
dispersion 3-5

median absolute deviation 18-672
metric multidimensional scaling 10-3

See also classical multidimensional scaling
mhsample 18-711
Minkowski metric 18-979
missing data 3-16
missing values

functions 16-9
mixed-effects models 9-65
mle 18-716
MLE. See maximum likelihood — estimation
mlecov 18-722
mnpdf 18-725
mnrfit 18-727
mnrnd 18-734
mnrval 18-736
model assessment

functions 16-41
objects 17-5

models
mixed-effects 9-65

moment 18-742
MS. See mean squares
multcompare 18-745
multicollinearity 18-1138

addressed by ridge regression 9-29
multidimensional arrays

classical (metric) scaling 18-190
multidimensional scaling (MDS)

classical (metric) 10-3
functions 16-38

multinomial distribution B-54
multiple comparison procedure 18-745
multiple linear regression 9-8
multivariate analysis of variance

example 8-39
multivariate distributions 5-8
multivariate Gaussian distribution B-57
multivariate normal distribution B-58
multivariate regression 9-4 9-57
multivariate statistics

analysis of variance 8-39
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functions 16-38
principal component analysis 10-31
visualization functions 16-13 16-38

multivariate t distribution B-64
multivarichart 18-754
mvncdf 18-758
mvnpdf 18-762
mvnrnd 18-772
mvregress 18-764
mvregresslike 18-770
mvtcdf 18-774
mvtpdf 18-778
mvtrnd 18-780

N
Nakagami distribution B-70
nancov 18-787
nanmax 18-789
nanmean 18-790
nanmedian 18-791
nanmin 18-792
NaNs

coding missing values as 3-16
nanstd 18-793
nansum 18-794
nanvar 18-795
nbincdf 18-797
nbinfit 18-799
nbininv 18-800
nbinpdf 18-801
nbinrnd 18-803
nbinstat 18-805
ncfcdf 18-807
ncfinv 18-809
ncfpdf 18-811
ncfrnd 18-813
ncfstat 18-815
nctcdf 18-819
nctinv 18-820

nctpdf 18-821
nctrnd 18-823
nctstat 18-825
ncx2cdf 18-827
ncx2inv 18-829
ncx2pdf 18-830
ncx2rnd 18-832
ncx2stat 18-834
nearest neighbor linkage 18-653
negative binomial distribution

confidence intervals 18-799
cumulative distribution function (cdf) 18-797
definition B-71
inverse cumulative distribution function

(cdf) 18-800
mean and variance 18-805
modeling number of auto accidents B-72
nbincdf function 18-797
nbininv function 18-800
nbinpdf function 18-801
parameter estimates 18-799
probability density function (pdf) 18-801
random matrices 18-803

negative binomial fit 18-799
negative log-likelihood

functions 5-77 16-26
Newton’s method 18-445
nlinfit 18-843
nlintool 18-846
nlmefit 18-848
nlparci 18-865
nlpredci 18-867
nnmf 18-870
noncentral F distribution B-77
nonlinear least-squares fit 18-843
nonlinear mixed effects 18-848
nonlinear regression

functions 16-35
nonnegative matrix factorization

dimension-reduction technique 10-29
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functions 16-39
nonparametric distributions 5-8 B-81
normal distribution B-82
normal equations 9-6
normal fit 18-894
normal probability plots 4-8
normalizing

data sets 11-4
normcdf 18-892
normfit 18-894
norminv 18-896
normlike 18-898
normpdf 18-899
normplot 18-900
normrnd 18-902
normspec 18-904
normstat 18-906
null hypotheses 7-3
numerical arrays 2-4

O
one-sample Kolmogorov-Smirnov test 7-12
online updates 18-611
outliers

measures resistant to 3-3
regression 9-11

P
p-values 7-3
parallel regression 18-728
parallelcoords 18-941
pareto 18-954
Pareto distribution B-85
partial least-squares regression 9-33
partial regression

leverage plots 9-23
partialcorr 18-961
PCA. See principal component analysis

pcacov 18-964
pcares 18-966
pdf 18-969
pdist 18-977
Pearson system of distributions 6-26 B-86
pearsrnd 18-982
percentiles

computing 3-7
perms 18-993
piecewise distribution fitting

functions 16-25
piecewise distributions B-87

functions 16-29
objects 17-4

Plackett-Burman designs 14-5
plsregress 18-997
poisscdf 18-1005
poissfit 18-1007
poissinv 18-1008
Poisson distribution B-88
Poisson fit 18-1007
poisspdf 18-1009
poissrnd 18-1010
poisstat 18-1012
polyconf 18-1013
polynomial regression 9-37
polytool 18-1019
posterior state probabilities

estimating 13-11
power

hypothesis tests 7-4
prctile 18-1026
principal component analysis (PCA)

component scores 10-36
component variances 10-40
functions 16-39
Hotelling’s T-squared 10-42
overview 10-31
principal components 10-36
quality of life example 10-33
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scree plots 10-41
principal coordinates analysis 10-4
princomp 18-1032
probabilities

posterior state, estimating 13-11
probability density

functions 5-52 16-17
probability density estimation

comparing estimates 5-60
function 18-617
kernel bandwidth 5-57
kernel smoothing functions 5-59
nonparametric estimation 5-55

Probability Distribution Function Tool 5-9
probability distributions

disttool 5-9
functions 16-15
functions that support 5-3
mean and variance 5-68
objects 17-3
piecewise 5-70

probability mass functions
pmf 5-52

probplot 18-1057
procrustes 18-1062
Procrustes analysis 10-14 18-1062

functions 16-38
pseudoinverses 9-6
pseudorandom numbers

generating 6-2

Q
qqplot 18-1082
QR decomposition 18-1123
QRNG (quasi-random number generator) 6-17
quality assurance 18-62
quantile 18-1084
quantile-quantile plots 4-10
quasi-random designs

functions 16-49
objects 17-6

quasi-random numbers
functions 16-28
generating 6-17
objects 17-3
sequences

leaping 6-18
point set 6-18
scrambling 6-18
skipping 6-18

streams 6-24
state 6-24

R
randg 18-1086
random 18-1088
random number generation

acceptance-rejection methods 6-9
direct methods 6-5
inversion methods 6-7
methods 6-5

Random Number Generation Tool 5-49
random number generators (RNGs) 5-81 6-2
random numbers

functions 16-26
random samples

inverse Wishart 18-591
latin hypercube 18-644
latin hypercube with normal

distribution 18-645
Wishart 18-1415

randsample 18-1098
randtool 18-1099
range 18-1102
ranksum 18-1103
raylcdf 18-1105
Rayleigh distribution B-90
Rayleigh fit 18-1106
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raylfit 18-1106
raylinv 18-1107
raylpdf 18-1108
raylrnd 18-1109
raylstat 18-1110
rcoplot 18-1111
refcurve 18-1113
refline 18-1117
regress 18-1119
regression

adjusted R-square statistic 18-1123
ANOVA 9-13
change in covariance 18-1123
change in fitted values 18-1123
coefficient covariance 18-1123
coefficients 18-1123
delete-1 coefficients 18-1123
delete-1 variance 18-1123
F distribution B-26
F statistic 18-1123
fitted values 18-1123
hat matrix 18-1123
leverage 18-1123
mean squared error 18-1123
multivariate 9-4 9-57
partial least squares 9-33
projection matrix 18-1123
R-square statistic 18-1123
residuals 18-1123
scaled change in coefficients 18-1123
scaled change in fitted values 18-1123
t statistic 18-1123

regression analysis
functions 16-33
objects 17-4
visualization functions 16-13 16-33

regression trees
example 9-91
functions 16-35
objects 17-4

regstats 18-1123
relative efficiency 18-573
resampling

functions 16-9
statistics 3-9

residuals
linear regression 9-5
regression 9-10
standardized 18-1123
studentized 18-1123

response surface
designs

functions 16-48
response surfaces

designs
Box-Behnken 14-13
central composite 14-9
overview 14-9

linear regression 9-46
methodology (RSM) 9-46

resubstitution error 18-874
Rician distribution B-92
ridge 18-1137
ridge parameters 9-29 18-1138
ridge regression 9-29 18-1137
ridge trace 18-1137
RNGs. See random number generators
robust linear fit 18-1082
robust linear regression 18-1149
robust regression 9-14
robustdemo 9-16 18-1145
robustfit 18-1149
rotatable designs 14-11
rotatefactors 18-1156
rowexch 18-1160
RSM. See response surfaces — methodology
rsmdemo 18-1164
rstool 18-1169
runs test 7-13
runstest 18-1173
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S
sampsizepwr 18-1176
SBS. See sequential backward selection
scaling arrays

classical multidimensional 18-190
scatter

visualization functions 16-12
scatter plots

functions that produce 4-3
grouped 8-40

scatterhist 18-1180
scree plots 10-41
sequential backward selection (SBS) 10-24
sequential feature selection

criterion 10-23
sequential forward selection (SFS) 10-24
sequentialfs 18-1189
SFS. See sequential forward selection
shape

functions 16-9
Shepard plots 10-11
sign tests 7-13
significance levels 7-3
signrank 18-1205
signtest 18-1207
silhouette 18-1209
similarity matrices

creating 11-4
single linkage 18-653
skewness 18-1221
slicesample 18-1218
SPC. See statistical process control
specific variance 10-46
squareform 18-1234
SS. See sum of squares
standard normal 18-899
standardized data

zscore 18-1422
standardized Euclidean distance 18-979
state sequences

estimating 13-8
statistical arrays 2-11
statistical data 2-23
statistical functions

operating on numerical data 2-9
vectorized 2-9

statistical process control
capability studies 15-6
control charts 15-3
functions 16-51
visualization functions 16-14 16-51

statistical visualization
functions 16-11

stepwise 18-1251
stepwise regression 9-19
stepwisefit 18-1255
structure arrays

storing heterogeneous data in 2-7
Student’s t distribution B-94

noncentral B-79
sum of squares (SS) 18-13
summaries

functions 16-8
supported distribution fitting

functions 16-24
surfht 18-1284

T
t location-scale distribution B-96
t-tests

one-sample 7-13
paired-sample 7-13
two-sample 7-13

tab-delimited data
reading from file 18-1292

tabular data
reading from file 18-1286

tabulate 18-1285
tblread 18-1286
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tblwrite 18-1288
tcdf 18-1290
tdfread 18-1292
terms

linear model 9-3
test data 12-2
test sequences

generating, for hidden Markov model 13-8
test statistics 7-3
tiedrank 18-1303
tinv 18-1305
tpdf 18-1306
training data 12-2
transition matrices

estimating 13-9
treatments

experimental 14-3
treedisp 18-1321
treefit 18-1324
treeprune 18-1327
trees 18-1324

See also decision trees
treetest 18-1332
treeval 18-1336
trimmean 18-1338
trnd 18-1342
tstat 18-1343
ttest 18-1344
ttest2 18-1348
two-level designs 14-4
two-sample Kolmogorov-Smirnov test 7-12
two-way ANOVA 8-9
type I errors 7-3
type II errors 7-3

U
unidcdf 18-1364
unidinv 18-1365
unidpdf 18-1366

unidrnd 18-1367
unidstat 18-1368
unifcdf 18-1369
unifinv 18-1370
unifit 18-1371
uniform distribution B-98
uniformly distributed fit 18-1371
unifpdf 18-1372
unifrnd 18-1373
unifstat 18-1375
utility functions 16-53

V
variables

container 2-2
grouping

functions for 2-34
use for computing statistics 2-33
using 2-35

variances
of probability distribution 5-68

vartest 18-1388
vartest2 18-1390
vartestn 18-1392
vectorization

advantages of 2-9

W
Wald distribution B-45
ward linkage 18-654
wblcdf 18-1400
wblfit 18-1402
wblinv 18-1404
wbllike 18-1407
wblpdf 18-1409
wblplot 18-1410
wblrnd 18-1412
wblstat 18-1414
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Weibull distribution B-102
Weibull fit 18-1402
Weibull, Waloddi B-102
whiskers

on plots 4-7
Wilcoxon rank sum test 7-13
Wilcoxon signed rank tests 7-13
Wishart distribution B-105
Wishart random matrix 18-1415

inverse 18-591
wishrnd 18-1415
wrapper methods

feature selection 18-1191

X
x2fx 18-1418
xptread 18-1417

Z
z-test, one-sample 7-14
zscore 18-1422
ztest 18-1424
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